
 

 

 

 

 

 

 

 

Advanced Computer Architecture-CS501 
 
 

 

 

 

 

 

              Lecture Handouts 
 
 

 

     CS501 
 
 
 
 
 
 

 Advance Computer Architecture 
 

 
 
 
 

  



Advanced Computer Architecture   

________________________________________________________________________ 

2 

 

Table of Content 

Lecture No. 1 ------------------------------------------------------------------------------------------ 5 
Introduction ----------------------------------------------------------------------------------------- 5 

Lecture No. 2 ---------------------------------------------------------------------------------------- 21 

Introduction Set Architecture ------------------------------------------------------------------ 21 
Lecture No. 3 ---------------------------------------------------------------------------------------- 34 

Instruction to SRC Processor ------------------------------------------------------------------ 34 
Lecture No. 4 ---------------------------------------------------------------------------------------- 42 

ISA and Instruction Formats ------------------------------------------------------------------- 42 

Lecture No. 5 ---------------------------------------------------------------------------------------- 57 
Description of SRC in RTL -------------------------------------------------------------------- 57 

Lecture No. 6 ---------------------------------------------------------------------------------------- 67 

RTL Using Digital Logic Circuits ------------------------------------------------------------- 67 
Lecture No. 7 ---------------------------------------------------------------------------------------- 85 

Design Process forISA of FALCON-A ------------------------------------------------------- 85 
Lecture No. 8 ---------------------------------------------------------------------------------------- 90 

ISA of the FALCON-A ------------------------------------------------------------------------- 90 
Lecture No. 9 --------------------------------------------------------------------------------------- 104 

Description of FALCON-A and EAGLE using RTL -------------------------------------- 104 
Lecture No. 10-------------------------------------------------------------------------------------- 124 

The FALCON-E and ISA Comparison ------------------------------------------------------ 124 

Lecture No. 11-------------------------------------------------------------------------------------- 150 
CISC and RISC --------------------------------------------------------------------------------- 150 

Lecture No. 12-------------------------------------------------------------------------------------- 151 

CPU Design-------------------------------------------------------------------------------------- 151 

Lecture No. 13-------------------------------------------------------------------------------------- 162 
Structural RTLDescription of the FALCON-A -------------------------------------------- 162 

Lecture No. 14-------------------------------------------------------------------------------------- 171 

External FALCON-A CPU -------------------------------------------------------------------- 171 
Lecture No. 15-------------------------------------------------------------------------------------- 181 

Logic Design and Control Signals Generation in SRC ------------------------------------ 181 
Lecture No. 16-------------------------------------------------------------------------------------- 195 

Control Unit Design ---------------------------------------------------------------------------- 195 

Lecture No. 17-------------------------------------------------------------------------------------- 206 
Machine Reset and Machine Exceptions ---------------------------------------------------- 206 

Lecture No. 18-------------------------------------------------------------------------------------- 213 

Pipelining ---------------------------------------------------------------------------------------- 213 

Lecture 19 ------------------------------------------------------------------------------------------- 221 
Pipelined SRC ----------------------------------------------------------------------------------- 221 

Lecture No. 20-------------------------------------------------------------------------------------- 228 
Hazards in Pipelining -------------------------------------------------------------------------- 228 

Lecture 21 ------------------------------------------------------------------------------------------- 234 

Instruction Level Parallelism ------------------------------------------------------------------ 234 



Advanced Computer Architecture   

________________________________________________________________________ 

3 

 

Lecture No. 22-------------------------------------------------------------------------------------- 239 

Microprogramming ----------------------------------------------------------------------------- 239 
Lecture No. 23-------------------------------------------------------------------------------------- 251 

I/O Subsystems ---------------------------------------------------------------------------------- 251 

Lecture No. 24-------------------------------------------------------------------------------------- 265 
Designing Parallel Input and Output Ports -------------------------------------------------- 265 

Lecture No. 25-------------------------------------------------------------------------------------- 278 
Input Output Interface -------------------------------------------------------------------------- 278 

Lecture No. 26-------------------------------------------------------------------------------------- 292 

Programmed I/O -------------------------------------------------------------------------------- 292 
Lecture No. 27-------------------------------------------------------------------------------------- 303 

Interrupt Driven I/O ---------------------------------------------------------------------------- 303 
Lecture No. 28-------------------------------------------------------------------------------------- 313 

Interrupt Hardware and Software ------------------------------------------------------------- 313 
Lecture No. 29-------------------------------------------------------------------------------------- 328 

FALSIM ------------------------------------------------------------------------------------------ 328 
Lecture No. 30-------------------------------------------------------------------------------------- 343 

Interrupt Priority and Nested Interrupts ----------------------------------------------------- 343 
Lecture No. 31-------------------------------------------------------------------------------------- 349 

Direct Memory Access (DMA) --------------------------------------------------------------- 349 

Lecture No. 32-------------------------------------------------------------------------------------- 358 
Magnetic Disk Drives -------------------------------------------------------------------------- 358 

Lecture No. 33-------------------------------------------------------------------------------------- 363 
Error Control ------------------------------------------------------------------------------------ 363 

Lecture No. 34-------------------------------------------------------------------------------------- 368 

Number Systems and Radix Conversion ---------------------------------------------------- 368 

Lecture No. 35-------------------------------------------------------------------------------------- 377 
Multiplication and Division of Integers ----------------------------------------------------- 377 

Lecture No. 36-------------------------------------------------------------------------------------- 383 

Floating-Point Arithmetic --------------------------------------------------------------------- 383 
Lecture No. 37-------------------------------------------------------------------------------------- 387 

Components of memory Systems ------------------------------------------------------------ 387 
Lecture No. 38-------------------------------------------------------------------------------------- 396 

Memory Modules ------------------------------------------------------------------------------- 396 
Lecture No. 39-------------------------------------------------------------------------------------- 399 

The Cache ---------------------------------------------------------------------------------------- 399 
Lecture No. 40-------------------------------------------------------------------------------------- 408 

Virtual Memory --------------------------------------------------------------------------------- 408 
Lecture No. 41-------------------------------------------------------------------------------------- 416 

Numerical Examples of DRAM and Cache ------------------------------------------------- 416 

Lecture No. 42-------------------------------------------------------------------------------------- 426 
Performance of I/O Subsystems -------------------------------------------------------------- 426 

Lecture No. 43-------------------------------------------------------------------------------------- 432 
Networks ----------------------------------------------------------------------------------------- 432 



Advanced Computer Architecture   

________________________________________________________________________ 

4 

 

Lecture No. 44-------------------------------------------------------------------------------------- 437 

Communication Medium and Network Topologies --------------------------------------- 437 

 

 

 

  



Advanced Computer Architecture   

________________________________________________________________________ 

5 

 

 

Lecture No. 1 

 
Introduction 

 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                       Chapter 1 

Computer Systems Design and Architecture                                       1.1, 1.2, 1.3, 1.4, 1.5    

 

Summary 
 

1) Distinction between computer architecture, organization and design 

2) Levels of abstraction in digital design 

3) Introduction to the course topics 

4) Perspectives of different people about computers 

5) General operation of a stored program digital computer 

6) The Fetch-Execute process 

7) Concept of an ISA(Instruction Set Architecture) 

 

 

Introduction 

 
This course is about Computer Architecture. We start by explaining a few key terms. 

The General Purpose Digital Computer 

How can we define a „computer‟? There are several kinds of devices that can be termed 

“computers”: from desktop machines to the microcontrollers used in appliances such as a 

microwave oven, from the Abacus to the cluster of tiny chips used in parallel processors, 

etc. For the purpose of this course, we will use the following definition of a computer:  
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“an electronic device, operating under the control of instructions stored in its own 

memory unit, that can accept data (input), process data arithmetically and logically, 

produce output from the processing, and store the results for future use.” [1] 

Thus, when we use the term computer, we actually mean a digital computer. There are 

many digital computers, which have dedicated purposes, for example, a computer used in 

an automobile that controls the spark 

 

timing for the engine. This means that when we use the term computer, we actually mean 

a general-purpose digital computer that can perform a variety of arithmetic and logic 

tasks. 
The Computer as a System 

Now we examine the notion of a system, and the place of digital computers in the general 

universal set of systems. A “system” is a collection of elements, or components, working 

together on one or more inputs to produce one or more desired outputs.  

There are many types of systems in the world.  Examples include: 

• Chemical systems  

• Optical systems 

• Biological systems 

• Electrical systems 

• Mechanical systems, etc.  
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These are all subsets of the general universal set of “systems”. One particular subset of 

interest is an “electrical system”. In case of electrical systems, the inputs as well as the 

outputs are electrical quantities, namely voltage and current. “Digital systems” are a 

subset of electrical systems. The inputs and outputs are digital quantities in this case. 

General-purpose digital computers are a subset of digital systems. We will focus on 

general-purpose digital computers in this course. 

Essential Elements of a General Purpose Digital Computer 

The figure shows the block diagram of a modern general-purpose digital computer. 

We observe from the diagram that a general-purpose computer has three main 

components: a memory subsystem, an input/ output subsystem, and a central processing 

unit. Programs are stored in the memory, the execution of the program instructions takes 

place in the CPU, and the communication with the external world is achieved through the 

I/O subsystem (including the peripherals).  

Architecture 

Now that we understand the term “computer” in our context, let us focus on the term 

architecture. The word architecture, as defined in standard dictionaries, is “the art or 

science of building”, or “a method or style of building”. [2] 

Computer Architecture 

This term was first used in 1964 by Amdahl, Blaauw, and Brooks at IBM [3].  They 

defined it as 

“the structure of a computer that a machine language programmer must understand to 

write a correct (time independent) program for that machine.”  
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By architecture, they meant the programmer visible portion of the instruction set. Thus, a  

 

family of machines of the same architecture should be able to run the same software 

(instructions). This concept is now so common that it is taken for granted. The x86 

architecture is a well-known example. 

The study of computer architecture includes 

 a study of the structure of a computer 

 a study of the instruction set of a computer 

 a study of the process of designing a computer 

Computer Organization versus Computer Architecture   

It is difficult to make a sharp distinction between these two. However, architecture refers 

to the attributes of a computer that are visible to a programmer, including 

 The instruction set 

 The number of bits used to represent various data types 

 I/O mechanisms 

 Memory addressing modes, etc. 

On the other hand, organization refers to the operational units of a computer and their 

interconnections that realize the architectural specifications. These include 

 The control signals 

 Interfaces between the computer and its peripherals 

 Memory technology used, etc.  

It is an architectural issue whether a computer will have a specific instruction or not, 

while it is an organizational issue how that instruction will be implemented. 

Computer Architect 

We can conclude from the discussion above that a computer architect is a person who 

designs computers.  

Design 

Design is defined as   

“the process of devising a system, component, or process to meet desired needs.” 
Most people think of design as a “sketch”.  This is the usage of the term as a noun.  

However, the standard engineering usage of the term, as is quite evident from the above 

definition, is as a verb, i.e., “design is a process”. A designer works with a set of stated 

requirements under a number of constraints to produce the best solution for a given 

problem. Best may mean a “cost-effective” solution, but not always. Additional or 

alternate requirements, like efficiency, the client or the designer may impose robustness, 

etc.. Therefore, design is a decision-making process (often iterative in nature), in which 

the basic sciences, mathematical concepts and engineering sciences are applied to convert 

a given set of resources optimally to meet a stated objective.  

Knowledge base of a computer architect 

There are many people in the world who know how to drive a car; these are the “users” of 

cars who are familiar with the behavior of a car and how to operate it. In the same way, 

there are people who can use computers. There are also a number of people in the world 

who know how to repair a car; these are “automobile technicians”. In the same way, we 

have computer technicians. However, there are a very few people who know how to 
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design a car; these are “automobile designers”.  In the same way, there are only very few 

experts in the world who can design computers. In this course, you will learn how to 

design computers!   

 

These computer design experts are familiar with  

 the structure of a computer 

 the instruction set of a computer 

 the process of designing a computer 

as well as  few other related things.  

At this point, we need to realize that it is not the job of a single person to design a 

computer from scratch. There are a number of levels of computer design. Domain experts 

of that particular level carry out the design activity for each level. These levels of 

abstraction of a digital computer‟s design are explained below. 

Digital Design: Levels of Abstraction 

Processor-Memory-Switch level (PMS level) 

The highest is the processor-memory-switch level. This is the level at which an architect 

views the system. It is simply a description of the system components and their 

interconnections. The components are specified in the form of a block diagram.  

Instruction Set Level 

The next level is instruction set level. It defines the function of each instruction. The 

emphasis is on the behavior of the system rather than the hardware structure of the 

system. 

Register Transfer Level 

Next to the ISA (instruction set architecture) level is the register transfer level. Hardware 

structure is visible at this level. In addition to registers, the basic elements at this level are 

multiplexers, decoders, buses, buffers etc.  

The above three levels relate to “system design”. 

Logic Design Level 

The logic design level is also called the gate level. The basic elements at this level are 

gates and flip-flops. The behavior is less visible, while the hardware structure 

predominates.  

The above level relates to “logic design”. 

Circuit Level 

The key elements at this level are resistors, transistors, capacitors, diodes etc.  

 

Mask Level 

The lowest level is mask level dealing with the silicon structures and their layout that 

implement the system as an integrated circuit. 

 The above two levels relate to “circuit design”. 

The focus of this course will be the register transfer level and the instruction set level, 

although we will also deal with the PMS level and the Logic Design Level.  

 Objectives of the course  

This course will provide the students with an understanding of the various levels of 

studying computer architecture, with emphasis on instruction set level and register 
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transfer level. They will be able to use basic combinational and sequential building 

blocks to design larger structures like ALUs (Arithmetic Logic Units), memory 

subsystems, I/O subsystems etc. It will help them understand the various approaches used 

to design computer CPUs (Central Processing Units) of the RISC (Reduced Instruction 

Set Computers) and the CISC (Complex Instruction Set Computers) type, as well as the  

 

principles of cache memories. 

Important topics to be covered  

• Review of computer organization 

• Classification of computers and their instructions  

• Machine characteristics and performance  

• Design of a Simple RISC Computer: the SRC 

• Advanced topics in processor design 

• Input-output  (I/O) subsystems 

• Arithmetic Logic Unit implementation 

• Memory subsystems   

Course Outline 

Introduction: 

 Distinction between Computer Architecture, Organization and design 

 Levels of abstraction in digital design 

 Introduction to the course topics 

Brief review of computer organization: 

 Perspectives of different people about computers 

 General operation of a stored program digital computer 

 The Fetch – Execute process 

 Concept of an ISA 

Foundations of Computer Architecture: 

 A taxonomy of computers and their instructions 

 Instruction set features 

 Addressing Modes 

 RISC and CISC architectures 

 Measures of performance 

An example processor: The SRC: 

 Introduction to the ISA and instruction formats 

 Coding examples and Hand assembly 

 Using Behavioral RTL to describe the SRC 

 Implementing Register Transfers using Digital Logic Circuits 

ISA:  Design and Development 

 Outline of the thinking process for ISA design 

 Introduction to the ISA of the FALCON – A 

 Solved examples for FALCON-A 

 Learning Aids for the FALCON-A 

Other example processors: 
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 FALCON-E 

 EAGLE and Modified EAGLE 

 Comparison of the four ISAs 

CPU Design:    
 The Design Process 

 A Uni-Bus implementation for the SRC 

 Structural RTL for the SRC instructions 

 Logic Design for the 1-Bus SRC 

 The Control Unit 

 The 2-and 3-Bus Processor Designs 

 The Machine Reset 

 Machine Exceptions 

Term Exam – I 

Advanced topics in processor design: 

 Pipelining 

 Instruction-Level Parallelism 

 Microprogramming 

 

Input-output  (I/O): 

 I/O interface design 

 Programmed I/O 

 Interrupt driven I/O 

 Direct memory access (DMA) 

Term Exam – II 

Arithmetic Logic Shift Unit (ALSU) implementation: 

 Addition, subtraction, multiplication & division for integer unit 

 Floating point unit 

 

Memory subsystems: 

 Memory organization and design 

 Memory hierarchy 

 Cache memories 

 Virtual memory 
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A brief review of Computer Organization 

Perceptions of Different People about Computers 

There are various perspectives that a computer can take depending on the person viewing  

 

it. For example, the way a child perceives a computer is quite different from how a 

computer programmer or a designer views it. There are a number of perceptions of the 

computer, however, for the purpose of understanding the machine, generally the 

following four views are considered. 

The User‟s View 

A user is the person for whom the machine is designed, and who employs it to perform 

some useful work through application software. This useful work may be composing 

some reports in word processing software, maintaining credit history in a spreadsheet, or 

even developing some application software using high-level languages such as C or Java.  

The list of “useful work” is not all-inclusive.  Children playing games on a computer may 

argue that playing games is also “useful work”, maybe more so than preparing an internal 

office memo. 

At the user‟s level, one is only concerned with things like speed of the computer, the 

storage capacity available, and the behavior of the peripheral devices. Besides 

performance, the user is not involved in the implementation details of the computer, as 

the internal structure of the machine is made obscure by the operating system interface. 

The Programmer‟s View 

By “programmer” we imply machine or assembly language programmer. The machine or 

the assembly language programmer is responsible for the implementation of software 

required to execute various commands or sequences of commands (programs) on the 

computer. Understanding some key terms first will help us better understand this view, 

the associated tasks, responsibilities and tools of the trade. 

Machine Language 

Machine language consists of all the primitive instructions that a computer understands 

and is able to execute. These are strings of 1s and 0s.Machine language is the computer‟s 

native language. Commands in the machine language are expressed as strings of 1s and 

0s. It is the lowest level language of a computer, and requires no further interpretation. 

Instruction Set 

A collection of all possible machine language commands that a computer can understand 

and execute is called its instruction set. Every processor has its own unique instruction 

set. Therefore, programs written for one processor will generally not run on another 

processor. This is quite unlike programs written in higher-level languages, which may be 

portable. Assembly/machine languages are generally unique to the processors on which 

they are run, because of the differences in computer architecture.  

Three ways to list instructions in an instruction set of a computer: 

• by function categories 

• by an alphabetic ordering of mnemonics 

• by an ascending order of op-codes 
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Assembly Language 

Since it is extremely tiring as well as error-prone to work with strings of 1s and 0s for 

writing entire programs, assembly language is used as a substitute symbolic 

representation using “English like” key words called mnemonics. A pure assembly 

language is a language in which each statement produces exactly one machine 

instruction, i.e. there is a one-to-one correspondence between machine instructions and 

statements in the assembly language. However, there are a few exceptions to this rule, the  

 

Pentium jump instruction shown in the table below serves as an example.  

Example 

The table provides us with some assembly statement and the machine language 

equivalents of the Intel x 86 processor 

families. 

Alpha is a label, and its value will be 

determined by the position of the jmp 

instruction in the program and the position 

of the instruction whose address is alpha. 

So the second byte in the last instruction 

can be different for different programs. 

Hence there is a one-to-many correspondence of the assembly to machine language in 

this instruction. 

Users of Assembly Language 

 The machine designer 

The designer of a new machine needs to be familiar with the instruction sets of 

other machines in order to be able to understand the trade-offs implicit in the 

design of those instruction sets.  

 The compiler writer 

A compiler is a program that converts programs written in high-level languages to 

machine language. It is quite evident that a compiler writer must be familiar with 

the machine language of the processor for which the compiler is being designed. 

