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Implications of Big Data for cell biology
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ABSTRACT  “Big Data” has surpassed “systems biology” and “omics” as the hottest buzz-
word in the biological sciences, but is there any substance behind the hype? Certainly, we 
have learned about various aspects of cell and molecular biology from the many individual 
high-throughput data sets that have been published in the past 15–20 years. These data, al-
though useful as individual data sets, can provide much more knowledge when interrogated 
with Big Data approaches, such as applying integrative methods that leverage the heteroge-
neous data compendia in their entirety. Here we discuss the benefits and challenges of such 
Big Data approaches in biology and how cell and molecular biologists can best take advan-
tage of them.

What is “Big Data,” and what, if anything, can it do for cell biolo-
gists? The definition of Big Data is changing as rapidly as genomics 
data are being generated. All biologists are faced with data growing 
at a rate that could not have been imagined just 20 years ago, when 
most labs were still running polyacrylamide gels to sequence indi-
vidual genes over the course of a couple of days. Soon after, results 
from a single microarray were intimidating enough to most biolo-
gists to be considered Big Data. Now, it is routine to analyze the 
entire compendia of expression and protein–protein interaction 
data. A similar “data avalanche” is happening in DNA sequencing, 
in which thousands of genomes are being analyzed in concert, and 
in imaging, in which cellular and organismal phenotypes can be sys-
tematically assessed in high-throughput format. Rather than setting 
a size threshold to define it (lest we fall into a “620K is enough 
memory for anyone” trap), Big Data is a moving bar that is set just 
beyond what we can, at a particular time, routinely annotate, ana-
lyze, and visualize—that is, Big Data is positioned where the chal-
lenges are in interpreting the wealth (and noisiness) of data now 
readily available. In other words, Big Data can be characterized by 

the three Vs: volume, variety, and velocity. The key question here is 
whether these virtual mountains of expression, sequence, pro-
teomics, imaging, and other data can be transformed into biological 
knowledge in such way that it is both trusted and useful to cell 
biologists.

It is interesting that the two most-cited articles in this journal are 
among the very first Big Data papers (Spellman et al., 1998; Gasch 
et al., 2000). David Botstein showed, in a retrospective, that indeed 
it was the data that were important: roughly half of the citations for 
these articles came from computational biologists and statisticians 
(Botstein, 2010). Thus, these articles not only defined for the first 
time a genome-wide set of genes regulated by the cell cycle and 
stress response, respectively, but they also provided data for follow-
up analyses, both experimental and computational, that enabled 
systems-level understanding of these processes and how they work 
in concert with other pathways. For example, a subsequent article 
used data from these two studies combined with growth rate under 
different limiting conditions to characterize the coordination of cell 
cycle, stress response, and growth rate in Saccharomyces cerevisiae 
(Brauer et al., 2008). Since those articles, Big Data has grown, not 
simply in size—more than 1.3 million samples are now available 
from the Gene Expression Omnibus database alone—but also in 
diversity. Nowadays, no area of molecular biology or genetics is 
insulated from high-throughput data—whether it is exploring ge-
nomic diversity in the context of evolution or human disease, con-
sidering epigenetic changes in development, or understanding 
transcriptional regulation of genes or posttranslational protein 
modifications. These are produced not only by individual laborato-
ries, but also by large consortia, such as the Encyclopedia of 
DNA Elements (ENCODE) project to identify all the functional ele-
ments in the human genome (www.encodeproject.org/), the GTeX 
project to generate expression data across different human tissues 
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and regulation modes, spanning, for example, transcriptional regu-
lation by histone proteins and transcription factors (from ENCODE 
data), RNA stability effects, and protein transport, interactions, and 
posttranscriptional modifications from imaging and proteomics 
studies.

In the past decade, many systematic approaches have been de-
veloped for integrating across genomic Big Data collections to pro-
vide novel biological insights—for example, to identify biological 
processes in which genes with unknown function participate (Pena-
Castillo et al., 2008) and to predict physical and regulatory protein 
interactions and posttranslational modification in a large-scale, au-
tomated way (Vaske et  al., 2010; Zhong et  al., 2014; Park et  al., 
2015). These approaches use statistical techniques that aim to iso-
late signal from noise in these diverse and heterogeneous data col-
lections, often relying on examples of known biological associations 
(e.g., genes with previously discovered biological function) to iden-
tify informative signals and make new discoveries. For example, In-
tegrative Multi-species Prediction (IMP; imp.princeton.edu) proba-
bilistically combines a large collection of expression, sequence, and 
protein interaction data to provide functional network and function 
predictions for any protein in the human and major model organism 
genome or proteome. Although most of these methods analyze 
data in preset ways, a recent trend includes development of ap-
proaches that enable the user to focus analysis on a specific biologi-
cal area or question, essentially directing the analysis of Big Data 
without having to do any programming. Many Big Data integrative 
methods now provide highly targeted analysis, such as in the tissue-
specific functional networks provided by GIANT (giant.princeton 
.edu) or Th17-focused prediction of TH17 regulatory networks 
(Ciofani et al., 2012).