This understanding is crucial for the design of a compiler that produces correct 

and optimized code. 

 The writer of time or space critical code 
A complier may not always produce optimal code. Performance goals may force 

program-specific optimizations in the assembly language. 

 Special purpose or embedded processor programmer 

Higher-level languages may not be appropriate for programming special purpose 

or embedded processors that are now in common use in various appliances. This 

is because the functionality required in such applications is highly specialized. In 

such a case, assembly language programming is required to implement the 

required functionality. 

Useful tools for assembly language programmers 

 The assembler: 
  Programs written in assembly language require translation to the machine 
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language, and an assembler performs this translation. This conversion process is 

termed as the assembly process. The assembly process can be done manually as 

well, but it is very tedious and error-prone.  

  An “assembler” that runs on one processor and translates an assembly language 

program written for another processor into the machine language of the other 

processor is called a “cross assembler”. 

 The linker: 

When developing large programs, different people working at the same time can 

develop separate modules of functionality. These modules can then be „linked‟ to  

 

form a single module that can be loaded and executed. The modularity of 

programs, that the linking step in assembly language makes possible, provides the 

same convenience as it does in higher-level languages; namely abstraction and 

separation of concerns. Once the functionality of a module has been verified for 

correctness, it can be re-used in any number of other modules. The programmer 

can focus on other parts of the program. This is the so-called “modular” approach, 

or the “top-down” approach.   

 The debugger or monitor: 

Assembly language programs are very lengthy and non-intuitive, hence quite 

tedious and error-prone. There is also the disadvantage of the absence of an 

operating system to handle run-time errors that can often crash a system, as 

opposed to the higher-level language programming, where control is smoothly 

returned to the operating system. In addition to run-time errors (such as a divide-

by-zero error), there are syntax or logical errors.   

A “debugger”, also called a “monitor”, is a computer program used to aid in 

detecting these errors in a program. Commonly, debuggers provide functionality 

such as  

o The display and altering of the contents of memory, CPU registers and flags 

o Disassembly of machine code (translating the machine code back to assembly 

language) 

o Single stepping and breakpoints that allow the examination of the status of the 

program and registers at desired points during execution. 

While syntax errors and many logical errors can be detected by using debuggers, 

the best debugger in the world can catch not every logical error. 

 The development system 

The development system is a complete set of (hardware and software) tools 

available to the system developer. It includes  

o Assemblers 

o Linkers and loaders 

o Debuggers 

o Compilers 

o Emulators 

o Hardware-level debuggers  

o Logic analyzers, etc. 
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Difference between Higher-Level Languages and Assembly Language 

Higher-level languages are generally used to develop application software. These high-

level programs are then converted to assembly language programs using compilers. So it 

is the task of a compiler writer to determine the mapping between the high-level-

language constructs and assembly language constructs. Generally, there is a “many-to-

many” mapping between high-level languages and assembly language constructs. This 

means that a given HLL construct can generally be represented by many different 

equivalent assembly language constructs. Alternately, a given assembly language 

construct can be represented by many different equivalent HLL constructs. 

High-level languages provide various primitive data types, such as integer, Boolean and a 

string, that a programmer can use. Type checking provides for the verification of proper  

 

usage of these data types. It allows the compiler to determine memory requirements for 

variables and helping in the detection of bad programming practices.  

On the other hand, there is generally no provision for type checking at the machine level, 

and hence, no provision for type checking in assembly language. The machine only sees 

strings of bits. Instructions interpret the strings as a type, and it is usually limited to 

signed or unsigned integers and floating point numbers. A given 32-bit word might be an 

instruction, an integer, a floating-point number, or 4 ASCII characters. It is the task of the 

compiler writer to determine how high-level language data types will be implemented 

using the data types available at the machine level, and how type checking will be 

implemented.  

The Stored Program Concept 

This concept is fundamental to all the general-purpose computers today. It states that the 

program is stored with data in computer‟s memory, and the computer is able to 

manipulate it as data. For example, the computer can load the program from disk, move it 

around in memory, and store it back to the disk.  

Even though all computers have unique machine language instruction sets, the „stored 

program‟ concept and the existence of a „program counter‟ is common to all machines. 

The sequence of instructions to perform some useful task is called a program. All of the 

digital computers (the general purpose machine defined above) are able to store these 

sequences of instructions as stored programs. Relevant data is also stored on the 

computer‟s secondary memory. These stored programs are treated as data and the 

computer is able to manipulate them, for example, these can be loaded into the memory 

for execution and then saved back onto the storage.  

General Operation of a Stored Program Computer 

The machine language programs are brought into the memory and then executed 

instruction by instruction. Unless a branch instruction is encountered, the program is 

executed in sequence. The instruction that is to be executed is fetched from the memory 

and temporarily stored in a CPU register, called the instruction register (IR). The 

instruction register holds the instruction while it is decoded and executed by the central 

processing unit (CPU) of the computer. However, before loading an instruction into the 

instruction register for execution, the computer needs to know which instruction to load. 

The program counter (PC), also called the instruction pointer in some texts, is the register 
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that holds the address of the next instruction in memory that is to be executed. 

When the execution of an instruction is completed, the contents of the program counter 

(which is the address of the next instruction) are placed on the address bus. The memory 

places the instruction on the corresponding address on the data bus. The CPU puts this 

instruction onto the IR (instruction register) to decode and execute. While this 

instruction is decoded, its length in bytes is determined, and the PC (program counter) 

is incremented by the length, so that the PC will point to the next instruction in the 

memory. Note that the length of the instruction is not determined in the case of RISC 

machines, as the instruction length is fixed in these architectures, and so the program 

counter is always incremented by a fixed number. In case of branch instructions, the 

contents of the PC are replaced by the address of the next instruction contained in the 

present branch instruction, and the current status of the processor is stored in a register 

called the Processor Status Word (PSW). Another name for the PSW is the flag register.   

It contains the status bits, and control bits corresponding to the state of the processor. 

Examples of status bits include the sign bit, overflow bit, etc.  Examples of control bits 

include interrupt enable flag, etc. When the execution of this instruction is completed, the 

contents of the program counter are placed on the address bus, and the entire cycle is 

repeated. This entire process of reading memory, incrementing the PC, and decoding the 

instruction is known as the Fetch and Execute principle of the stored program computer. 

This is actually an oversimplified situation. In case of the advanced processors of this 

age, a lot more is going on than just the simple “fetch and execute” operation, such as 

pipelining etc. The details of some of these more involved techniques will be studied later 

on during the course. 

The Concept of Instruction Set Architecture (ISA) 

Now that we have an understanding of some of the relevant key terms, we revert to the 

assembly language programmer‟s perception of the computer. The programmer‟s view is 

limited to the set of all the assembly instructions or commands that can the particular 

computer at hand execute understood/, in addition to the resources that these instructions 

may help manage. These resources include the memory space and the entire programmer 

accessible registers. Note that we use the term „memory space‟ instead of memory, 

because not all the memory space has to be filled with memory chips for a particular 

implementation, but it is still a resource available to the programmer.  

This set of instructions or operations and the resources together form the instruction set 

architecture (ISA). It is the ISA, which serves as an interface between the program and 

the functional units of a computer, i.e., through which, the computer‟s resources, are 

accessed and controlled. 

The Computer Architect‟s View 

The computer architect‟s view is concerned with the design of the entire system as well 

as ensuring its optimum performance. The optimality is measured against some 

quantifiable objectives that are set out before the design process begins. These objectives 

are set on the basis of the functionality required from the machine to be designed. The 

computer architect  

 Designs the ISA for optimum programming utility as well as for optimum 

performance of implementation 
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 Designs the hardware for best implementation of instructions that are made 

available in the ISA to the programmer 

 Uses performance measurement tools, such as benchmark programs, to verify that 

the performance objectives are met by the machine designed 

 Balances performance of building blocks such as CPU, memory, I/O devices, and 

interconnections 

 Strives to meet performance goals at the lowest possible cost 

Useful tools for the computer architect 

 Some of the tools available that facilitate the design process are  

 Software models, simulators and emulators 

 Performance benchmark programs 

 Specialized measurement programs 

 Data flow and bottleneck analysis 

 Subsystem balance analysis 

 Parts, manufacturing, and testing cost analysis 

The Logic Designer‟s View 

The logic designer is responsible for the design of the machine at the logic gate level. It is 

the design process at this level that determines whether the computer architect meets cost 

and performance goals. The computer architect and the logic designer have to work in 

collaboration to meet the cost and performance objectives of a machine. This is the 

reason why a single person or a single team may be performing the tasks of system‟s 

architectural design as well as the logic design.  

Useful Tools for the Logic Designer 

Some of the tools available that aid the logic designer in the logic design process are 

 CAD tools 

 Logic design and simulation packages 

 Printed circuit layout tools 

 IC (integrated circuit) design and layout tools 

 Logic analyzers and oscilloscopes 

 Hardware development systems 

The Concept of the Implementation Domain 

The collection of hardware devices, with which the logic designer works for the digital 

logic gate implementation and interconnection of the machine, is termed as the 

implementation domain. The logic gate implementation domain may be  

 VLSI (very large scale integration) on silicon  

 TTL (transistor-transistor logic) or ECL (emitter-coupled logic) chips 

 Gallium arsenide chips 

 PLAs (programmable-logic arrays) or sea-of-gates arrays 

 Fluidic logic or optical switches 

Similarly, the implementation domains used for gate, board and module interconnections 

are 
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 Poly-silicon lines in ICs 

 Conductive traces on a printed circuit board 

 Electrical cable 

 Optical fiber, etc. 

 
 

At the lower levels of logic design, the designer is concerned mainly with the functional 

details represented in a symbolic form. The implementation details are not considered at 

these lower levels. They only become an issue at higher levels of logic design. An 

example of a two-to-one multiplexer in various implementation domains will illustrate 

this point. Figure (a) is the generic logic gate (abstract domain) representation of a 2-to-1 

multiplexer.                             

Figure (b) shows the 2-to-1 multiplexer logic gate implementation  

 

in the domain of TTL (VLSI on Silicon) logic using part number „257, with 

interconnections in the domain of printed circuit board traces.  
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Figure (c) is the implementation of the 2-to-1 multiplexer with a fiber optic directional 

coupler switch, which has an interconnection domain of optical fiber.                                      

Classical logic design versus computer logic design 

We have already studied the sequential circuit design concepts in the course on Digital 

Logic Design, and thus are familiar with the techniques used. However, these traditional 

techniques for a finite state machine are not very practical when it comes to the design of 

a computer, in spite of the fact that a computer is a finite state machine. The reason is that 

employing these techniques is much too complex as the computer can assume hundreds 

of states. 

Sequential Logic Circuit Design 

When designing a sequential logic circuit, the problem is first coded in the form of a state 

diagram. The redundant states may be eliminated, and then the state diagram is translated 

into the next state table. The minimum number of flip-flops needed to implement the 

design is calculated by making “state assignments” in terms of the flip-flop “states”. A 

“transition table” is made using the state assignments and the next state table.  The flip-

flop control characteristics are used to complete a set of “excitation tables”. The 

excitation equations are determined through minimization. The logic circuit can then be 

drawn to implement the design.  A detailed discussion of these steps can be found in most 

books on Logic Design. 

Computer Logic Design 

Traditional Finite State Machine (FSM) design techniques are not suitable for the design 

of computer logic. Since there is a natural separation between the data path and the 

control path in case of a digital computer, a modular approach can be used in this case.  

The data path consists of the storage cells, the arithmetic and logic components and their 

interconnections. Control path is the circuitry that manages the data path information 

flow. So considering the behavior first can carry out the design. Then the structure can be 

considered and dealt with. For this purpose, well-defined logic blocks such as 

multiplexers, decoders, adders etc. can be used repeatedly. 

Two Views of the CPU Program Counter Register 

The view of a logic designer is more detailed than that of a programmer. Details of the 

mechanism used to control the machine are unimportant to the programmer, but of vital 

importance to the logic designer. This can be illustrated through the following two views 

of the program counter of a machine. 

As shown in figure (a), to a programmer the program counter is just a register, and in this  
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case, of length 32 bits or 4 bytes. 

 

                               31                                                      0 

 

 

 

 

 

 

 

 

Figure (b) illustrates the logic designer‟s view of a 32-bit program counter, implemented 

as an array of 32 D flip-flops. It shows the contents of the program counter being gated 

out on „A bus‟ (the address bus) by applying a control signal PCout. The contents of the 

„B bus‟ (also the address bus), can be stored in the program counter by asserting the 

signal PCin on the leading edge of the clock signal CK, thus storing the address of the 

next instruction in the program counter. 
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(a) Program Counter: Programmer‟s view 
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Foundations of Computer Architecture 
 

TAXONOMY OF COMPUTERS AND THEIR INSTRUCTIONS 

Processors can be classified on the basis of their instruction set architectures. The 

instruction set architecture, described in the previous module gives us a „programmer‟s 

view‟ of the machine. This module discussed a number of topics related to the 

classifications of computers and their instructions. 

CLASSES OF INSTRUCTION SET ARCHITECTURE: 

The mechanism used by the CPU to store instructions and data can be used to classify the 

ISA (Instruction Set Architecture). There are three types of machines based on this 

classification. 

• Accumulator based machines 

• Stack based machines 

• General purpose register (GPR) machines 

ACCUMULATOR BASED MACHINES 

Accumulator based machines use special registers called the accumulators to hold one 

source operand and also the result of the arithmetic or logic operations performed. Thus 

the accumulator registers collect (or „accumulate‟) data. Since the accumulator holds one 

of the operands, one more register may be required to hold the address of another 

operand. The accumulator is not used to hold an address. So accumulator based machines 

are also called 1-address machines. Accumulator machines employ a very small number 

of accumulator registers, generally only one. These machines were useful at the time 
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when memory was quite expensive; as they used one register to hold the source operand  

 

as well as the result of the operation. However, now that the memory is relatively 

inexpensive, these are not considered very useful, and their use is severely limited for the 

computation of expressions with many operands.  

STACK BASED MACHINES 

A stack is a group of registers organized as a last-in-first-out (LIFO) structure. In such a 

structure, the operands stored first, through the push operation, can only be accessed last, 

through a pop operation; the order of access to the operands is reverse of the storage 

operation. An analogy of the stack is a “plate-dispenser” found in several self-service 

cafeterias. Arithmetic and logic operations successively pick operands from the top-of-

the-stack (TOS), and push the results on the TOS at the end of the operation. In stack 

based machines, operand addresses need not be specified during the arithmetic or logical 

operations. Therefore, these machines are also called 0-address machines.  

GENERAL-PURPOSE-REGISTER MACHINES 
In general purpose register machines, a number of registers are available within the CPU. 

These registers do not have dedicated functions, and can be employed for a variety of 

purposes. To identify the register within an instruction, a small number of bits are 

required in an instruction word. For example, to identify one of the 64 registers of the 

CPU, a 6-bit field is required in the instruction.  

CPU registers are faster than cache memory. Registers are also easily and more 

effectively used by the compiler compared to other forms of internal storage. Registers 

can also be used to hold variables, thereby reducing memory traffic.  This increases the 

execution speed and reduces code size (fewer bits required to code register names 

compared to memory) .In addition to data, registers can also hold addresses and pointers 

(i.e., the address of an address). This increases the flexibility available to the 

programmer.  

A number of dedicated, or special purpose registers are also available in general-purpose 

machines, but many of them are not available to the programmer. Examples of 

transparent registers include the stack pointer, the program counter, memory address 

register, memory data register and condition codes (or flags) register, etc. 

We should understand that in reality, most machines are a combination of these machine 

types. Accumulator machines have the advantage of being more efficient as these can 

store intermediate results of an operation within the CPU. 

INSTRUCTION SET 

An instruction set is a collection of all possible machine language commands that are 

understood and can be executed by a processor.  

ESSENTIAL ELEMENTS OF COMPUTER INSTRUCTIONS: 

There are four essential elements of an instruction; the type of operation to be performed, 

the place to find the source operand(s), the place to store the result(s) and the source of 

the next instruction to be executed by the processor. 

Type of operation 

In module 1, we described three ways to list the instruction set of a machine; one way of 

enlisting the instruction set is by grouping the instructions in accordance with the 



Advanced Computer Architecture   

________________________________________________________________________ 

23 

 

functions they perform. The type of operation that is to be performed can be encoded in 

the op-code (or the operation code) field of the machine language instruction. Examples 

of operations are mov, jmp, add; these are the assembly mnemonics, and should not be  

 

 

confused with op-codes. Op-codes are simply bit-patterns in the machine language format 

of an instruction.  

Place to find source operands 

An instruction needs to specify the place from where the source operands will be 

retrieved and used. Possible locations of the source operands are CPU registers, memory 

cells and I/O locations. The source operands can also be part of an instruction itself; such 

operands are called immediate operands.  

Place to store the results 

An instruction also specifies the location in which the result of the operation, specified by 

the instruction, is to be stored. Possible locations are CPU registers, memory cells and 

I/O locations. 

Source of the next instruction 

By default, in a program the next instruction in sequence is executed. So in cases where 

the next-in-sequence instruction execution is desired, the place of next instruction need 

not be encoded within the instruction, as it is implicit. However, in case of a branch, this 

information needs to be encoded in the instruction. A branch may be conditional or 

unconditional, a subroutine call, as well as a call to an interrupt service routine.  

Example 

The table provides examples of assembly language commands and their machine 

language equivalents. In the 

instruction add cx, dx, the contents of 

the location dx are added to the 

contents of the location cx, and the 

result is stored in cx. The instruction 

type is arithmetic, and the op-code for 

the add instruction is 0000, as shown 

in this example. 

CLASSIFICATIONS OF INSTRUCTIONS: 
We can classify instructions according to the format shown below. 

• 4-address instructions 

• 3-address instructions 

• 2-address instructions  

• 1-address instructions   

• 0-address instructions 

The distinction is based on the fact that some operands are accessed from memory, and 

therefore require a memory address, while others may be in the registers within the CPU 

or they are specified implicitly.  

4-address instructions 
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The four address instructions specify the addresses of two source operands, the address of 

the destination operand and the next instruction address. 

4-address 

instructions are not 

very common 

because the next 

instruction to be executed is sequentially stored next to the current instruction in the  

 

 

memory.  Therefore, specifying its address is redundant. These instructions are used in 

the micro-coded control unit, which will be studied later. 

3-address instruction 

A 3-address instruction 

specifies the addresses of two 

operands and the address of the 

destination operand.  

2-address instruction  

A 2-address instruction has three fields; one for the op-code, the second field specifies 

the address of one of the source operands as 

well as the destination operand, and the last 

field is used for holding the address of the 

second source operand. So one of the fields serves two purposes; specifying a source 

operand address and a destination operand address.  

1-address instruction 

A 1-address instruction has a dedicated CPU register, called the accumulator, to hold one 

operand and to store the result. There is no need of 

encoding the address of the accumulator register to access 

the operand or to store the result, as its usage is implicit. 

There are two fields in the instruction, one for specifying a source operand address and a 

destination operand address. 

0-address instruction 

A 0-address instruction uses a stack to hold both the operands and the 

result. Operations are performed on the operands stored on the top of the 

stack and the second value on the stack. The result is stored on the top of 

the stack. Just like the use of an accumulator register, the addresses of 

the stack registers need not be specified, their usage is implicit. Therefore, only one field 

is required in 0-address instruction; it specifies the op-code.  

COMPARISON OF INSTRUCTION FORMATS: 

Basis for comparison 

Two parameters are used as the basis for comparison of the instruction sets discussed 

above. These are 

 Code size 

Code size has an effect on the storage requirements for the instructions; the 

greater the code size, the larger the memory required. 
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 Number of memory accesses 

The number of memory accesses has an effect on the execution time of 

instructions; the greater the number of memory accesses, the larger the time 

required for the execution cycle, as memory accesses are generally slow. 

Assumptions 

We make a few assumptions, which are 

 A single byte is used for the op code, so 256 instructions can be encoded using 

these 8 bits, as 2
8
 = 256 

 The size of the memory address space is 16 Mbytes 

 A single addressable memory unit is a byte  

 

 

 Size of operands is 24 bits. As the memory size is 16Mbytes, with byte-

addressable memory, 24 bits are required to encode the address of the operands.  

 The size of the address bus is 24 bits 

 Data bus size is 8 bits 

Discussion4-address instruction 
• The code 

size is 13 

bytes 

(1+3+3+3+3 

= 13 bytes) 

• Number of 

bytes accessed from memory is 22 (13 bytes for instruction fetch + 6 bytes for 

source operand fetch + 3 bytes for storing destination operand = 22 bytes) 

Note that there is no need for an additional memory access for the operand corresponding 

to the next instruction, as it has already been brought into the CPU during instruction 

fetch.  

3-address instruction 
• The code size is 10 bytes 

(1+3+3+3 = 10 bytes) 

• Number of bytes accessed 

from memory is 22  

(10 bytes for instruction fetch 

+ 6 bytes for source operand fetch + 3 bytes for storing destination operand = 19 

bytes)  

2-address instruction 
• The code size is 7 bytes (1+3+3 = 7 

bytes)  

• Number of bytes accessed from 

memory is 16(7 bytes for instruction 

fetch + 6 bytes for source operand 

fetch + 3 bytes for storing destination operand = 16 bytes) 
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1-address instruction 
• The code size is 4 bytes (1+3= 4 bytes) 

• Number of bytes accessed from memory is 7  

(4 bytes for instruction fetch + 3 bytes for source 

operand fetch + 0 bytes for storing destination operand 

= 7 bytes) 

0-address instruction 
• The code size is 1 byte  

• Number of bytes accessed from memory is 10  

(1 byte for instruction fetch + 6 bytes for source operand fetch + 3 

bytes for storing destination operand = 10 bytes) 

The following table summarizes this information 

 

 

 

HALF ADDRESSES 

In the preceding discussion we have 

talked about memory addresses. This 

discussion also applies to CPU 

registers. However, to specify/ encode 

a CPU register, less number of bits is 

required as compared to the memory 

addresses. Therefore, these addresses are also called “half-addresses”. An instruction that 

specifies one memory address and one CPU register can be called as a 1½-address 

instruction 

 Example     

               mov al, [34h] 
THE PRACTICAL SITUATION 

Real machines are not as simple as the classifications presented above. In fact, these 

machines have a mixture of 3, 2, 1, 0, and 1½-address instructions. For example, the 

VAX 11 includes instructions from all classes. 

CLASSIFICATION OF MACHINES ON THE BASIS OF OPERAND AND 

RESULT LOCATION: 
A distinction between machines can be made on the basis of the ALU instructions; 

whether these instructions use data from the memory or not. If the ALU instructions use 

only the CPU registers for the operands and result, the machine type is called “load-

store”. Other machines may have a mixture of register-memory, or memory-memory 

instructions.   

The number of memory operands supported by a typical ALU instruction may vary from 

0 to 3. 

Example  
The SPARC, MIPS, Power PC, ALPHA: 0 memory addresses, max operands allowed = 3 
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X86, 68x series: 1 memory address, max operands allowed = 2 

LOAD- STORE MACHINES 
These machines are also called the register-to-register machines. They typically use the 

1½ address instruction format. Only the load and store instructions can access the 

memory. The load instruction fetches the required data from the memory and temporarily 

stores it in the CPU registers. Other instructions may use this data from the CPU 

registers. Then later, the results can be stored back into the memory by the store 

instruction. Most RISC computers fall under this category of machines.  

Advantages (of register-register instructions)  

Register-register instructions use 0 memory operands out of a total of 3 operands. The 

advantages of such a scheme is: 

 The instructions are simple and fixed in length 

 The corresponding code generation model is simple 

 All instructions take similar number of clock cycles for execution 

Disadvantages (register-register instructions) 

 The instruction count is higher; the number of instructions required to complete a 

particular task is more as separate instructions will be required for load and store 

operations of the memory 

 

 

 Since the instruction size is fixed, the instructions that do not require all fields 

waste memory bits 
Register-memory machines 
In register-memory machines, some operands are in the memory and some are in 

registers. These machines typically employ 1 or 1½ address instruction format, in which 

one of the operands is an accumulator or a general-purpose CPU registers.  

Advantages 

Register-memory operations use one memory operand out of a total of two operands. The 

advantages of this instruction format are 

 Operands in the memory can be accessed without having to load these first 

through a separate load instruction 

 Encoding is easy due to the elimination of the need of loading operands into 

registers first 

 Instruction bit usage is relatively better, as more instructions are provided per 

fixed number of bits 

Disadvantages 

 Operands are not equivalent since one operand may have two functions (both 

source operand and destination operand), and the source operand may be 

destroyed 

 Different size encoding for memory and registers may restrict the number of 

registers 
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 The number of clock cycles per instruction execution vary, depending on the 

operand location operand fetch from memory is slow as compared to operands in 

CPU registers 

Memory-Memory Machines  
In memory-memory machines, all three of the operands (2 source operands and a 

destination operand) are in the memory. If one of the operands is being used both as a 

source and a destination, then the 2-address format is used. Otherwise, memory-memory 

machines use 3-address formats of instructions.  

Advantages 

 The memory-memory instructions are the most compact instruction where 

encoding wastage is minimal. 

 As operands are fetched from and stored in the memory directly, no CPU registers 

are wasted for temporary storage  

Disadvantages 

 The instruction size is not fixed; the large variation in instruction sizes makes 

decoding complex 

 The cycles per instruction execution also vary from instruction to instruction 

 Memory accesses are generally 

slow, so too many references 

cause performance degradation 

Example 1  
The expression a = (b+c)*d – e is 

evaluated with the 3, 2, 1, and 0-

address machines to provide a  

 

comparison of their advantages and disadvantages discussed above. The instructions 

shown in the table are the minimal instructions required to evaluate the given expression. 

Note that these are not machine language instructions, rather the pseudo-code. 

Example 2 

The instruction z = 4(a +b) – 16(c+58) is with the 3, 2, 1, and 0-address machines in the 

table.  

Functional classification of 

instruction sets: 

Instructions can be classified into the 

following four categories based on 

their functionality. 

• Data processing  

• Data storage (main memory) 

• Data movement (I/O) 

• Program flow control 

These are discussed in detail 

• Data processing  

Data processing instructions are the ones that perform some mathematical or logical 

operation on some operands. The Arithmetic Logic Unit performs these operations, 
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therefore the data processing instructions can also be called ALU instructions.  

• Data storage (main memory) 

The primary storage for the operands is the main memory. When an operation needs to be 

performed on these operands, these can be temporarily brought into the CPU registers, 

and after completion, these can be stored back to the memory. The instructions for data 

access and storage between the memory and the CPU can be categorized as the data 

storage instructions. 

• Data movement (I/O) 

The ultimate sources of the data are input devices e.g. keyboard. The destination of the 

data is an output device, for example, a monitor, etc. The instructions that enable such 

operations are called data movement instructions.  

• Program flow control 

A CPU executes instructions sequentially, unless a program flow-change instruction is 

encountered. This flow change, also called a branch, may be conditional or unconditional. 

In case of a conditional branch, if the branch condition is met, the target address is loaded 

into the program counter.  

ADDRESSING MODES: 
Addressing modes are the different ways in which the CPU generates the address of 

operands. In other words, they provide access paths to memory locations and CPU 

registers.  

Effective address 

An “effective address” is the address (binary bit pattern) issued by the CPU to the 

memory. The CPU may use various ways to compute the effective address. The memory 

may interpret the effective address differently under different situations.  

COMMONLY USED ADDRESSING MODES 
Some commonly used addressing modes are explained below. 

 

Immediate addressing mode 

In this addressing mode, data is the part of the instruction itself, and so there is no need of 

address calculation. However, immediate addressing mode is used to hold source 

operands only; cannot be used for storing results. The range of the operands is limited by 

the number of bits available for encoding the operands in the instruction; for n bit fields, 

the range is -2
(n-1)

 to +(2
(n-1)

-1).  

Example: lda 123 
In this example, the immediate 

operand, 123, is loaded onto the 

accumulator. No address calculation is 

required.  

Direct Addressing Mode 

The address of the operand is specified 

as a constant, and this constant is 

coded as part of the instruction. The address space that can be accessed is limited address 

space by the operand field size (2
operand field size

 locations).  
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Example: lda [123] 

As shown in the figure, the address of 

the operand is stored in the instruction. 

The operand is then fetched from that 

memory address. 

Indirect Addressing Mode 

The address of the location where the 

address of the data is to be found is 

stored in the instruction as the 

operand. Thus, the operand is the address of a memory location, which holds the address 

of the operand. Indirect addressing mode can access a large address space (2
memory word size

 

locations). To fetch the operand in this addressing mode, two memory accesses are 

required. Since memory accesses are slow, this is not efficient for frequent memory 

accesses. The indirect addressing 

mode may be used to implement 

pointers.  

Example: lda [[123]] 

As shown in the figure, the address of 

the memory location that holds the 

address of the data in the memory is 

part of the instruction.  

 

Register (Direct) Addressing Mode 

The operand is contained in a CPU register, and the address of this register is encoded in 

the instruction. As no memory access is needed, operand fetch is efficient. However, 

there are only a limited number of CPU registers available, and this imposes a limitation 

on the use of this addressing mode. 

Example: lda R2 

This load instruction specifies the address of the register and the operand is fetched from 

this register. As is clear from the diagram, no memory access is involved in this 

addressing mode. 

 

REGISTER INDIRECT 

ADDRESSING MODE 

In the register indirect mode, the 

address of memory location that 

contains the operand is in a CPU 

register. The address of this CPU 

register is encoded in the instruction. 

A large address space can be accessed 

using this addressing mode (2
register size

 

locations). It involves fewer memory 

accesses compared to indirect  
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addressing. 

Example: lda [R1] 

The address of the register that 

contains the address of memory 

location holding the operand is 

encoded in the instruction. There is 

one memory access involved.  

Displacement addressing mode 

The displacement-addressing mode is 

also called based or indexed 

addressing mode. Effective memory address is calculated by adding a constant (which is 

usually a part of the instruction) to the value in a CPU register. This addressing mode is 

useful for accessing arrays. The addressing mode may be called „indexed‟ in the situation 

when the constant refers to the first element of the array (base) and the register contains 

the „index‟. Similarly, „based‟ refers to the situation when the constant refers to the offset 

(displacement) of an array element with respect to the first element. The address of the 

first element is stored in a register.  

Example: lda [R1 + 8] 

In this example, R1 is the address of 

the register that holds a memory 

address, which is to be used to 

calculate the effective address of the 

operand. The constant (8) is added to 

this address held by the register and 

this effective address is used to 

retrieve the operand.  

Relative addressing mode 

The relative addressing mode is similar to the indexed addressing mode with the 

exception that the PC holds the base address. This allows the storage of memory 

operands at a fixed offset from the current instruction and is useful for „short‟ jumps. 

Example: jump 4 

The constant offset (4) is a part of the 

instruction, and it is added to the 

address held by the Program Counter. 

 

 

 

RISC and CISC architectures: 
Generally, computers can be classified as being RISC machines or CISC machines. These 

concepts are explained in the following discussion. 

RISC (Reduced instruction set computers) 

RISC is more of a philosophy of computer design than a set of architectural features. The 

underlying idea is to reduce the number and complexity of instructions. However, new 
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RISC machines have some instructions that may be quite complex and the number of 

instructions may also be large. The common features of RISC machines are 

• One instruction per clock period 

This is the most important feature of the RISC machines. Since the program execution 

depends on throughput and not on individual execution time, this feature is achievable by 

using pipelining and other techniques. In such a case, the goal is issuing an average of 

one instruction per cycle without increasing the cycle time.  

• Fixed size instructions 

Generally, the size of the instructions is 32 bits. 

• CPU accesses memory only for Load and Store operations 

This means that all the operands are in the CPU registers at the time these are used in an 

instruction. For this purpose, they are first brought into the CPU registers from the 

memory and later stored back through the load and store operation respectively.  

• Simple and few addressing modes  

The disadvantage associated with using complex addressing modes is that complex 

decoding is required to calculate these addresses, which reduces the processor 

performance as it takes significant time. Therefore, in RISC machines, few simple 

addressing modes are used.  

• Less work per instruction 

As the instructions are simple, less work is done per instruction, and hence the clock 

period T can be reduced. 

• Improved usage of delay slots 

A „delay slot‟ is the waiting time for a load or store operation to access memory or for a 

branch instruction to access the target instruction. RISC designs allow the execution of 

the next instruction after these instructions are issued. If the program or compiler places 

an instruction in the delay slot that does not depend on the result of the previous 

instruction, the delay slot can be used efficiently. For the implementation of this feature, 

improved compilers are required that can check the dependencies of instructions before 

issuing them to utilize the delay slots.  

• Efficient usage of Pre-fetching and Speculative Execution Techniques 

Pre-fetching and speculative execution techniques are used with a pipelined architecture. 

Instruction pipelining means having multiple instructions in different stages of execution 

as instructions are issued before the previous instruction has completed its execution; 

pipelining will be studied in detail later. The RISC machines examine the instructions to 

check if operand fetches or branch instructions are involved. In such a case, the operands 

or the branch target instructions can be „pre-fetched‟. As instructions are issued before 

the preceding instructions have completed execution, the processor will not know in case 

of a conditional branch instruction, whether the condition will be met and the branch will 

be taken or not. But instead of waiting for this information to be available, the branch can 

be “speculated” as taken or not taken, and the instructions can be issued. Later if the  

 

speculation is found to be wrong, the results can be discarded and actual target 

instructions can be issued. These techniques help improve the performance of processors. 

CISC (Complex Instruction Set Computers) 
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The complex instruction set computers does not have an underlying philosophy. The 

CISC machines have resulted from the efforts of computer designers to efficiently utilize 

memory and minimize execution time, yet add in more instruction formats and 

addressing modes. The common attributes of CISC machines are discussed below. 

• More work per instruction 

This feature was very useful at the time when memory was expensive as well as slow; it 

allows the execution of compact programs with more functionality per instruction. 

• Wide variety of addressing modes 

CISC machines support a number of addressing modes, which helps reduce the program 

instruction count. There are 14 addressing modes in MC68000 and 25 in MC68020. 

• Variable instruction lengths and execution times per instruction 

The instruction size is not fixed and so the execution times vary from instruction to 

instruction. 

• CISC machines attempt to reduce the “semantic gap” 

„Semantic gap‟ is the gap between machine level instruction sets and high-level language 

constructs. CISC designers believed that narrowing this gap by providing complicated 

instructions and complex-addressing modes would improve performance. The concept 

did not work because compiler writes did not find these “improvements” useful. The 

following are some of the disadvantages of CISC machines. 

• Clock period T, cannot be reduced beyond a certain limit 
When more capabilities are added to an instruction the CPU circuits required for the 

execution of these instructions become complex. This results in more stages of logic 

circuitry and adds propagation delays in signal paths. 

This in turn places a limit on the smallest possible value of T and hence, the maximum 

value of clock frequency. 

• Complex addressing modes delay operand fetch from memory 

The operand fetch is delayed because more time is required to decode complex 

instructions. 

• Difficult to make efficient use of speedup techniques 

These speedup techniques include  

 Pipelining 

 Pre-fetching (Intel 8086 has a 6 byte queue) 

 Super scalar operation 

 Speculative execution 
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Lecture No. 3 

Instruction to SRC Processor 
 

Reading Material 

 

Vincent P. Heuring&Harry F. Jordan                                                   Chapter2, Chapter 3 

Computer Systems Design and Architecture                                                2.3, 2.4, 3.1    

 

 

 

Summary 
1) Measures of performance 

2) Introduction to an example processor SRC 

3) SRC:Notation 

4) SRC features and instruction formats 

 

 

Measures of performance: 

Performance testing 

To test or compare the performance of machines, programs can be run and their 

execution times can be measured. However, the execution speed may depend on the 

particular program being run, and matching it exactly to the actual needs of the customer 

can be quite complex. To overcome this problem, standard programs called “benchmark 

programs” have been devised. These programs are intended to approximate the real 

workload that the user will want to run on the machine. Actual execution time can be 

measured by running the program on the machines. 

Commonly used measures of performance 

The basic measure of performance of a machine is time. Some commonly used measures 

of this time, used for comparison of the performance of various machines, are 

• Execution time 

• MIPS 

• MFLOPS 

• Whetstones 

• Dhrystones 

• SPEC 

Execution time 

Execution time is simply the time it takes a processor to execute a given program. The 

time it takes for a particular program depends on a number of factors other than the 

performance of the CPU, most of which are ignored in this measure. These factors 



Advanced Computer Architecture   

________________________________________________________________________ 

35 

 

include waits for I/O, instruction fetch times, pipeline delays, etc. 

The execution time of a program with respect to the processor, is defined as  

                                Execution Time = IC x CPI x T 

Where,  IC   = instruction count  

                       CPI  = average number of system clock periods to execute an instruction 

  T     = clock period 

Strictly speaking, (ICCPI) should be the sum of the clock periods needed to execute 

each instruction.  The manufacturers for each instruction in the instruction set usually 

provide such information.  Using the average is a simplification. 

MIPS (Millions of Instructions per Second) 
Another measure of performance is the millions of instructions that are executed by the 

processor per second. It is defined as  

MIPS = IC/ (ET x 10
6
) 

This measure is not a very accurate basis for comparison of different processors. This is 

because of the architectural differences of the machines; some machines will require 

more instructions to perform the same job as compared to other machines. For example, 

RISC machines have simpler instructions, so the same job will require more instructions. 

This measure of performance was popular in the late 70s and early 80s when the VAX 

11/780 was treated as a reference. 

MFLOPS (Millions of Floating Point Instructions per Second) 
For computation intensive applications, the floating-point instruction execution is a better 

measure than the simple instructions. The measure MFLOPS was devised with this in 

mind. This measure has two advantages over MIPS: 

 Floating point operations are complex, and therefore, provide a better picture of 

the hardware capabilities on which they are run 

 Overheads (operand fetch from memory, result storage to the memory, etc.) are 

effectively lumped with the floating point operations they support 

Whetstones  

Whetstone is the first benchmark program developed specifically as a benchmark 

program for performance measurement. Named after the Whetstone Algol compiler, this 

benchmark program was developed by using the statistics collected during the compiler 

development. It was originally an Algol program, but it has been ported to FORTRAN, 

Pascal and C. This benchmark has been specifically designed to test floating point 

instructions. The performance is stated in MWIPS (millions of Whetstone instructions per 

second).  