In fact, integrative analysis of functional genomics data coupled 
with computational modeling has effectively directed laboratory ex-
periments and given rise to novel experimental discoveries in mul-
tiple model organisms and humans (Hess et al., 2009; Yan et al., 
2010; Guan et al., 2012; Wong et al., 2012). For example, Doherty 
et al. (2012) showed that the BLM10-20S proteasome activator me-
diates DNA damage and other cellular stresses, in part by examin-
ing the predicted functional networks of the genes that were in-
duced in blm10 mutants using the BioPIXIE tool (Myers et al., 2005). 
Similarly, Sanchez-Garcia et  al. (2014) integrated expression data 
from primary breast tumors with data from RNA interference screens 
using their Helios tool to identify candidate cancer-driver genes. 
They went on to experimentally characterize one of their novel pre-
dictions, RSF-1, showing that when amplified, RSF-1 increased both 
tumorigenesis and metastasis in mouse models of breast cancer.

Such data-driven approaches provide an important complement 
to the highly curated, aggregate databases that provide access to 
valuable information such as comprehensively curated physical and 
genetic interaction data (e.g., BioGRID; Chatr-Aryamontri et  al., 
2015) or phenotype information for model organisms through the 
model organism databases (e.g., Engel et al., 2010; Bult et al., 2013; 
Deans et  al., 2015). Because they are based on high-throughput 
data, not literature-based curation or collections of specific experi-
ments, the Big Data–based resources tend to be less biased toward 
prior knowledge and are able to make predictions even in areas in 
which prior knowledge may be very sparse or nonexistent. The price 
for this is of course the higher potential for errors due to noise levels 
in the data, although these can be mitigated by careful analysis, 
making genomic data collection a great source of hypotheses that 
can drive traditional experiments. Together the Big Data–driven 
methods and the curated databases are powerful tools for the cell 
biologist. The curated data within the databases can serve as 

(www.gtexportal.org/), and the LINCS program to produce a large-
scale set of cellular signatures in response to different molecular or 
genetic perturbations (www.lincsproject.org/).

These data sets can already be helpful to the everyday bench 
biologist, where one might find some new information about par-
ticular genes of interest that are discussed in the text or pop up in a 
reanalysis of an individual data set. However, these data, when ana-
lyzed in concert both within and across data types have the poten-
tial to provide substantial biological knowledge, generating hypoth-
eses that cannot be readily extracted from either the literature or 
any individual, even genome-scale, data set. For example, combin-
ing information in the Gasch et al. (2000) yeast stress response data 
set and the Spellman et al. (1998) yeast cell cycle data set can en-
able us to identify cell cycle–regulated genes that respond to DNA 
damage. This can then be extended with additional data to include 
identification of regulatory networks (e.g., by including chromatin 
immunoprecipitation followed by high-throughput sequencing 
[ChIP-seq] and nucleosome occupancy data). One such method, 
BETA, integrates ChIP-seq data sets that provide information about 
transcription factor binding with gene expression data informative 
of differential expression to predict direct target genes of transcrip-
tion factors (Wang et al., 2013). Emerging Big Data analysis methods 
and prediction platforms can generate hypotheses about the func-
tion, interactions, and regulation of proteins, RNAs, and other bio-
molecules, their behavior in biological pathways, and relationships 
between various molecular entities and phenotypes. For example, 
Inferelator 2.0 uses a combination of Markov chain Monte Carlo and 
ordinary differential equations to learn both the topology and dy-
namics of regulatory networks in Halobacterium (Madar et al., 2009). 
Furthermore, many of these approaches can, through integrative 
analysis of Big Data collections, provide insight into biological con-
texts (such as specific tissues, developmental stages, and perturba-
tions) that are challenging to directly assay experimentally. For ex-
ample, in humans, the Genome-scale Integrated Analysis of gene 
Networks in Tissues (GIANT) webserver predicts functional maps of 
protein–protein relationships for 144 tissues through Bayesian inte-
gration of thousands of expression, sequence, and protein–protein 
interaction experiments (Greene et al., 2015); experimental biolo-
gists can explore these functional maps to better understand cell-
specific processes in human disease.

In addition, Big Data, while naturally subject to signal-to-noise 
challenges, can compensate for the noisiness of each individual 
data set precisely because of its scale. Intuitively, signals that occur 
independently in multiple data sets are more likely to be “real”; for 
example, genes identified as cell-cycle regulated in multiple ge-
nome-scale studies are more likely to be truly cell-cycle regulated. 
Of course, simply identifying repeating signals can also zero in on 
common technical and biological artifacts or very broad (and thus 
often less interesting) biological signals, such as the general stress 
response that S. cerevisiae exhibit across essentially all treatments 
or broad growth regulators in human cell culture data. Sophisticated 
computational approaches based on Big Data collections, such as 
those described earlier, can specifically focus on the biologically in-
formative signals relevant to a specific biological question, including 
those hard or impossible to detect by simple analyses.