Dhrystones  
Developed in 1984, this is a small benchmark program to measure the integer instruction 

performance of processors, as opposed to the Whetstone‟s emphasis on floating point 

instructions. It is a very small program, about a hundred high-level-language statements, 

and compiles to about 1~ 1½ kilobytes of code. 

 

Disadvantages of using Whetstones and Dhrystones 

Both Whetstones and Dhrystones are now considered obsolete because of the following 

reasons. 
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 Small, fit in cache 

 Obsolete instruction mix 

 Prone to compiler tricks 

 Difficult to reproduce results 

 Uncontrolled source code   

We should note that both the Whetstone and Dhrystone benchmarks are small programs, 

which encourage „over-optimization‟, and can be used with optimizing compilers to 

distort results. 

SPEC 

SPEC, System Performance Evaluation Cooperative, is an association of a number of 

computer companies to define standard benchmarks for fair evaluation and comparison of 

different processors. The standard SPEC benchmark suite includes: 

 A compiler 

 A Boolean minimization program 

 A spreadsheet program 

 A number of other programs that stress arithmetic processing speed 

The latest version of these benchmarks is SPEC CPU2000.  

Advantages  

 It provides for ease of publication. 

 Each benchmark carries the same weight. 

 SPEC ratio is dimensionless. 

 It is not unduly influenced by long running programs. 

 It is relatively immune to performance variation on individual benchmarks. 

 It provides a consistent and fair metric. 

An example computer: the SRC: “simple RISC computer” 

An example machine is introduced here to facilitate our understanding of various design 

steps and concepts in computer architecture. This example machine is quite simple, and 

leaves out a lot of details of a real machine, yet it is complex enough to illustrate the 

fundamentals.  

SRC Introduction 

Attributes of the SRC 

• The SRC contains 32 General Purpose Registers: R0, R1, …, R31; each register is 

of size 32-bits. 

• Two special purpose registers are included: Program Counter (PC) and Instruction 

Register (IR) 

• Memory word size is 32 bits 

• Memory space size is 2
32

 bytes 

• Memory organization is 2
32

 x 8 bits, this means that the memory is byte aligned 

• Memory is accessed in 32 bit words ( i.e., 4 byte chunks) 

• Big-endian byte storage is used 
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Programmer‟s View of the SRC 

The figure shows the attributes of the SRC; the 32 ,32-bit registers that are a part of the 

CPU, the two additional CPU registers (PC & IR), and the main memory which is 2
32  

1-

byte cells.  

SRC Notation  

We examine the notation used for the SRC with the help of some examples.  

• R[3] means contents of register 3 (R for register) 

• M[8] means contents of memory location 8 (M for memory) 

• A memory word at address 8 is 

defined as the 32 bits at 

address 8,9,10 and 11 in the 

memory. This is shown in the 

figure. 

• A special notation for 32-bit 

memory words is  

 M[8]<31…0>:=M[8]M[9]

M[10]M[11]                        

             is used for concatenation. 

 Some more SRC Attributes 

• All instructions are 32 bits long 

(i.e., instruction size is 1 word) 

• All ALU instructions have 

three operands 

• The only way to access 

memory is through load and 

store operations 

• Only a few addressing modes 

are supported 
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SRC: Instruction Formats 

Four types of instructions are supported by the SRC. Their representation is given in the 

figure shown. 

Before discussing these instruction types in detail, we take a look at the encoding of 

general purpose registers (the ra, rb and rc fields).  

 

Encoding of the General Purpose Registers 

The encoding for the general purpose registers is shown in the table; it will be used in 

place of ra, rb and rc in the instruction formats shown above. Note that this is a simple 5 

bit encoding. ra, rb and rc are names of fields used as “place-holders”, and can represent 

any one of  these 32 registers. An exception is rb = 0; it does not mean the register R0, 

rather it means no operand. This will be explained in the following discussion. 

Type A 
Type A is used for only two 

instructions:  

 No operation or nop, for which the op-code = 0. This is useful in pipelining 

 Stop operation stop, the op-code is 31 for this instruction.  

Both of these instructions do not need an operand (are 0-operand instructions).  

Type B 
Type B format includes three 

instructions; all three use relative 

addressing mode. These are  

 The ldr instruction, used to load register from memory using a relative address. 

(op-code = 2).  

o Example: 

ldr R3, 56  

This instruction will load the register R3 with the contents of the memory 

location M [PC+56] 



Advanced Computer Architecture   

________________________________________________________________________ 

39 

 

 The lar instruction, for loading a register with relative address  (op-code = 6) 

o Example:  

lar R3, 56 

This instruction will load the register R3 with the relative address itself 

(PC+56).  

 The str is used to store register to memory using relative address  (op-code = 4) 

o Example: 

str R8, 34 

This instruction will store the register R8 contents to the memory location 

M [PC+34] 

The effective address is computed at run-time by adding a constant to the PC. This makes 

the instructions „re-locatable‟.  

Type C 
Type C format has three load/store 

instructions, plus three ALU 

instructions. These load/ store instructions are 

 ld, the load register from memory instruction (op-code = 1) 

o Example 1: 

ld R3, 56 

This instruction will load the register R3 with the contents of the memory 

location M [56]; the rb field is 0 in this instruction, i.e., it is not used. This 

is an example of direct addressing mode. 

o Example 2: 

ld R3, 56(R5) 

The contents of the memory location M [56+R [5]] are loaded to the 

register R3; the rb field ≠ 0. This is an instance of indexed addressing 

mode. 

 la is the instruction to load a register with an immediate data value (which can be 

an address) (op-code = 5 )  

o Example1:  

la R3, 56 

The register R3 is loaded with the immediate value 56. This is an instance 

of immediate addressing mode. 

o Example 2: 

la R3, 56(R5) 

The register R3 is loaded with the indexed address 56+R [5]. This is an 

example of indexed addressing mode. 

 The st instruction is used to store register contents to memory (op-code = 3)   

o Example 1: 

st R8, 34 

This is the direct addressing mode; the contents of register R8 (R [8]) are 

stored to the memory location M [34]   

o Example 2: 

st R8, 34(R6) 
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An instance of indexed addressing mode, M [34+R [6]] stores the contents 

of R8(R [8]) 

The ALU instructions are 

 addi, immediate 2‟s complement addition (op-code = 13)  

o Example: 

addi R3, R4, 56 

R[3]        R[4]+56  (rb field = R4) 

 andi, the instruction to obtain immediate logical AND, (op-code = 42  ) 

o Example: 

andi R3, R4, 56 

R3 is loaded with the immediate logical AND of the contents of register 

R4 and 56(constant value) 

 ori, the instruction to obtain immediate logical OR (op-code = 23 ) 

o Example: 

ori R3, R4, 56 

R3 is loaded with the immediate logical OR of the contents of register R4 

and 56(constant value) 

                          Note: 

1. Since the constant c2 field is 17 bits,  

 For direct addressing mode, only the first 2
16

 bytes of memory can 

be accessed (or the last 2
16

 bytes if c2 is negative) 

 In case of the la instruction, only constants with magnitudes less 

than ±2
16

 can be loaded 

 During address calculation using c2, sign extension to 32 bits must 

be performed before the addition 

2. Type C instructions, with some modifications, may also be used for 

shift instructions. Note 

the modification in the 

following figure. 

The four shift instructions are 

 shr is the instruction used to shift the bits right by using value in (5-bit) c3 

field(shift count) 

  (op-code = 26)  

o Example: 

shr R3, R4, 7 

shift R4 right 7 times in to R3. Immediate addressing mode is used. 

 shra, arithmetic shift right by using value in c3 field (op-code = 27) 

o Example: 

shra R3, R4, 7  

This instruction has the effect of shift R4 right 7 times in to R3. Immediate 

addressing mode is used. 

 The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28) 

o Example:  

shl R8, R5, 6 
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           shift R5 left 6 times in to R8. Immediate addressing mode is used. 

 shc, shift left circular by using value in  c3  field (op-code = 29) 

o Example:  

shc R3, R4, 3 

shift R4 circular 3 times in to R3. Immediate addressing mode is used.  
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Lecture No. 4 

ISA and Instruction Formats 
 

Reading Material 

 

Vincent P. Heuring&Harry F. Jordan                                                              Chapter 2 

Computer Systems Design and   Architecture                                              2.3, 2.4,slides    

 

 

Summary 

1) Introduction to ISA and instruction formats 

2) Coding examples and Hand assembly 

 

 

An example computer: the SRC: “simple RISC computer” 

An example machine is introduced here to facilitate our understanding of various design 

steps and concepts in computer architecture. This example machine is quite simple, and 

leaves out a lot of details of a real machine, yet it is complex enough to illustrate the 

fundamentals.  

SRC Introduction 

Attributes of the SRC 

• The SRC contains 32 General Purpose Registers: R0, R1, …, R31; each register is 

of size 32-bits. 

• Two special purpose registers are included: Program Counter (PC) and Instruction 

Register (IR) 

• Memory word size is 32 bits 

• Memory space size is 2
32

 bytes 

• Memory organization is 2
32

 x 8 bits, this means that the memory is byte aligned 

• Memory is accessed in 32 bit 

words ( i.e., 4 byte chunks) 

• Big-endian byte storage is used 

Programmer‟s View of the 

SRC 
The figure below shows the attributes 

of the SRC; the 32 ,32-bit registers 

that are a part of the CPU, the two 

additional CPU registers (PC & IR), 

and the main memory which is 2
32  

1-

byte cells.  
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SRC Notation  
We examine the notation used for the SRC with the help of some examples.  

• R[3] means contents of register 3 (R for register) 

• M[8] means contents of memory location 8 (M for memory) 

• A memory word at address 8 is 

defined as the 32 bits at 

address 8,9,10 and 11 in the 

memory. This is shown in the 

figure below. 

• A special notation for 32-bit 

memory words is  

 M[8]<31…0>:=M[8]M[9]M[10]M[11]                        

             is used for concatenation. 

 Some more SRC Attributes 

• All instructions are 32 bits long (i.e., instruction size is 1 word) 

• All ALU instructions have three operands 

• The only way to access memory is through load and store operations 

• Only a few addressing modes 

are supported 

SRC: Instruction Formats 

Four types of instructions are 

supported by the SRC. Their 

representation is given in the 

following figure. Before discussing 

these instruction types in detail, we 

take a look at the encoding of general-

purpose registers (the ra, rb and rc 

fields).  

Encoding of the General Purpose 

Registers 

The encoding for the general purpose 

registers is shown in the following 

table; it will be used in place of ra, rb 

and rc in the instruction formats 

shown above. Note that this is a 

simple 5 bit encoding. ra, rb and rc are 

names of fields used as “place-

holders”, and can represent any one of  these 32 registers. An exception is rb = 0; it does 

not mean the register R0, rather it means no operand. This will be explained in the 

following discussion. 

 

 

 



Advanced Computer Architecture   

________________________________________________________________________ 

44 

 

 

Type A 
Type A is used for only two instructions:  

 

 No operation or nop, for which 

the op-code = 0. This is useful 

in pipelining 

 Stop operation stop, the op-code is 31 for this instruction.  

Both of these instructions do not need an operand (are 0-operand instructions).  

Type B 
Type B format includes three 

instructions; all three use relative 

addressing mode. These are  

 The ldr instruction, used to load register from memory using a relative address. 

(op-code = 2).  

o Example: 

ldr R3, 56  

This instruction will load the register R3 with the contents of the memory 

location M [PC+56] 

 The lar instruction, for loading a register with relative address  (op-code = 6) 

o Example:  

lar R3, 56 

This instruction will load the register R3 with the relative address itself 

(PC+56).  

 The str is used to store register to memory using relative address  (op-code = 4) 

o Example: 

str R8, 34 

This instruction will store the register R8 contents to the memory location 

M [PC+34] 

The effective address is computed at run-time by adding a constant to the PC. This makes 

the instructions „re-locatable‟.  

Type C 
Type C format has three load/store 

instructions, plus three ALU 

instructions. These load/ store instructions are 

 ld, the load register from memory instruction (op-code = 1) 

o Example 1: 

ld R3, 56 

This instruction will load the register R3 with the contents of the memory 

location M [56]; the rb field is 0 in this instruction, i.e., it is not used. This 

is an example of direct addressing mode. 

o Example 2: 

ld R3, 56(R5) 
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The contents of the memory location M [56+R [5]] are loaded to the 

register R3; the rb field ≠ 0. This is an instance of indexed addressing 

mode. 

 la is the instruction to load a register with an immediate data value (which can be 

an address) (op-code = 5 )  

o Example1:  

la R3, 56 

The register R3 is loaded with the immediate value 56. This is an instance 

of immediate addressing mode. 

o Example 2: 

la R3, 56(R5) 

The register R3 is loaded with the indexed address 56+R [5]. This is an 

example of indexed addressing mode. 

 The st instruction is used to store register contents to memory (op-code = 3)   

o Example 1: 

st R8, 34 

This is the direct addressing mode; the contents of register R8 (R [8]) are 

stored to the memory location M [34]   

o Example 2: 

st R8, 34(R6) 

An instance of indexed addressing mode, M [34+R [6]] stores the contents 

of R8(R [8]) 

The ALU instructions are 

 addi, immediate 2‟s complement addition (op-code = 13)  

o Example: 

addi R3, R4, 56 

R[3]   R[4]+56  (rb field = R4) 

 andi, the instruction to obtain immediate logical AND, (op-code = 42  ) 

o Example: 

andi R3, R4, 56 

R3 is loaded with the immediate logical AND of the contents of register 

R4 and 56(constant value) 

 ori,  the instruction to obtain immediate logical OR (op-code = 23 ) 

o Example: 

ori R3, R4, 56 

R3 is loaded with the immediate logical OR of the contents of register R4 

and 56(constant value) 

 

Note: 

1. Since the constant c2 field is 17 bits,  

 For direct addressing mode, only the first 2
16

 bytes of memory can 

be accessed (or the last 2
16

 bytes if c2 is negative) 

 In case of the la instruction, only constants with magnitudes less 

than ±2
16

 can be loaded 
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 During address calculation using c2, sign extension to 32 bits must 

be performed before the addition 

2. Type C instructions, with some modifications, may also be used for 

shift instructions. Note the modification in the following figure. 

The four shift instructions are 

 shr is the instruction used to 

shift the bits right by using 

value in (5-bit) c3 field(shift count) (op-code = 26)  

o Example: 

shr R3, R4, 7 

shift R4 right 7 times in to R3 and shifts zeros in from the left as the value  

is shifted right. Immediate addressing mode is used. 

 shra, arithmetic shift right by using value in c3 field (op-code = 27) 

o Example: 

shra R3, R4, 7  

This instruction has the effect of shift R4 right 7 times in to R3 and copies 

the msb into the word on left as contents are shifted right. Immediate 

addressing mode is used. 

 The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28) 

o Example:  

shl R8, R5, 6 

shift R5 left 6 times in to R8 and shifts zeros in from the right as the value 

is shifted left. Immediate addressing mode is used. 

 shc, shift left circular by using value in  c3  field (op-code = 29) 

o Example:  

shc R3, R4, 3 

shift R4 circular 3 times in to R3 and copies the value shifted out of the  

register on the left is placed back into the register on the right. Immediate  

addressing mode is used.  

Type D 
Type D includes four ALU 

instructions, four register based shift 

instructions, two logical instructions 

and two branch instructions. 

The four ALU instructions are given below 

 add,  the instruction for 2‟s complement  register addition (op-code = 12) 

o Example: 

add R3, R5, R6 

result of 2‟s complement addition R[5] + R[6] is stored in R3. Register 

addressing mode is used.    

 sub , the instruction for 2‟s complement register subtraction (op-code = 14) 

o Example: 

sub R3, R5, R6 

R3 will store the 2‟s complement subtraction, R[5] - R[6]. Register 
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addressing mode is used. 

 and, the instruction for logical AND operation between  registers (op-code = 20) 

o Example:  

and R8, R3, R4 

R8 will store the logical AND of registers R3 and R4. Register addressing 

mode is used. 

 or ,the instruction for logical OR operation between  registers (op-code = 22) 

o Example:  

or R8, R3, R4 

R8 is loaded with the value R[3] v R[4], the logical OR of registers R3 and 

R4. Register addressing mode is used. 

The four register based shift instructions use register addressing mode. These use a 

modified form of type D, as shown in 

figure 

 shr, shift right by using value 

in register rc (op-code = 26) 

o Example:  

shr R3, R4, R5 

This instruction will shift R4 right in to R3 using number in R5 

 shra, the arithmetic shift right by using register rc (op-code = 27) 

o Example:  

shra R3, R4, R5 

A shift of R4 right using R5, and the result is stored in R3 

 shl is shift left by using register rc (op-code = 28) 

o Example: 

shl R8, R5, R6  

The instruction shifts R5 left in to R8 using number in R6 

 shc, shifts left circular by using register rc (op-code = 29) 

o Example:  

shc R3, R4, R6 

This instruction will shift R4 circular in to R3 using value in R6 

The two logical instructions also use a modified form of the Type D, and are the 

following.  

o neg stores the 2‟s complement 

of register rc in ra (op-code = 

15) 

o Example: 

neg R3, R4 

Negates (obtains 2‟s complement) of R4 and stores in R3. 2-address 

format and register addressing mode is used. 

 not stores the 1‟s complement of register rc in ra (op-code = 24) 

o Example:  

not R3, R4 

Logically inverts R4 and stores in R3. 2-address format with register 
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addressing mode is used. 

Type D has two-branch instruction, 

modified forms of type D. 

 br , the instruction to branch to 

address in rb depending on the condition in rc. There are five possible conditions, 

explained through examples. (op-code = 8). All branch instructions use register-

addressing mode.   

o Example 1: 

brzr R3, R4 

Branch to address in R3 (if R4 == 0) 

o Example 2: 

brnz R3, R4 

Branch to address in R3 (if R4 ≠ 0) 

o Example 3: 

brpl R3, R4 

Branch to address in R3 (if R4 ≥ 0) 

o Example 4: 

brmi R3, R4 

 

Branch to address in R3 (if R4 < 0) 

o Example 5: 

br R3, R4 

Branch to address in R3 (unconditional) 

 Brl the instruction to branch to address in rb depending on condition in rc. 

Additionally, it copies the PC in to ra before branching (op-code = 9) 

o Example 1: 

brlzr R1,R3, R4 

R1 will store the contents of PC, then branch to address in R3 (if R4 == 0) 

o Example 2: 

brlnz R1,R3, R4 

R1 stores the contents of PC, then a branch is taken, to address in R3 (if 

R4 ≠ 0) 

o Example 3: 

brlpl R1,R3, R4 

R1 will store PC, then 

branch to address in 

R3 (if R4≥ 0) 

o Example 4: 

brlmi R1,R3, R4 

R1 will store PC and 

then branch to address in 

R3 (if R4 < 0) 

o Example 5: 

brl R1,R3, R4 
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R1 will store PC, then it will ALWAYS branch to address in R3 

o Example 6: 

brlnv R1,R3, R4 

R1 just stores the contents 

of PC but a branch is not 

taken (NEVER 

BRANCH) 

In the modified type D instructions for 

branch, the bits <2..0> are used for 

specifying the condition; these condition 

codes are shown in the table. 

The SRC Instruction Summary 

The instructions implemented by the 

SRC are listed, grouped on functionality 

basis. 

Functional Groups of Instructions 

Alphabetical Listing based on SRC 

Mnemonics 

Notice that the op code field for all br 

instructions is the same. The difference 

is in the condition code field, which is in 

effect, an op code extension.  

Examples 

Some examples are studied in this section to enhance the student‟s understanding of the 

SRC. 

Example 1: Expression Evaluation 

Write an SRC assembly language 

program to evaluate the expression:   

z = 4(a +b) – 16(c+58)   

Your code should not change the source 

operands. 

Solution A:  Notice that the SRC does 

not have a multiply instruction. We will make use of the fact that multiplication with 

powers of 2 can be achieved by repeated 

shift left operations. A possible solution is 

give below: 

ld R1, c   ; c is a label 

used for a memory location 

addi R3, R1, 58   ; R3 

contains (c+58) 

shl R7, R3, 4  ; R7 

contains 16(c+58) 

ld R4, a 

ld R5, b 
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add R6, R4, R5  ; R6 

contains (a+b) 

shl R8, R6, 2  ; R8 

contains 4(a+b) 

sub R9, R7, R8  ; the 

result is in R9 

st R9, z  ; store the 

result in memory location z 

Note:  

The memory labels a, b, c and z can be 

defined by using assembler directives 

like .dw or .db, etc. in the source file.  

A semicolon „;‟ is used for comments 

in assembly language.   

Solution B:  

We may solve the problem by 

assuming that a multiply instruction, 

similar to the add instruction, exists in the instruction set of the SRC. The shl instruction 

will be replaced by the mul instruction as given below.  

ld R1, c   ; c is a label used for a memory location 

addi R3, R1, 58   ; R3 contains (c+58) 

mul R7, R3, 4  : R7 contains 16(c+58) 

ld R4, a 

ld R5, b 

add R6, R4, R5  ; R6 contains (a+b) 

mul R8, R6, 2  ; R8 contains 4(a+b) 

sub R9, R7, R8  ; the result is in R9 

st R9, z  ; store the result in memory location z 

Note:  

The memory labels a, b, c and z can be defined by using assembler directives like .dw or 

.db, etc. in the source file.  

Solution C:  

We can perform multiplication with a multiplier that is not a power of 2 by doing 

addition in a loop.  The number of times the loop will execute will be equal to the 

multiplier. 

Example 2: Hand Assembly 

Convert the given SRC assembly language program in to an equivalent SRC machine 

language program.   

ld R1, c   ; c is a label used for a memory location 

addi R3, R1, 58   ; R3 contains (c+58) 

shl R7, R3, 4  ; R7 contains 16(c+58) 

ld R4, a 
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ld R5, b 

add R6, R4, R5  ; R6 contains (a+b) 

shl R8, R6, 2  ; R8 contains 4(a+b) 

sub R9, R7, R8  ; the result is in R9 

st R9, z  ; store the result in memory location z 

Note:  

This program uses memory labels a,b,c and z. We need to define them for the assembler 

by using assembler directives like .dw or .equ etc. in the source file. 

Assembler Directives 

Assembler directives, also called pseudo op-codes, are commands to the assembler to 

direct the assembly process. The directives may be slightly different for different 

assemblers. All the necessary directives are available with most assemblers. We explain 

the directives as we encounter them. More information on assemblers can be looked up in 

the assembler user manuals.  

Source program with directives 

 .ORG 200 ; start the next line at address 200 

a:                              .DW      1       ; reserve one word for the label a in the memory 

b:                              .DW      1       ; reserve a word for b, this will be at address 204 

c:                              .DW      1       ; reserve a word for c, will be at address 208 

z:                           .DW       1        ; reserve one word for the result 

                                 .ORG   400 ; start the code at address 400 

; all numbers are in decimal unless otherwise stated 

ld R1, c               ; c is a label used for a memory location 

addi R3, R1, 58 ; R3 contains (c+58) 

shl R7, R3, 4   ; R7 contains 16(c+58) 

ld R4, a 

ld R5, b 

add R6, R4, R5   ; R6 contains (a+b) 

shl R8, R6, 2   ; R8 contains 4(a+b) 

sub R9, R7, R8   ; the result is in R9 

st R9, z   ; store the result in memory location z 

This is the way an assembly program will appear in the 

source file.  Most assemblers require that the file be 

saved with an .asm extension. 

Solution: 

Observe the first line of the program 

                                       .ORG  200        ; start the 

next line at address 200 

This is a directive to let the following code/ variables „originate‟ at the specified address 

of the memory, 200 in this case.  

Variable statements, and another .ORG directive follow the .ORG directive. 

a:                              .DW      1       ; reserve one word for the label a in the memory 

b:                              .DW      1       ; reserve a word for b, this will be at address 204 

c:                              .DW      1       ; reserve a word for c, will be at address 208 
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z:                           .DW       1        ; reserve one word for the result 

                                 .ORG 400 ; start the code at address 400 

We conclude the following from the above statements: 

The code starts at address 400 and each instruction takes 32 bits in the memory. The 

memory map for the program is shown in given table. 

Memory Map for the SRC example program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have to convert these instructions to machine language. Let us start with the first 

instruction: 

 

ld R1, c 

Notice that this is a type C instruction with the rb 

field missing.  

1. We pick the op-code for this load 

instruction from the SRC instruction 

tables given in the SRC instruction 

summary section. The op-code for the 

load register „ld‟ instruction is 00001.  

2. Next we pick the register code 

corresponding to register R1 from the 

register table (given in the section 

„encoding of general purpose registers‟). 

The register code for R1 is 00001.  

3. The rb field is missing, so we place zeros 

in the field: 00000 

4. The value of c is provided by the 

assembler, and should be converted to 17 
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bits. As c has been assigned the memory address 208, the binary value to be 

encoded is 00000 0000 1101 0000.  

5. So the instruction ld R1, c is  00001 00001 00000 00000 0000 1101 0000 in the 

machine language.  

6. The hexadecimal representation of this instruction is 0 8 4 0 0 0 D 0 h.       

We can update the memory map with these values. 

We consider the next instruction,  

addi R3, R1, 58.  

Notice that this is a type C instruction. 

1. We pick the op-code for the instruction addi from 

the SRC instruction table. It is 01101 

2. We pick the register codes for the registers R3 

and R1, these codes are 00011 and 00001 

respectively 

3. For the immediate data, 58, we use the binary 

value, 00000 0000 0011 1010  

4. So the complete instruction becomes: 01101 

00011 00001 00000 0000 0011 1010 

5. The hexadecimal representation of the instruction 

is 6 8 C 2 0 0 3 A h 

We update the memory map, as shown in table. 

The next instruction is shl R7,R3, 4, at address 408. 

Again, this is a type C instruction. 

1. The op-code for the instruction shl is picked from 

the SRC instruction table. It is 11100 

2. The register codes for the registers R7 and R3 

from the register table are 00111 and 00011 

respectively 

3. For the immediate data, 4, the corresponding 

binary value 00000 0000 0000 0100 is used.  

4. We can place these codes in accordance with the 

type C instruction format to obtain the complete 

instruction: 11100 00111 00011 00000 0000 0000 

0100 

5. The hexadecimal representation of the instruction 

is E1C60004  

The memory map is updated, as shown in table. 

The next instruction, ld R4, a, is also a type C 

instruction. Rb field is missing in this instruction. To 

obtain the machine equivalent, we follow the steps given 

below. 

1. The op-code of the load instruction „ld‟ is 00001 

2. The register code corresponding to the register R4 

is obtained from the register table, and it is 00100 
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3. As the 5 bit rb field is missing, we can encode zeros in its place: 00000 

4. The value of a is provided by the assembler, and is converted to 17 bits. It has 

been assigned the memory address 200, the binary equivalent of which is: 00000 

0000 1100 1000 

5. The complete instruction becomes: 00001 00100 

00000 00000 0000 1100 1000 

6. The hexadecimal equivalent of the instruction is 

0 9 0 0 0 0 C 8 h 

Memory map can be updated with this value. 

The next instruction is also a load type C instruction, 

with the rb field missing.  

ld R5, b 

The machine language conversion steps are 

1. The op-code of the load instruction is obtained 

from the SRC instruction table; it is 00001 

2. The register code for R5, obtained from the 

register table, is 00101 

3. Again, the 5 bit rb field is missing. We encode zeros in its place: 00000 

4. The value of label b is provided by the assembler, and should be converted to 17 

bits. It has been assigned the memory address 

204, so the binary value is: 00000 0000 1100 

1100 

5. The complete instruction is: 00001 00101 00000 

00000 0000 1100 1100 

6. The hexadecimal value of this instruction is 0 9 

4 0 0 0 C C h 

Memory map is then updated with this value. 

The next instruction is a type D-add instruction, with 

the constant field missing: 

add R6,R4,R5 
The steps followed to obtain the assembly code for this 

instruction are 

1. The op-code of the instruction is obtained from the SRC instruction table; it is 

01100 

2. The register codes for the registers R6, R4 and 

R5 are obtained from the register table; these are 

00110, 00100 and 00101 respectively.  

3. The 12 bit constant field is unused in this 

instruction, therefore we encode zeros in its 

place: 0000 0000 0000 

4. The complete instruction becomes: 01100 00110 

00100 00101 0000 0000 0000 

5. The hexadecimal value of the instruction is 6 1 8 

8 5 0 0 0 h 
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Memory map is then updated with this value. 

The 

instruction shl R8,R6, 2 is a type C instruction with the rc field missing. The steps taken 

to obtain the machine code of the instruction are 

1. The op-code of the shift left instruction „shl‟, obtained from the SRC instruction 

table, is 11100 

2. The register codes of R8 and R6 are 01000 and 00110 

respectively 

3. Binary code is used for the immediate data 2: 00000 

0000 0000 0010 

4. The complete instruction becomes: 11100 01000 00110 

00000 0000 0000 0010 

5. The hexadecimal equivalent of the instruction is E 2 0 C 

0 0 0 2 

Memory map is then updated with this value. 

The instruction at the memory address 428 is sub R9, R7, R8. 

This is a type D instruction. 

We decode it into the machine language, as follows: 

1. The op-code of the subtract instruction „sub‟ is 01110 

2. The register codes of R9, R7 and R8, obtained from the 

register table, are 01001, 00111 and 01000 respectively 

3. The 12 bit immediate data field is not used, zeros are 

encoded in its place: 0000 0000 0000 

4. The complete instruction becomes: 01110 01001 00111 

01000 0000 0000 0000 

5. The hexadecimal equivalent is 7 2 4 E 8 0 0 0 h 
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We again update the memory map 

The last instruction is is a type C instruction with the rb field missing: 

st R9, z 

The machine equivalent of this instruction is obtained through the following steps: 

1. The op-code of the store instruction „st‟, obtained from the SRC instruction table, 

is 00011 

2. The register code of R9 is 01001 

3. Notice that there is no register coded in the 5 bit rb field, therefore, we encode 

zeros: 00000 

4. The value of the label z is provided by the assembler, and should be converted to 

17 bits. Notice that the memory address assigned to z is 212. The 17 bit binary 

equivalent is: 00000 0000 1101 0100 

5. The complete instruction becomes: 00011 01001 00000 00000 0000 1101 0100 

6. The hexadecimal form of this instruction is 1 A 4 0 0 0 D 4 h 

The memory map, after the conversion of all the instructions, is 

We have shown the memory map as an array of 4 byte cells in the above solution. 

However, since the memory of the SRC is arranged in 8 bit cells (i.e. memory is byte 

aligned), the real representation of the memory map is :                       

Example 3: SRC instruction analysis 
Identify the formats of following SRC instructions and specify the values in the fields 

 

Solution: 
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Lecture No. 5 

Description of SRC in RTL 
Reading Material 
            Handouts                                                                                                  Slides                                           

Summary 

1) Reverse Assembly 

2) Description of SRC in the form of RTL 

3) Behavioral and Structural description in terms of RTL 

 

 

Reverse Assembly 

 

Typical Problem: 

Given a machine language instruction for the SRC, it may be required to find the 

equivalent SRC assembly language instruction 

Example: 

 Reverse assemble the following SRC machine language instructions: 

 68C2003A h 

     E1C60004 h 

     61885000 h 

     724E8000 h 
     1A4000D4 h 

 084000D0 h 

Solution: 

1. Write the given hexadecimal instruction in binary form 

68C2003A h  0110 1000 1100 0010 0000 0000 0011 1010 b 

2. Examine the first five bits of the instruction, and pick the corresponding mnemonic 

from the SRC instruction set listing arranged according to ascending order of op-codes 

01101 b  13 d  addi  add immediate 

 

 

3. Now we know that this instruction uses the type C format, the two 5-bit fields after the 

op-code field represent the destination and the source registers respectively, and that the 

remaining 17-bits in the instruction represent a constant 

 

      0110 1000 1100 0010 0000 0000 0011 1010 b 
      op-code ra field  rb field               17-bit c1 field 

                                                     
        addi     R3      R1                3A h=58 d 
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4. Therefore, the assembly language instruction is 

  addi R3, R1, 58 

Summary 

 

 

 

 

 

 

We can do it a bit faster now! Step1: 

Here is step1 for all instructions 

 

 

 

 

 

 

tep 2: Pick up the op code for each 

instruction 

 

 

 

 

 

Step 3: Determine the instruction type for each instruction 

 

 

 

The meaning of the remaining fields will depend on the instruction type (i.e., the 

instruction format) 
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Summary 
 

 

 

 

 

 

 

  

Note: Rest of the fields of above given tables are left as an exercise for 

students. 

Using RTL to  describe the SRC 
 RTL stands for Register Transfer Language. The Register Transfer Language provides a 

formal way for the description of the behavior and structure of a computer. The RTL 

facilitates the design process of the computer as it provides a precise, mathematical 

representation of its functionality. In this section, a Register Transfer Language is 

presented and introduced, for the SRC (Simple „RISC‟ Computer), described in the 

previous discussion.  

 Behavioral RTL 

Behavioral RTL is used to describe the „functionality‟ of the machine only, i.e. what the 

machine does.  

 Structural RTL 

Structural RTL describes the „hardware implementation‟ of the machine, i.e. how the 

functionality made available by the machine is implemented.  

 Behavioral versus Structural RTL: 

In computer design, a top-down approach is adopted. The computer design process 

typically starts with defining the behavior of the overall system. This is then broken down 

into the behavior of the different modules. The process continues, till we are able to 

define, design and implement the structure of the individual modules. Behavioral RTL is 

used for describing the behavior of machine whereas structural RTL is used to define the 

structure of machine, which brings us to the some more hardware features. 

Using RTL to describe the static properties of the SRC 
In this section we introduce the RTL by using it to describe the various static properties 

of the SRC.  

Specifying Registers 
The format used to specify registers is  

Register Name<register bits> 

For example, IR<31..0> means bits numbered 31 to 0 of a 32-bit register named “IR” 

(Instruction Register). 

 “Naming” using the := naming operator: 

The := operator is used to „name‟ registers, or part of registers, in the Register Transfer 
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Language. It does not create a new register; it just generates another name, or “alias” for 

an already existing register or part of a register. For example, 

Op<4..0>: = IR<31..27> means that the five most significant bits of the register IR will 

be called op, with bits 4..0.  

Fields in the SRC instruction 

In this section, we examine the various fields of an SRC instruction, using the RTL.  

op<4..0>: = IR<31..27>; operation code field 

The five most significant bits of an SRC instruction, (stored in the instruction register in 

this example), are named op, and this field is used for specifying the operation.  

ra<4..0>: = IR<26..22>; target register field 

The next five bits of the SRC instruction, bits 26 through 22, are used to hold the address 

of the target register field, i.e., the result of the operation performed by the instruction is 

stored in the register specified by this field. 

rb<4..0>: = IR<21..17>; operand, address index, or branch target register 

The bits 21 through 17 of the instruction are used for the rb field. rb field is  used to hold 

an operand, an address index, or a branch target register. 

rc<4..0>: = IR<16..12>; second operand, conditional test, or shift count register 

The bits 16 through 12, are the rc field. This field may hold the second operand, 

conditional test, or a shift count.   

c1<21..0>: = IR<21..0>; long displacement field 

In some instructions, the bits 21 through 0 may be used as long displacement field. 

Notice that there is an overlap of fields. The fields are distinguished in a particular 

instruction depending on the operation.  

c2<16..0>: = IR<16..0>; short displacement or immediate field 

The bits 16 through 0 may be used as short displacement or to specify an immediate 

operand.   

c3<11..0>: = IR<11..0>; count or modifier field 

The bits 11 through 0 of the SRC instruction may be used for count or modifier field.  

Describing the processor state using RTL 

The Register Transfer Language can be used to describe the processor state. The 

following registers and bits together form the processor state set.  

PC<31..0>;                            program counter (it holds the memory address of next   

                                              instruction to be executed)         

IR<31..0>;   instruction register, used to hold the current instruction 

Run;   one bit run/halt indicator 

Strt;   start signal 

R [0..31]<31..0>; 32, 32 bit general purpose registers 

 

SRC in a Black Box 
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Difference between our notation and notation used by the text (H&J) 

 

Difference between “,” and “;” in RTL 

Statements separated by a “,” take place during the same clock pulse. In other words, the 

order of execution of statements separated by  “,” does not matter.  

On the other hand, statements separated by a “;” take place on successive clock pulses. In 

other words, if statements are separated by  “;” the one on the left must complete before 

the one on the right starts. However, some things written with one RTL statement can 

take several clocks to complete.  

So in the instruction interpretation, fetch-execute cycle, we can see that the first 

statement. ! Run & Strt : Run ←  1, executes first. After this statement has executed and 

set run to 1, the statements IR ←  M [PC] and PC ←  PC + 4 are executed concurrently. 

Note that in statements separated by “,”, all right hand sides of Register Transfers are 

evaluated before any left hand side is modified (generally though assignment). 
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Using RTL to describe the dynamic properties of the SRC 
The RTL can be used to describe the dynamic properties.  

Conditional expressions can be specified through the use of RTL. The following example 

will illustrate this 

(op=14) :  R [ra] ←  R [rb] - R[rc]; 

The ←  operator is the RTL assignment operator. „;‟ is the termination operator. This 

conditional expression implies that “IF the op field is equal to 14, THEN calculate the 

difference of the value in the register specified by the rb field and the value in the register 

specified by the rc field, and store the result in the register specified by the ra field.” 

Effective address calculations in RTL (performed at runtime) 
In some instructions, the address of an operand or the destination register may not be 

specified directly. Instead, the effective address may have to be calculated at runtime. 

These effective address calculations can be represented in RTL, as illustrated through the 

examples below.  

Displacement address  

disp<31..0> := ((rb=0) : c2<16..0> {sign extend},  

   (rb≠0) : R [rb] + c2<16..0> {sign extend}), 

The displacement (or the direct) address is being calculated in this example. The “,” 

operator separates statements in a single instruction, and indicates that these statements 

are to be executed simultaneously. However, since in this example these are two disjoint 

conditions, therefore, only one action will be performed at one time.  

Note that register R0 cannot be added to displacement. rb = 0 just implies we do not need 

to use the R [rb] field.  

Relative address 

rel<31..0> := PC<31..0> + c1<21..0> {sign extend}, 

In the above example, a relative address is being calculated by adding the displacement 

after sign extension to the contents of the program counter register (that holds the next 

instruction to be executed in a program execution sequence). 

Range of memory addresses 

The range of memory addresses that can be accessed using the displacement (or the 

direct) addressing and the relative addressing is given. 