Furthermore, as each individual experiment is inherently assay-
ing only specific aspects of cellular complexity, combining data sets 
from different experimental conditions, platforms, and experimental 
approaches provides insights into molecular pathways that cannot 
be realized from individual studies done in isolation. Thus, analyses 
based on large collections of data hold the promise of systematic 
insights into how pathways function across mechanistic interaction 
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unpublished data from a cell biologist’s laboratory, can be under-
taken either in their own lab (if they have the requisite computa-
tional skills or through the newly emergent systems that enable so-
phisticated computational analysis by nonspecialists; e.g., Greene 
and Troyanskaya, 2011) or with a computational collaborator. Most 
institutions now include “card-carrying” computational biologists or 
bioinformaticians, as well as many experimentalists with substantial 
computational expertise, although looking for the best collaborative 
fit may require crossing departmental boundaries into computa-
tional biology, computer science, or similarly focused departments.

Does this mean that experimental cell biologists should look for 
alternative careers? Absolutely not! Computational approaches 
based on Big Data generate hypotheses, not experimentally veri-
fied biological knowledge. In addition, the broader, less-biased, 
Big Data–driven information can be a powerful guide for cell biol-
ogy studies. In the past, cell biologists would read articles and look 
at their last gel to inform the next set of experiments. As we con-
tinue to make progress in harnessing Big Data, cell biologists can 
obtain a new, valuable tool from its the broader, less-biased infor-
mation. Cell biologists who do not use Big Data to inform their 
experiments are squandering a valuable resource. It is analogous 
to a biologist doing DNA amplification manually in water baths 
when PCR machines are available. The wealth that Big Data brings 
will enable cell biologists to better design and focus their experi-
mental programs with the expectation that biological insights will 
come faster and more efficiently. We are not even close to replac-
ing individual experiments (and the cell biologists who do them!) 
with computers, but instead are in the midst of an exciting time 
when we are just beginning to tap the major effect of Big Data on 
the world of cell biology.

important gold standards for evaluating computational predictions, 
and the predictions can be used to guide and refine the annotation 
provided by the curated databases.

Big Data also has the potential of revolutionizing our use of 
model organisms, enabling accurate, less-biased, molecular-level 
identification of the most informative model for genes and diseases 
in the least expensive and most tractable experimental system. The 
key advantage is the ability to go beyond sequence-based orthol-
ogy to systematically assess functional conservation, promising a 
functional mapping of proteins, pathways, and phenotypes across 
organisms. For example, biologists can use a method based on 
probabilistically mapping protein networks from a large compen-
dium of high-throughput expression data across organisms to sys-
tematically predict which genes are most likely to participate in the 
same biological process and thus have analogous function in differ-
ent organisms (Singh et al., 2008; Chikina and Troyanskaya, 2011; 
Park et al., 2013). Such approaches can succeed where sequence-
based methods often fail, such as resolving paralogues based on 
tissue expression and correctly identifying functional divergence 
when orthology is predicted based on sequence and evolutionary 
relationships. The growing Big Data compendia in model organisms 
and humans, combined with sophisticated computational ap-
proaches, are bringing in an era in which we will be able to quanti-
tatively and systematically identify the best experimental model (or 
models) for a given disease or process, pinpoint specific aspects of 
relevant biology that are or are not conserved across organisms, and 
generally be able to effectively and accurately integrate our knowl-
edge across organisms.

What does this mean for a cell biologist? This means that all bi-
ologists contemplating their next study should consider using Big 
Data—based tools to inform their hypotheses, whether to identify 
additional proteins that may be relevant to the process they are 
studying, examine predicted molecular functions of a protein of in-
terest, or consider pathways that may be relevant to the experimen-
tal treatment or genetic modification they are considering. If they 
are interested in a specific cell type or developmental stage, they 
can use Big Data–based resources to identify proteins expressed in 
this cell type, tissue-specific interactions and functions, and perhaps 
even cell-type specific predictions of perturbation effects on pheno-
types. Many of the prediction systems and algorithms necessary for 
these analyses are available publicly, often in a user-friendly form 
aimed at biomedical researchers with no or limited computational 
training (Table 1). A more in-depth analysis, especially involving 

galaxyproject 
.org

Platform for genome-scale biomedical 
research

imp.princeton 
.edu

Functional networks in model organisms and 
humans

giant.princeton 
.edu

Tissue-specific networks and genome-wide 
association studies in humans

thebiogrid.org Database of protein and genetic interactions

seek.princeton 
.edu

Cross-platform search engine for expression 
data

genomespace 
.org

Framework for integrative genomics analysis

cbioportal.org Visualization and analysis of cancer genomic 
data

TABLE 1:  Examples of user-friendly systems for Big Data analysis in 
biology.
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