 Direct addressing (displacement with rb=0) 

o If c2<16>=0 (positive displacement) absolute addresses range from 

00000000h to 0000FFFFh 

o If c2<16>=1 (negative displacement) absolute addresses range from 

FFFF0000h to FFFFFFFFh 

 Relative addressing 

o The largest positive value of C1<21..0> is 2
21

-1 and its most negative 

value is -2
21

, so addresses up to 2
21

-1 forward and 2
21

 backward from the 

current PC value can be specified 

Instruction Interpretation 

(Describing the Fetch operation using RTL) 

The action performed for all the instructions before they are decoded is called „instruction 

interpretation‟. Here, an example is that of starting the machine. If the machine is not 
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already running (¬Run, or „not‟ running), AND (&) it the condition start (Strt) becomes 

true, then Run bit (of the processor state) is set to 1 (i.e. true).  

instruction_Fetch := (  

                          ! Run & Strt: Run ←  1                   ; instruction_Fetch 

   Run : (IR ←  M [PC], PC ←  PC + 4;      instruction_Execution ) ); 

The := is the naming operator. The ; operator is used to add comments in RTL. The , 

operator, specifies that the statements are to be executed simultaneously, (i.e. in a single 

clock pulse). The ; operator is used to separate sequential statements. ←  is an assignment 

operator. & is a logical AND, ~ is a logical OR, and ! is the logical NOT. In the 

instruction interpretation phase of the fetch-execute cycle, if the machine is running (Run 

is true), the instruction register is loaded with the instruction at the location M [PC] (the 

program counter specifies the address of the memory at which the instruction to be 

executed is located). Simultaneously, the program counter is incremented by 4, so as to 

point to the next instruction, as shown in the example above. This completes the 

instruction interpretation. 

Instruction Execution  

(Describing the Execute operation using RTL) 

Once the instruction is fetched and the PC is incremented, execution of the instruction 

starts. In the following, we denote instruction Fetch by “iF” and instruction execution by 

“iE”.  

iE:= (  

           (op<4..0>= 1) : R [ra] ←  M [disp],   

           (op<4..0>= 2) : R [ra] ←  M [rel],  

                                 . . . 

                                 . . .       

           (op<4..0>=31) : Run ←  0,); iF); 

As shown above, Instruction Execution can be described by using a long list of 

conditional operations, which are inherently “disjoint”.  

One of these statements is executed, depending on the condition met, and then the 

instruction fetch statement (iF) is invoked again at the end of the list of concurrent 

statements. Thus, instruction fetch (iF) and instruction execution statements invoke each 

other in a loop. This is the fetch-execute cycle of the SRC.  

Concurrent Statements 
  The long list of concurrent, disjoint instructions of the instruction execution (iE) is 

basically the complete instruction set of the processor. A brief overview of these 

instructions is given below. 

Load-Store Instructions 

(op<4..0>= 1) : R [ra] ←  M [disp], load register (ld) 

This instruction is to load a register using a displacement address specified by the 

instruction, i.e. the contents of the memory at the address „disp‟ are placed in the register 

R [ra]. 

 (op<4..0>= 2) : R [ra] ←  M [rel], load register relative (ldr) 

If the operation field „op‟ of the instruction decoded is 2, the instruction that is executed 

is loading a register (target address of this register is specified by the field ra) with 
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memory contents at a relative address, „rel‟. The relative address calculation has been 

explained in this section earlier.  

(op<4..0>= 3) : M [disp] ←  R [ra], store register (st) 

If the op-code is 3, the contents of the register specified by address ra, are stored back to 

the memory, at a displacement location „disp‟.  

(op<4..0>= 4) : M[rel] ←  R[ra], store register relative (str) 

If the op-code is 4, the contents of the register specified by the target register address ra, 

are stored back to the memory, at a relative address location „rel‟.  

(op<4..0>= 5) : R [ra] ←  disp, load displacement address (la) 

For op-code 5, the displacement address disp is loaded to the register R (specified by the 

target register address ra).  

(op<4..0>= 6) : R [ra] ←  rel, load relative address (lar) 

For op-code 6, the relative address rel is loaded to the register R (specified by the target 

register address ra).  

Branch Instructions 

(op<4..0>= 8) : (cond : PC ←  R [rb]),    conditional branch (br) 

If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the 

target instruction address specified by rb, if the condition „cond‟ is true. 

(op<4..0>= 9) : (R [ra] ←  PC,  

                           cond : (PC ←  R [rb]) ),  branch and link (brl) 

If the op field is 9, branch and link instruction is executed, i.e. the contents of the 

program counter are stored in a register specified by ra field, (so control can be returned 

to it later), and then the conditional branch is taken to a branch target address specified by 

rb. The branch and link instruction is useful for returning control to the calling program 

after a procedure call returns.  

The conditions that these „conditional‟ branches depend on are specified by the field c3 

that has 3 bits. This simply means that when c3<2..0> is equal to one of these six values. 

We substitute the expression on the right hand side of the : in place of cond 

These conditions are explained here briefly. 

     cond := (  

                           c3<2..0>=0 : 0,      never 

                          If the c3 field is 0, the branch is never taken. 

                           c3<2..0>=1 : 1,      always 

                           If the field is 1, branch is taken 

                           c3<2..0>=2 : R [rc]=0,            if register is zero 

                           If c3 = 2, a branch is taken if the register rc = 0. 

                           c3<2..0>=3 : R [rc] ≠ 0,      if register is nonzero 

                           If c3 = 3, a branch is taken if the register rc is not equal to 0. 

                           c3<2..0>=4 : R [rc]<31>=0     if positive or zero 

                           If c3 is 4, a branch is taken if the register value in the register specified        

                           by rc is greater than or equal to 0. 

                           c3<2..0>=5 : R [rc]<31>=1),   if negative 

                           If c3 = 5, a branch is taken if the value stored in the register specified by  

                           rc is negative. 
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Arithmetic and Logical instructions 

(op<4..0>=12) : R [ra] ←  R [rb] + R [rc], 

If the op-code is 12, the contents of the registers rb and rc are added and the result is 

stored in the register ra. 

(op<4..0>=13) : R [ra] ←  R [rb] + c2<16..0> {sign extend}, 

If the op-code is 13, the content of the register rb is added with the immediate data in the 

field c2, and the result is stored in the register ra. 

(op<4..0>=14) : R [ra] ←  R [rb] – R [rc], 

If the op-code is 14, the content of the register rc is subtracted from that of rb, and the 

result is stored in ra. 

(op<4..0>=15) : R [ra] ←  -R [rc], 

If the op-code is 15, the content of the register rc is negated, and the result is stored in ra. 

(op<4..0>=20) : R [ra] ←  R [rb] & R [rc], 

If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained 

and the result is stored in register ra. 

(op<4..0>=21) : R [ra] ←  R [rb] & c2<16..0> {sign extend}, 

If the op field equals 21, logical AND of the content of the registers rb and the immediate 

data in the field c2 is obtained and the result is stored in register ra. 

(op<4..0>=22) : R [ra] ←  R [rb] ~ R [rc], 

If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained 

and the result is stored in register ra. 

(op<4..0>=23) : R [ra] ←  R [rb] ~ c2<16..0> {sign extend}, 

If the op field equals 23, logical OR of the content of the registers rb and the immediate 

data in the field c2 is obtained and the result is stored in register ra. 

(op<4..0>=24) : R [ra] ←   ¬R [rc], 

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and 

the result is stored in ra. 

Shift instructions 
(op<4..0>=26): R [ra]<31..0 > ←  (n α 0) © R [rb] <31..n>, 

If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits 

that are shifted out of the register are discarded. 0s are added in their place, i.e. n number 

of 0s is added (or concatenated) with the register contents. The result is copied to the 

register ra. 

(op<4..0>=27) : R [ra]<31..0 > ←  (n α R [rb] <31>) © R [rb] <31..n>, 

For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of 

the register rb are shifted right n times, with the most significant bit, bit 31, of the register 

rb added in their place. The result is copied to the register ra. 

(op<4..0>=28) : R [ra]<31..0 > ←  R [rb] <31-n..0> © (n α 0), 

For op-code 28, the contents of the register rb are shifted left n bits times, similar to the 

shift right instruction. The result is copied to the register ra. 

(op<4..0>=29) : R [ra]<31..0 > ←  R [rb] <31-n..0> © R [rb]<31..32-n >, 

The instruction corresponding to op-code 29 is the shift circular instruction. The contents 

of the register rb are shifted left n times, however, the bits that move out of the register in 

the shift process are not discarded; instead, these are shifted in from the other end (a 
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circular shifting). The result is stored in register ra. 

where 

n := ( (c3<4..0>=0) : R [rc],  

 (c3<4..0>!=0) : c3 <4..0> ), 

Notation:    α means replication  

 ©  Means concatenation 

Miscellaneous instructions 

(op<4..0>= 0) ,    No operation (nop) 

If the op-code is 0, no operation is carried out for that clock period. This instruction is 

used as a stall in pipelining.  

(op<4..0>= 31) : Run ←  0, Halt the processor (Stop)  

         );      iF  ); 

If the op-code is 31, run is set to 0, that is, the processor is halted. 

After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out 

once again, and so the fetch-execute cycle continues.  

Flow diagram 

Flow diagram is the symbolic 

representation of Fetch-Execute cycle. Its 

top block indicates instruction fetch and 

then next block shows the instruction 

decode by looking at the first 5-bits of the 

fetched instruction which would 

represent op-code which may be from 0 

to 31.Depending upon the contents of this 

op-code the appropriate processing would 

take place. After the appropriate 

processing, we would move back to top 

block, next instruction is fetched and the 

same process is repeated until the instruction with op-code 31 would reach and halt the 

system. 

Note:For SRC Assembler and Simulator consult Appendix. 
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Lecture No. 6 

RTL Using Digital Logic Circuits 
 

Reading Material 

           

  Handouts                                                                                            Slides 

    

Summary 
 

 Using Behavioral RTL to Describe the SRC (continued) 

 Implementing Register Transfer using Digital Logic Circuits 

 

Using behavioral RTL to Describe the SRC (continued) 
 

Once the instruction is fetched and the PC is incremented, execution of the instruction 

starts. In the following discussion, we denote instruction fetch by “iF” and instruction 

execution by “iE”.  

 

iE:= (  

           (op<4..0>= 1) : R [ra] ←  M [disp],   

           (op<4..0>= 2) : R [ra] ←  M [rel],  

                                 . . . 

                                 . . .       

           (op<4..0>=31) : Run ←  0,); iF); 

 

As shown above, instruction execution can be described by using a long list of 

conditional operations, which are inherently “disjoint”. Only one of these statements is 

executed, depending on the condition met, and then the instruction fetch statement (iF) is 

invoked again at the end of the list of concurrent statements. Thus, instruction fetch (iF) 

and instruction execution statements invoke each other in a loop. This is the fetch-execute 

cycle of the SRC.  

 

Concurrent Statements 
The long list of concurrent, disjoint instructions of the instruction execution (iE) is 

basically the complete instruction set of the processor. A brief overview of these 

instructions is given below: 

 

Load-Store Instructions 

(op<4..0>= 1) : R [ra] ←  M [disp], load register (ld) 
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This instruction is to load a register using a displacement address specified by the 

instruction, i.e., the contents of the memory at the address „disp‟ are placed in the register 

R [ra]. 

 

 

(op<4..0>= 2) : R [ra] ←  M [rel], load register relative (ldr) 

If the operation field „op‟ of the instruction decoded is 2, the instruction that is executed 

is loading a register (target address of this register is specified by the field ra) with 

memory contents at a relative address, „rel‟. The relative address calculation has been 

explained in this section earlier.  

(op<4..0>= 3) : M [disp] ←  R [ra], store register (st) 

If the op-code is 3, the contents of the register specified by address ra, are stored back to 

the memory, at a displacement location „disp‟.  

(op<4..0>= 4) : M[rel] ←  R[ra], store register relative (str) 

If the op-code is 4, the contents of the register specified by the target register address ra, 

are stored back to the memory, at a relative address location „rel‟.  

(op<4..0>= 5) : R [ra] ←  disp, load displacement address (la) 

For op-code 5, the displacement address disp is loaded to the register R (specified by the 

target register address ra).  

(op<4..0>= 6) : R [ra] ←  rel, load relative address (lar) 

For op-code 6, the relative address rel is loaded to the register R (specified by the target 

register address ra).  

 

Branch Instructions 

(op<4..0>= 8) : (cond : PC ←  R [rb]),    conditional branch (br) 

If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the 

target instruction address specified by rb, if the condition „cond‟ is true. 

(op<4..0>= 9) : (R [ra] ←  PC,  

                           cond : (PC ←  R [rb]) ),  branch and link (brl) 

If the op field is 9, branch and link instruction is executed, i.e. the contents of the 

program counter are stored in a register specified by ra field, (so control can be returned 

to it later), and then the conditional branch is taken to a branch target address specified by 

rb. The branch and link instruction is useful for returning control to the calling program 

after a procedure call returns.  

The conditions that these „conditional‟ branches depend on, are specified by the field c3 

that has 3 bits. This simply means that when c3<2..0> is equal to one of these six values, 

we substitute the expression on the right hand side of the : in place of cond. 

These conditions are explained here briefly. 

     cond := (  

                           c3<2..0>=0 : 0,      never 

                          If the c3 field is 0, the branch is never taken. 

                           c3<2..0>=1 : 1,      always 

                           If the field is 1, branch is taken 

                           c3<2..0>=2 : R [rc]=0,            if register is zero 
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                           If c3 = 2, a branch is taken if the register rc = 0. 

                           c3<2..0>=3 : R [rc] ≠ 0,      if register is nonzero 

                           If c3 = 3, a branch is taken if the register rc is not equal to 0. 

                           c3<2..0>=4 : R [rc]<31>=0     if positive or zero 

                           If c3 is 4, a branch is taken if the register value in the register specified        

                           by rc is greater than or equal to 0. 

                           c3<2..0>=5 : R [rc]<31>=1),   if negative 

                           If c3 = 5, a branch is taken if the value stored in the register specified by  

                           rc is negative. 

 

Arithmetic and Logical instructions 

(op<4..0>=12) : R [ra] ←  R [rb] + R [rc], 

If the op-code is 12, the contents of the registers rb and rc are added and the result is 

stored in the register ra. 

(op<4..0>=13) : R [ra] ←  R [rb] + c2<16..0> {sign extended}, 

If the op-code is 13, the content of the register rb is added with the immediate data in the 

field c2, and the result is stored in the register ra. 

(op<4..0>=14) : R [ra] ←  R [rb] – R [rc], 

If the op-code is 14, the content of the register rc is subtracted from that of rb, and the 

result is stored in ra. 

(op<4..0>=15) : R [ra] ←  -R [rc], 

If the op-code is 15, the content of the register rc is negated, and the result is stored in ra. 

(op<4..0>=20) : R [ra] ←  R [rb] & R [rc], 

If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained 

and the result is stored in register ra. 

(op<4..0>=21) : R [ra] ←  R [rb] & c2<16..0> {sign extended}, 

If the op field equals 21, logical AND of the content of the registers rb and the immediate 

data in the field c2 is obtained and the result is stored in register ra. 

(op<4..0>=22) : R [ra] ←  R [rb] ~ R [rc], 

If the op field equals 22, logical OR of the contents of the registers rb and rc is obtained 

and the result is stored in register ra. 

(op<4..0>=23) : R [ra] ←  R [rb] ~ c2<16..0> {sign extended}, 

If the op field equals 23, logical OR of the content of the registers rb and the immediate 

data in the field c2 is obtained and the result is stored in register ra. 

(op<4..0>=24) : R [ra] ←   !R [rc], 

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and 

the result is stored in ra. 

 

Shift instructions 
(op<4..0>=26): R [ra]<31..0 > ←  (n α 0) © R [rb] <31..n>, 

If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits 

that are shifted out of the register are discarded. 0s are added in their place, i.e. n number 

of 0s is added (or concatenated) with the register contents. The result is copied to the 

register ra. 
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(op<4..0>=27) : R [ra]<31..0 > ←  (n α R [rb] <31>) © R [rb] <31..n>, 

For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of 

the register rb are shifted right n times, with the most significant bit, i.e., bit 31, of the 

register rb added in their place. The result is copied to the register ra. 

(op<4..0>=28) : R [ra]<31..0 > ←  R [rb] <31-n..0> © (n α 0), 

For op-code 28, the contents of the register rb are shifted left n bits times, similar to the 

shift right instruction. The result is copied to the register ra. 

(op<4..0>=29) : R [ra]<31..0 > ←  R [rb] <31-n..0> © R [rb]<31..32-n >, 

The instruction corresponding to op-code 29 is the shift circular instruction. The contents 

of the register rb are shifted left n times, however, the bits that move out of the register in 

the shift process are not discarded; instead, these are shifted in from the other end (a 

circular shifting). The result is stored in register ra. 

where 

 n := ( (c3<4..0>=0) : R [rc],  

 (c3<4..0>!=0) : c3 <4..0> ), 

 

Notation:    

α means replication  

© means concatenation 

 

Miscellaneous instructions 

(op<4..0>= 0) ,    No operation (nop) 

If the op-code is 0, no operation is carried out for that clock period. This instruction is 

used as a stall in pipelining.  

(op<4..0>= 31) : Run ←  0, Halt the processor (Stop)  

         );      iF  ); 

If the op-code is 31, run is set to 0, that is, the processor stops execution. 

After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out 

once again, and so the fetch-execute cycle continues.  

 

Implementing Register Transfers using Digital Logic Circuits 
 

We have studied the register transfers in the previous sections, and how they help in 

implementing assembly language. In this section we will review how the basic digital 

logic circuits are used to implement instructions register transfers. The topics we will 

cover in this section include: 

1. A brief (and necessary) review of logic circuits 

2. Implementing simple register transfers 

3. Register file implementation using a bus 

4. Implementing register transfers with mathematical operations 

5. The Barrel Shifter 

6. Implementing shift operations 

 

Review of logic circuits 
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Before we study the implementation of register transfers using logic circuits, a brief 

overview of some of the important logic circuits will prove helpful. The topics we review 

in this section include  

1. The basic D flip flop 

2. The n-bit register 

3. The n-to-1 multiplexer 

4. Tri-state buffers 

 

 

 

The basic D flip flop 

A flip-flop is a bi-stable device, 

capable of storing one bit of 

Information. Therefore, flip-

flops are used as the building 

blocks of a computer‟s memory as 

well as CPU registers. 

There are various types of flip-flops; most common type, the D flip-flop is shown in the 

figure given. The given truth table for this positive-edge triggered D flip-flop shows that 

the flip-flop is set (i.e. stores a 1) when the data input is high on the leading (also called 

the positive) edge of the clock; it is 

reset (i.e., the flip-flop stores a 0) 

when the data input is 0 on the 

leading edge of the clock. The clear 

input will reset the flip-flop on a low 

input. 

The n-bit register 

A n-bit register can be formed by 

grouping n flip-flops together. So a 

register is a device in which a group 

of flip-flops operate synchronously.  

A register is useful for storing binary 

data, as each flip-flop can store one 

bit. The clock input of the flip-flops 

is grouped together, as is the enable 

input. As shown in the figure, using the input lines a binary number can be stored in the 

register by applying the corresponding logic level to each of the flip-flops simultaneously 

at the positive edge of the clock.  
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The next figure shows the symbol of a 

4-bit register used for an integrated 

circuit. In0 through In3 are the four 

input lines, Out0 through Out3 are the 

four output lines, Clk is the clock 

input, and En is the enable line. To get 

a better understanding of this register, 

consider the situation where we want 

to store the binary number 1000 in the 

register. We will apply the number to 

the input lines, as shown in the figure 

given.  

On the leading edge of the clock, the number will be stored in the register. The enable 

input has to be high if the number is to be stored into the register. 

.  
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Waveform/Timing diagram 

 
 

 

 

 

The n-to-1 multiplexer 

A multiplexer is a device, constructed 

through combinational logic, which 

takes n inputs and transfers one of them 

as the output at a time. The input that is 

selected as the output depends on the 

selection lines, also called the control 

input lines. For an n-to-1 multiplexer, 

there are n input lines, log2n control 

lines, and 1 output line. The given 

figure shows a 4-to-1 multiplexer. There 

are 4 input lines; we number these lines as 

line 0 through line 3. Subsequently, there 

are 2 select lines (as log24 = 2). 

For a better understanding, let us consider a 

case where we want to transfer the input of 

line 3 to the output of the multiplexer. We 

will need to apply the binary number 11 on 

the select lines (as the binary number 11 

represents the decimal number 3). By doing 

so, the output of the multiplexer will be the 
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input on line 3, as shown in the test circuit given. 

Timing waveform 

 
 

 

Tri-state buffers 

The tri-state buffer, also called the 

three-state buffer, is another important 

component in the digital logic domain. 

It has a single input, a single output, and 

an enable line. The input is concatenated 

to the output only if it is enabled 

through the enable line, otherwise it 

gives a high impedance output, i.e. it is 

tri-stated, or electrically disconnected 

from the input These buffers are 

available both in the inverting and the 

non-inverting form. The inverting tri-

state buffers output the „inverted‟ input 

when they are enabled, as opposed to 

their non-inverting counterparts that 

simply output the input when enabled. 

The circuit symbol of the tri-state buffers 

is shown. The truth table further clarifies 

the working of a non-inverting tri-state 

buffer. 
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We can see that when the enable input (or the control input) c is low (0), the output is 

high impedance Z. The symbol of a 4-bit tri-state buffer unit is shown in the figure. There 

are four input lines, an equal number of output lines, and an enable line in this unit. If we 

apply a high on the input 3 and 2, and a low on input 1 and 0, we get the output 1100, 

only when the enable input is high, as shown in the given 

figure.
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Implementing simple register transfers 

We now build on our knowledge of the primitive logic circuits to understand how register 

transfers are implemented. In this section we will study the implementation of the 

following 

 Simple conditional transfer 

 Concept of control signals 

 Two-way transfers 

 Connecting multiple registers 

 Buses 

 Bus implementations 

Simple conditional transfer 

In a simple conditional transfer, a condition is checked, and if it is true, the register 

transfer takes place. Formally, a conditional transfer is represented as  

                Cond: RD ← RS 

This means that if the condition „Cond‟ is true, the contents of the register named RS (the 

source register) are copied to the register RD (the destination register). The following 

figure shows how the registers may be interconnected to achieve a conditional transfer. In 

this circuit, the output of the source register RS is connected to the input of the 

destination registers RD. However, notice that the transfer will not take place unless the 

enable input of the destination register is activated. We may say that the „transfer‟ is 

being controlled by the enable line (or the control signal). Now, we are able to control the 

transfer by selectively enabling the control signal, through the use of other combinational 

logic that may be the equivalent of our condition. The condition is, in general, a Boolean 
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expression, and in this example, the condition is equivalent to LRD =1.   

Two-way transfers 

In the above example, only one-way transfer was possible, i.e., we could only copy the 

contents of RS to RD if the condition was met. In order to be able to achieve two-way 

transfers, we must also provide a path from the output of the register RD to input of 

register RS. This will enable us to implement  

Cond1: RD ← RS 

Cond2: RS ← RD 

Connecting multiple registers 

We have seen how two registers can be connected. However, in a computer we need to 

connect more than just two registers. In order to connect these registers, one may argue 

that a connection between the input and output of each be provided. This solution is 

shown for a scenario where there are 5 registers that need to be interconnected.   

We can see that in this solution, an m-bit register requires two connections of m-wires 

each.  Hence five m-bit registers in a “point-to-point” scheme require 20 connections; 

each with m wires. In general, n registers in a point to point scheme require n (n-1) 

connections. It is quite obvious that this solution is not going to scale well for a large 

number of registers, as is the case in real machines. The solution to this problem is the 

use of a bus architecture, which is explained in the following sections. 
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Buses  
A bus is a device that provides a shared data path to a number of devices that are 

connected to it, via a „set of wires‟ or a „set of conductors‟. The modern computer 

systems extensively employ the bus architecture. Control signals are needed to decide 

which two entities communicate using the shared medium, i.e.  the bus, at any given time. 

This control signals can be open collector gate based, tri-state buffer based, or they can 

be implemented using multiplexers.  
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Register file implementation using the bus architecture 

 

 

A number of registers can be inter-connected to form a register file, through the use of a 

bus. The given diagram shows eight 4-bit registers (R0, R1, …, R7) interconnected 

through a 4-bit bus using 4-bit tri-state buffer units (labeled AA_TS4). The contents of a 

particular register can be transferred onto the bus by applying a logical high input on the 

enable of the corresponding tri-state buffer. For instance, R1out can be used to enable the 

tri-state buffers of the register R1, and in turn transfer the contents of the register on the 

bus.  

 

Once the contents of a particular register are on the bus, the contents may be transferred, 

or read into any other register. More than one register may be written in this manner; 

however, only one register can write its value on the bus at a given time. 

 

 

 

Implementing register transfers with mathematical operations 

We have studied the implementation of simple register transfers; however, we frequently 

encounter register transfers with mathematical operations. An example is 

(opc=1): R4← R3 + R2; 

These mathematical operations may be achieved by introducing appropriate 

combinational logic; the above operation can be implemented in hardware by including a  

4-bit adder with the register files connected through the bus. There are two more registers 

in this configuration, one for holding one of the operands, and the other for holding the 

result before it is transferred to the destination register. This is shown in the figure below.  
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We now take a look at 

the steps taken for the 

(conditional, 

mathematical) transfer 

(opc=1): R4← R3 + R2. 

First of all, if the 

condition opc = 1 is met, 

the contents of the first 

operand register, R3, are 
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transferred to the temporary register A through the bus. This is done by activating R3out. 

It lets the contents of the register R3 to be loaded on the bus. At the same time, applying 

a logical high input to LA enables the load for the register A. This lets the binary number 

on the bus (the contents of register R3) to be loaded into the register A. The next step is 

to enable R2out to load the contents of the register R2 onto the bus. As can be observed 

from the figure, the output of the register A is one of the inputs to the 4-bit adder; the 

other input to the adder is the bus itself. Therefore, as the contents of register R2 are 

loaded onto the bus, both the operands are available to the adder. The output can then be 

stored to the register RC by enabling its write. So a high input is applied to LC to store 

the result in register RC.  

The third and final step is to store (transfer) the resultant number in the destination 

register R4. This is done by enabling Cout, which writes the number onto the bus, and 

then enabling the read of the register R4 by activating the control signal to LR4. These 

steps are summarized in the given table. 

 

The barrel shifter 

Shift operations are frequently used operations, as shifts can be used for the 

implementation of multiplication and division etc. A bi-directional shift register with a 

parallel load capability can be used to perform shift operations. However, the delays in 

such structures are  dependent on the number of shifts that are to be performed, e.g., a 9 

bit shift requires nine clock periods, as one shift is performed per clock cycle. This is not 

an optimal solution. The barrel shifter is an alternative, with any number of shifts 

accomplished during a single clock period. Barrel shifters are constructed by using 

multiplexers. An n-bit barrel shifter is a combinational circuit implemented using n 

multiplexers. The barrel provides a shifted copy of the input data at its output. Control 

inputs are provided to specify the number of times the input data is to be shifted. The 

shift process can be a simple one with 0s used as fillers, or it can be a rotation of the input 

data. The corresponding figure shows a barrel shifter that shifts right the input data; the 

number of shifts depends on the bit pattern applied on the control inputs S0, S1.  

 The function table for the barrel shifter is given. We see from the table that in order to 

apply single shift to the input number, the control signal is 01 on (S1, S0), which is the 

binary equivalent of the decimal number 1. Similarly, to apply 2 shifts, control signal 10 
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 (on S1, S0) is applied; 10 is the binary equivalent of the decimal number 2. A control 

input of 11 shifts the number 3 places to 

the right. 

Now we take a look at an example of 

the shift operation being implemented 

through the use of the barrel shifter: 

R4← ror R3 (2 times); 

The shift functionality can be 

incorporated into the register file circuit 

with the bus architecture we have been 

building, by introducing the barrel 

shifter, as shown in the given figure. 

To perform the operation,  

R4← ror R3 (2 times),  

the first step is to activate R3out, nb1 

and LC. Activating R3out will load the contents of the register R3 onto the bus. Since the 

bus is directly connected to the input of the barrel shifter, this number is applied to the 

input side. nb1 and nb0 are the barrel shifter‟s control lines for specifying the number of 

shifts to be applied. Applying a high input to nb1 and a low input to nb0 will shift the 

number two places to the right. Activating LC will load the shifted output of the barrel 

shifter into the register C. 
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The second step is to transfer the 

contents of the register C to the 

register R4. This is done by activating 

the control Cout, which will load the 

contents of register C onto the data 

bus, and by activating the control LR4, 

which will let the contents of the bus 

be written to the register R4. This will 

complete the conditional shift-and-

store operation. These steps are 

summarized in the table shown below.  
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Lecture No. 7 

Design Process forISA of FALCON-A 
Reading Material 

        Hnadouts                                                                                                    Slides  

 

Summary 
8) Outline of the thinking process for ISA Design 

9) Introduction to the ISA of FALCON-A 

Instruction Set Architecture (ISA) Design: Outline of the thinking process 

In this module we will learn to appreciate, understand and apply the approach adopted in 

designing an instruction set architecture. We do this by designing an ISA for a new 

processor. We have named our processor FALCON-A, which is an acronym for First 

Architecture for Learning Computer Organization and Networks (version A). The term 

Organization is intended to include Architecture and Design in this acronym.  

Elements of the ISA 

Before we go onto designing the instruction set architecture for our processor FALCON-

A, we need to take a closer look at the defining components of an ISA. The following 

three key components define any instruction set architecture.  

1. The operations the processor can execute 

2. Data access mode for use as operands in the operations defined 

3. Representation of the operations in memory 

We take a look at all three of the components in more detail, and wherever appropriate, 

apply these steps to the design of our sample processor, the FALCON-A. This will help 

us better understand the approach to be adopted for the ISA design of a processor. A 

more detailed introduction to the FALCON-A will be presented later. 

The operations the processor can execute 

All processors need to support at least three categories (or functional groups) of 

instructions 

– Arithmetic, Logic, Shift 

– Data Transfer 

– Control 

ISA Design Steps – Step 1 

We need to think of all the instructions of each type that ought to be supported by our 

processor, the FALCON-A. The following are the instructions that we will include in the 

ISA for our processor.  
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Arithmetic: 

 add, addi (and with an immediate operand), subtract, subtract-immediate, 

multiply, divide 

Logic: 

 and, and-immediate, or, or-immediate, not 

Shift: 

 shift left, shift right, arithmetic shift right 

Data Transfer: 

 Data transfer between registers, moving constants to registers, load operands from 

memory to registers, store from registers to memory and the movement of data between 

registers and input/output devices 

Control: 

 Jump instructions with various conditions, call and return from subroutines, 

instructions for handling interrupts 

Miscellaneous instructions: 
 Instructions to clear all registers, the capability to stop the processor, ability to 

“do nothing”, etc. 

ISA Design Steps – Step 2 

Once we have decided on the instructions that we want to add support for in our 

processor, the second step of the ISA design process is to select suitable mnemonics for 

these instructions. The following mnemonics have been selected to represent these 

operations. 

Arithmetic: 
add, addi, sub ,subi ,mul ,div 

Logic: 

and, andi, or, ori, not 

Shift: 

shiftl, shiftr, asr 

Data Transfer: 

load, store, in, out, mov, movi 

Control: 

jpl, jmi, jnz, jz, jump, call, ret, int.iret 

Miscellaneous instructions: 
nop, reset, halt 

ISA Design Steps – Step 3 

The next step of the ISA design is to decide upon the number of bits to be reserved for 

the op-code part of the instructions. Since we have 32 instructions in the instruction set, 5 

bits will suffice (as 2
5
 =32) to encode these op-codes.  

ISA Design Steps – Step 4 

The fourth step is to assign op-codes to these instructions. The assigned op-codes are 

shown below.  

Arithmetic: 
add (0), addi (1), sub (2), subi (3), mul (4),div (5) 

Logic: 
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and (8), andi (9), or (10), ori (11), not (14) 

 

Shift: 

shiftl (12), shiftr (13), asr (15) 

Data Transfer: 

load (29), store (28), in (24), out (25), mov (6), movi (7) 

Control: 

jpl (16), jmi (17), jnz (18), jz (19), jump (20), call (22), ret (23), int (26), iret (27) 

 
Miscellaneous instructions: 
nop (21), reset (30), halt (31) 

Now we list these instructions with their op-codes in the binary form, as they would 

appear in the machine instructions of the FALCON-A. 

Data access mode for operations 

As mentioned earlier, the instruction set architecture of a processor defines a number of 

things besides the instructions implemented; the resources each instruction can access, 

the number of registers available to the processor, the number of registers each 

instruction can access, the instructions that are allowed to access memory, any special 

registers, constants and any alternatives to the general-purpose registers. With this in 

mind, we go on to the next steps of our ISA design. 

ISA Design Steps – Step 5 

We now need to select the number and types of operands for various instructions that we 

have selected for the FALCON-A ISA.  

ALU instructions may have 2 to 3 registers 

as operands. In case of 2 operands, a 

constant (an immediate operand) may be 

included in the instruction.  

For the load/store type instructions, we 

require a register to hold the data that is to 

be loaded from the memory, or stored back 

to the memory. Another register is required 

to hold the base address for the memory 

access. In addition to these two registers, a 
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field is required in the instruction to specify the constant that is the displacement to the 

base address.  

In jump instructions; we require a field for specifying the register that holds the value that 

is to be compared as the condition for the branch, as well as a destination address, which 

is specified as a constant.  

Once we have decided on the number and types of operands that will be required in each 

of the instruction types, we need to address the issue of assigning specific bit-fields in the 

instruction for each of these operands. The number of bits required to represent each of 

these operands will eventually determine the instruction word size. In our example 

processor, the FALCON-A, we reserve eight general-purpose registers. To encode a 

register in the instructions, 3 bits are required (as 2
3
 =8). The registers are encoded in the 

binary as shown in the given table. 

Therefore, the instructions that we will add support for FALCON-A processor will have 

the given general format. The instructions 

in the FALCON-A processor are going to 

be variations of this format, with four 

different formats in all. The exact format is dependent on the actual number of operands 

in a particular instruction.  

ISA Design Steps – Step 6 

The next step towards completely defining the instruction set architecture of our 

processor is the design of memory and its organization. The number of the memory cells 

that we may have in the organization depends on the size of the Program Counter register 

(PC), and the size of the address bus. This is because the size of the program counter and 

the size of the address bus put a limitation on the number of memory cells that can be 

referred to for loading an instruction for execution. Additionally, the size of the data bus 

puts a limitation on the size of the memory word that can be referred to in a single clock 

cycle.  

ISA Design Steps – Step 7 

Now we need to specify which instructions will be allowed to access the memory. Since 

the FALCON-A is intended to be a RISC-like machine, only the load/ store instructions 

will be allowed to access the memory.  

ISA Design Steps – Step 8 

Next we need to select the memory-

addressing modes. The given table 

lists the types of addressing modes 

that will be supported for the 

load/store instructions. 

FALCON-A: Introduction 

FALCON stands for First Architecture for Learning Computer Organization and 

Networks. It is a „RISC-like‟ general-purpose processor that will be used as a teaching 

aid for this course. Although the FALCON-A is a simple machine, it is powerful enough 

to explain a variety of fundamental concepts in the field of Computer Architecture .  

Programmer‟s view of the FALCON-A 
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FALCON-A, an 

example of a GPR 

(General Purpose 

Register) computer, 

is the first version 

of the FALCON 

processor. The 

programmer‟s view 

of the FALCON-A 

is given in the 

figure shown. As it 

is clear from the 

figure, the CPU 

contains a register 

file of 8 registers, named R0 through R7. Each of these registers is 16 bits in length. 

Aside from these registers, there are two special-purpose registers, the Program Counter 

(PC), and the Instruction Register (IR). The main memory is organized as 2
16

 x 8 bits, i.e. 

2
16

 cells of 1 byte each. The memory word size is 2 bytes (or 16 bits). The input/output 

space is 256 bytes (8 bit I/O ports). The storage in these registers and memory is in the 

big-endian format. 
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Lecture No. 8 

ISA of the FALCON-A 
Reading Material 
          Handouts                                                                                                Slides         

 

Summary 

 Introduction to the ISA of the FALCON-A 

 Examples for the FALCON-A 

 
Introduction to the ISA of the FALCON-A 

 
We take a look at the notation that we are going to employ when studying the FALCON-

A. We will refer to the contents of a register by enclosing in square brackets the name of 

the register, for instance, R [3] refers to the contents of the register 3. Memory contents 

are to be referred to in a similar fashion; for instance, M [8] refers to the contents of 

memory at location 8 (or the 8
th

 

memory cell).  

Since memory is organized into cells 

of 1 byte, whereas the memory word 

size is 2 bytes, two adjacent memory 

cells together make up a memory 

word. So, memory word at the 

memory address 8 would be defined 

as 1 byte at address 8 and 1 byte at 

address 9.  To refer to 16-bit memory 

words, we make use of a special 

notation, the concatenation of two memory locations. Therefore, to refer to the 16-bit 

memory word at location 8, we would write M[8]©M[9]. As we employ the big-endian 

format,  

M [8]<15…0>:=M[8]©M[9] 

So in our notation © is used to represent concatenation.  

Little endian puts the smallest numbered byte at the least-significant position in a word, 

whereas in big endian, we place the largest numbered byte at the most significant 

position. Note that in our case, we use the big-endian convention of ordering bytes. 

However, within each byte itself, the ordering of the bits is little endian.  

FALCON-A  Features 

The FALCON-A processor has fixed-length instructions, each 16 bits (2 bytes) long. 

Addressing modes supported are limited, and memory is accessed through the load/store 
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instructions only.  

 

 

 

 

FALCON-A Instruction Formats 

Three categories of instructions are going to be supported by the FALCON-A processor; 

arithmetic, control, and data transfer instructions. Arithmetic instructions enable 

mathematical computations. Control instructions help change the flow of the program as 

and when required. Data transfer operations move data between the processor and 

memory. The arithmetic category also includes the logical instructions. Four different 

types of instruction formats are used to specify these instructions. A brief overview of the 

various fields in these instructions formats follows.  

Type I instruction format is shown in 

the given figure. In it, 5 bits are 

reserved for the op-code (bits 11 

through 15). The rest of the bits are 

unused in this instruction type, which 

means they are not considered. 

Type II instruction shown in the 

given figure, has a 5-bit op-code field, 

a 3-bit register field, and an 8-bit 

constant (or immediate operand) field. 

Type III instructions contain the 5-

bit op-code field, two 3-bit register 

fields for source and destination 

registers, and an immediate operand 

field of length 5 bits. 

Type IV instructions contain the op-

code field, two 3-bit register fields, a 

constant filed on length 3 bits as well 

as two unused bits. This format is 

shown in  

the given  figure. 

Encoding of registers 

We have a register file comprising of 

eight general-purpose registers in the 

CPU. To encode these registers in the 

binary, so they can be referred to in 

various instructions, we require 

log2(8) = 3 bits. Therefore, we have 

already allocated three bits per 

register in the instructions, as seen in 

the various instruction formats. The 
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encoding of registers in the binary format is shown in the given table.  

It is important to note here that the register R0 has special usage in some cases. For 

instance, in load/ store operations, if register R0 is used as a second operand, its value is 

considered to be zero. R0 has special usage in the multiply and divide (mul & div) 

instructions as well.  

 

Instructions and instruction formats 

We return to our discussion of instruction formats in this section. We will now classify 

which instructions belong to what instruction format types.  

Type I 

Five of the instructions included in the instruction set of FALCON-A belong to type I 

instruction format. These are 

1. nop  (op-code = 21) 

This instruction is to instruct the processor to „do nothing‟, or, in other words, do 

„no operation‟. This instruction is generally useful in pipelining. We will study 

pipelining later in the course. 

2. reset  (op-code = 30) 

3. halt  (op-code=31) 

4. int  (opcode= 26) 

5. iret  (op-code= 27) 

All of these instructions take no operands, therefore, besides the 5 bits used for the op-

code, the rest of the bits are unused.  

Type II 

There are nine FALCON-A instructions that belong to this type. These are listed below. 

1. movi (op-code = 7 )   

The movi instruction loads a register with the constant (or the immediate value) 

specified as the second operand. An example is 

   movi R3, 56  R[3] ← 56 

This means that the register R3 will have the value 56 stored in it as this instruction 

is executed. 

2. in (op-code = 24)   

This instruction is to load the specified register from input device. An example 

and its interpretation in register transfer language are 

in R3, 57  R [3] ← IO [57] 

3. out (op-code = 25)   

The „out‟ instruction will move data from the register to the output device 

specified in the instruction, as the example demonstrates: 

out R7, 34  IO [34] ←  R [7] 

4. ret (op-code=23)   

This instruction is to return control from a subroutine. This is done using a 

register, where the return address is stored. As shown in the example, to return 

control, the program counter is assigned the contents of the register. 

 ret R3   PC ← R [3]  
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5. jz (op-code= 19)  

When this instruction is executed, the value of the register specified in the field ra 

is checked, and if it is equal to zero, the Program Counter is advanced by the 

jump(value) specified in the instruction.  

jz  r3, [4]   (R[3]=0): PC← PC+ 4; 

In this example, register r3‟s value is checked, and if found to be zero, PC is 

advanced by 4. 

6. jnz (op-code= 18)  This instruction is the reverse of the jz instruction, i.e., the 

jump (or the branch) is taken, if the contents of the register specified are not equal 

to zero. 

      jnz r4, [variable]  (R[4]≠0): PC← PC+ variable; 

 

7. jpl  (op-code= 16)  In this instruction, the value contained in the register specified 

in the field ra is checked, and if it is positive, the jump is taken. 

      jpl r3, [label]   (R[3]≥0): PC ← PC+ (label-PC); 

  

8. jmi (op-code= 17) In this case, PC is advanced (jump/branch is taken) if the 

register value is negative 

      jmi r7, [address]  (R[7]<0): PC← PC+ address;  

 

Note that, in all the instructions for jump, the jump can be specified by a constant, a 

variable, a label or an address (that holds the value by which the PC is to be advanced).  

A variable can be defined through the use of the „.equ‟ directive. An address (of data) can 

be specified using the directive „.db‟ or „.dw‟. A label can be specified with any 

instruction. In its usage, we follow the label by a colon „:‟ before the instruction itself. 

For example, the following is an instruction that has a label „alfa‟ attached to it 

alfa: movi r3 r4 

Labels implement relative jumps, 128 locations backwards or 127 locations forward 

(relative to the current position of program control, i.e. the value in the program counter). 

The compiler handles the interpretation of the field c2 as a constant/ variable/ label/ 

address. The machine code just contains an 8-bit constant that is added to the program 

counter at run-time.  

9. jump (op-code= 20)   

This instruction instructs the processor to advance the program counter by the 

displacement specified, unconditionally (an unconditional jump). The assembler 

allows the displacement (or the jump) to be specified in any of the following ways 

jump [ra + constant]   

 jump [ra + variable]  

 jump [ra + address]  

 jump [ra + label]  

The types of unconditional jumps that are possible are  

 Direct 

 Indirect 

 PC relative (a „near‟ jump) 
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 Register relative (a „far‟ jump) 

The c2 field may be a constant, variable, an address or a label. 

A direct jump is specified by a PC-label.  

An indirect jump is implemented by using the C2 field as a variable.  

In all of the above instructions, if the value of the register ra is zero, then the Program 

Counter is incremented (or decremented) by the sign-extended value of the constant 

specified in the instruction. This is called the PC-relative jump, or the „near‟ jump. It is 

denoted in RTL as: 

(ra=0):PC← PC+(8αC2<7>)©C2<7..0>; 

If the register ra field is non-zero, then the Program Counter is assigned the sum of the 

sign-extended constant and the value of register specified in the field ra. This is known as 

the register-relative, or the „far‟ jump. In RTL, this is denoted as:          

(ra≠0):PC← R[ra]+(8αC2<7>)©C2<7..0>; 

Note that C2 is computed by sign extending the constant, variable, address, or (label –

PC). Since we have 8 bits available for the C2 field (which can be a constant, variable, 

address or a PC-label), the range for the field is -128 to + 127. Also note that the compiler 

does not allow an instruction with a negative sign before the register name, such as „jump 

[-r2]‟. If the C2 field is being used as an address, it should always be an even value for 

the jump instruction. This is because our instruction word size is 16 bits, whereas in 

instruction memory, the instruction memory cells are of 8 bits each. Two consecutive 

cells together make an instruction.  

Type III 

There are nine instructions of the FALCON-A that belong to Type III. These are: 

1. andi  (op-code = 9)  

The andi instruction bit-wise „ands‟ the constant specified in the instruction with 

the value stored in the register specified in the second operand register and stores 

the result in the destination register. An example is:                                            

andi r4, r3, 5 

This instruction will bit-wise and the constant 5 and R[3], and assign the value 

thus obtained to the register R[4], as given . 

  R [4]   ←   R [3] & 5 

2. addi  (op-code = 1)   

This instruction is to add a constant value to a register; the result is stored in a 

destination register. An example:  

            addi  r4, r3,4 R [4]   ←   R [3] + 4 

3. subi  (op-code = 3)   

The subi instruction will subtract the specified constant from the value stored in a 

source register, and store to the destination register. An example follows. 

subi r5, r7, 9 R [5]   ←   R [7] – 9 

4. ori  (op-code= 11)   

Similar to the andi instruction, the ori instruction bit-wise „ors‟ a constant with a 

value stored in the source register, and assigns it to the destination register. The 

following instruction is an example. 

ori r4, r7, 3 R[4]   ←   R[7] ~ 3 
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5. shiftl  (op-code = 12)  

This instruction shifts the value stored in the source register (which is the second 

operand), and shifts the bits left as many times as is specified by the third 

operand, the constant value. For instance, in the instruction                               

shiftl r4, r3, 7  

The contents of the register are shifted left 7 times, and the resulting number is 

assigned to the register r4. 

6. shiftr  (op-code = 13)   

This instruction shifts to the right the value stored in a register. An example is: 

shiftr r4, r3,9  

7. asr  (op-code = 15) 

  An arithmetic shift right is an operation that shifts a signed binary number 

stored in the source register (which is specified by the second operand), to the 

right, while leaving the sign-bit unchanged. A single shift has the effect of 

dividing the number by 2. As the number is shifted as many times as is specified 

in the instruction through the constant value, the binary number of the source 

register gets divided by the constant value times 2. An example is 

asr r1, r2, 5 

This instruction, when executed, will divide the value stored in r2 by 10, and 

assign the result to the register r1. 

8. load  (op-code= 29)   

This instruction is to load a register from the memory. For instance, the 

instruction 

load r1, [r4 +15] 

will add the constant 15 to the value stored in the register r4, access the memory 

location that corresponds to the number thus resulting, and assign the memory 

contents of this location to the register r1; this is denoted in RTL by:  

  R[1]   ←   M[R[4]+15]  

9. store  (op-code= 28) 

This instruction is to store a value in the register to a particular memory location. 

In the example:                                                                                                     

store r6, [r7+13] 

The contents of the register r6  are being stored to the memory location that 

corresponds to the sum of the constant 13 and the value stored in the register r7.   

  M[R[7]+13]   ←   R[6]  

Type III Modified 

There are 3 instructions in the modified form of the Type III instructions. In the modified 

Type III instructions, the field c1 is unused. 

1. mov  (op-code = 6 )   

This instruction will move (copy) data of a source register to a destination 

register. For instance, in the following example, the contents of the register r3 are 

copied to the register r4. 

   mov r4, r3 

In RTL, this can be represented as  
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                    R[4]   ←    R[3] 

2. not  (op-code = 14 )  

This instruction inverts the contents of the source register, and assigns the value 

thus obtained to the destination register. In the following example, the contents of 

register r2 are inverted and assigned to register r4.                                                   

not r4, r2 

In RTL: 

                     R[4]   ←   !R[2] 

3. call  (op-code = 22 ) 

Procedure calls are often encountered in programming languages. To add support 

for procedure (or subroutine) calls, the instruction call is used. This instruction 

first stores the return address in a register and then assigns the Program Counter a 

new value (that specifies the address of the subroutine). Following is an example 

of the call instruction                                                                                                

call  r4, r3 

This instruction saves the current contents (the return address) of the Program 

Counter into the register r4 and assigns the new value to the PC from register r3. 

                      R[4]  ←  PC, PC ←  R[3] 

Type IV 

Six instructions belong to the instruction format Type IV. These are 

1. add  (op-code = 0 )  

This instruction adds contents of a register to those of another register, and 

assigns to the destination register. An example: 

    and r4, r3, r5 

  R[4]  ←  R[3] +R[5] 

2. sub  (op-code = 2 )  

This instruction subtracts value of a  register from another the value stored in 

another register, and assigns to the destination register. For example, 

sub  r4, r3, r5 

In RTL, this is denoted by 

 R[4]  ←  R[3] – R[5] 

3. mul  (op-code = 4 )  

The multiply instruction will store the product of two register values, and stores in 

the destination register. An example is 

        mul r5, r7, r1   

 The RTL notation for this instruction will be 

                          R[0] © R[5] ← R[7]*R[1]  
      4.   div  (op-code= 5)  

This instruction will divide the value of the register that is the second operand, by the 

number in the register specified by the third operand, and assign the result to the 

destination register.  

       div r4, r7, r2   R[4]←R[0] ©R[7]/R[2],R[0]←R[0] ©R[7]%R[2]  

      5.   and  (op-code= 8)   

This „and‟ instruction will obtain a bit-wise „and‟ of the values of two registers and 



Advanced Computer Architecture   

________________________________________________________________________ 

97 

 

assigns it to a destination register. For instance, in the following example, contents of 

register r4 and r5 are bit-wise „anded‟ and the result is assigned to the register r1. 

and r1, r4, r5 

In RTL we may write this as 

 R[1]   ←   R[4] & R[5] 

6.   or   (op-code= 10)   

       To bit-wise „or‟ the contents of two registers, this instruction is used. For instance, 

or r6, r7,r2 

In RTL this is denoted as 

 R[6] ←  R[7] ~ R[2]  

 

FALCON-A: Instruction Set Summary 

We have looked at the various types of instruction formats for the FALCON-A, as well as 

the instructions that belong to each of these instruction format types. In this section, we 

have simply listed the instructions on the basis of their functional groups; this means that  
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The instructions that perform similar class of operations have been listed together. 

 

  

Examples for FALCON-A 
In this section we take up a few sample problems related to the FALCON-A processor. 

This will enhance our understanding of the FALCON-A processor, as well as of the 

general concepts related to general processors and their instruction set architectures. The 

problems we will look at include  

1. Identification of the instruction types and operands 

2. Addressing modes and RTL description 
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3. Branch condition and status of the PC 

4. Binary encoding for instructions 

Example 1:  

Identify the types of given FALCON-A instructions and specify the values in the fields 

 

 

 

 

 

Solution 

The solution to this problem is quite straightforward. The types of these instructions, as 

well as the fields, have already been discussed in the preceding sections.  
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We can also find the machine code for these instructions. The machine code (in the 

hexadecimal representation) is given for these instructions in the given table. 

 
 

Example 2: 

Identify the addressing modes and Register Transfer Language (RTL) description  

(meaning) for the given FALCON-A instructions 

 

 
Solution 

Addressing modes relate to the way architectures specify the address of the objects they  
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access. These objects may be constants and registers, in addition to memory locations. 

 
  

 

Example 3: Specify the condition for the branch instruction and the status of the PC after 

the branch instruction executes with a true branch condition 

 

 
Solution 

We have looked at the various jump instructions in our study of the FALCON-A. Using 

that knowledge, this problem can be solved easily.  
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Example 4: Specify the binary encoding of the different fields in the given FALCON-A 

instructions. 

 
 

Solution 

We can solve this problem by referring back to our discussion of the instruction format 

types. The op-codes for each of the instructions can also be looked up from the tables. ra, 

rb and rc (where applicable) registers‟ values are obtained from the register encoding  
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table we looked at. The constants C1 and C2 are there in instruction type III and II 

respectively. The immediate constant specified in the instruction can also be simply 

converted to binary, as shown. 
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Lecture No. 9 

Description of FALCON-A and EAGLE using RTL 
 

Reading Material 
         Handouts                                                                                        Slides         

Summary 

 Use of Behavioral Register Transfer Language (RTL) to describe the FALCON-A 

 The EAGLE  

 The Modified EAGLE 

 

Use of Behavioral Register Transfer Language (RTL) to describe the FALCON-A 

 

The use of RTL (an acronym for the Register Transfer Language) to describe the 

FALCON-A is discussed in this section. FALCON-A is the sample machine we are 

building in order to enhance our understanding of processors and their architecture.  

Behavior vs. Structure 

Computer design involves various levels of abstraction. The behavioral description of a 

machine is a higher level of abstraction, as compared with the structural description. Top-

down approach is adopted in computer design. Designing a computer typically starts with 

defining the behavior of the overall system. This is then broken down into the behavior of 

the different modules. The process continues, till we are able to define, design and 

implement the structure of the individual modules. 

As mentioned earlier, we are interested in the behavioral description of our machine, the 

FALCON-A, in this section.  

Register Transfer Language 

The RTL is a formal way of expressing the behavior and structure of a computer. 

Behavioral RTL 

Behavioral Register Transfer Language is used to describe what a machine does, i.e. it is 

used to define the functionality the machine provides. Basically, the behavioral 

architecture describes the algorithms used in a machine, written as a set of process 

statements. These statements may be sequential statements or concurrent statements, 

including signal assignment statements and wait statements. 

Structural RTL 

Structural RTL is used to describe the hardware implementation of the machine. The 

structural architecture of a machine is the logic circuit implementation (components and 

their interconnections), that facilitates a certain behavior (and hence functionality) for 

that machine.  
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Using RTL to describe the static properties of the FALCON-A 
We can employ the RTL for the description of various properties of the FALCON-A that 

we have already discussed.  

Specifying Registers 

In RTL, we will refer to a register by its abbreviated, alphanumeric name, followed by 

the number of bits in the register enclosed in angle brackets „< >‟. For instance, the 

instruction register (IR), of 16 bits (numbered 0 to 15), will be referred to as, 

IR<15..0> 

Naming of the Fields in a Register 

We can name the different fields of a register using the := notation. For example, to name 

the most significant bits of the instruction register as the operation code (or simply op), 

we may write: 

op<4..0> := IR<15..11>  

Note that using this notation to name registers or register fields will not create a new copy 

of the data or the register fields; it is simply an alias for an already existing register, or 

part of a register. 

Fields in the FALCON-A Instructions 
We now use the RTL naming operator to name the various fields of the RTL instructions. 

Naming the fields appropriately helps us make the study of the behavior of a processor 

more readable.  

op<4..0>:= IR<15..11>:        operation code field 

ra<2..0> := IR<10..8>: target register field 

rb<2..0> := IR<7..5>: operand or address index 

rc<2..0> := IR<4..2>: second operand 

c1<4..0> := IR<4..0>: short displacement field 

c2<7..0> := IR<7..0>: long displacement or the immediate field 

We are already familiar with these fields, and their usage in the various instruction 

formats of the RTL.  

Describing the Processor State using RTL 
The processor state defines the contents of all the register internal to the CPU at a given 

time. Maintaining or restoring the machine or processor state is important to many 

operations, especially procedure calls and interrupts; the processor state needs to be 

restored after a procedure call or an interrupt so normal operation can continue.  

Our processor state consists of the following:  

PC<15..0>:  program counter (the PC holds the memory address of the next 

instruction) 

     IR<15..0>:  instruction register (used to hold the current instruction) 

     Run:  one bit run/halt indicator 

     Strt:  start signal 

     R [0..7]<15..0>: 8 general purpose registers, each consisting of 16 bits 
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FALCON-A in a black box  

The given figure shows what a processor appears as to a user. We see a start button that is 

basically used to start up the processor, and a run indicator that turns on when the 

processor is in the running state. There may be several other indicators as well. The start 

button as well as the run indicator can be observed on many machines. 

Using RTL to describe the dynamic properties of the FALCON-A 

We have just described some of the static properties of the FALCON-A. The RTL can 

also be employed to describe the dynamic behavior of the processor in terms of 

instruction interpretation and execution.  

Conditional expressions can be specified using the RTL. For instance, we may specify a 

conditional subtraction operation employing RTL as 

     (op=2) : R[ra] ← R[rb] - R[rc];     

This instruction means that “if” the operation code of the instruction equals 2 (00010 in 

binary), then subtract the value stored in register rc from that of register rb, and store the 

resulting value in register ra. 

Effective address calculations in RTL (performed at runtime) 

The operand or the destination address may not be specified directly in an instruction, 

and it may be required to compute the effective address at run-time. Displacement and 

relative addressing modes are instances of such situations. RTL can be used to describe 

these effective address calculations.  

Displacement address  

A displacement address is calculated, as shown: 

disp<15..0> := (R[rb]+ (11α c1<4>)© c1<4..0>); 

This means that the address is being calculated by adding the constant value specified by 
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the field c1 (which is first sign extended), to the value specified by the register rb. 

Relative address 
 

A relative address is calculated by adding the displacement to the contents of the program 

counter register (that holds the instruction to be executed next in a program flow). The 

constant is first sign-extended. In RTL this is represented as, 

rel<15..0>:=PC+(8αc2<7>)©c2<7..0>;  

Range of memory addresses 

Using the displacement or the relative addressing modes, there is a specific range of 

memory addresses that can be accessed. 

 Range of addresses when using direct addressing mode (displacement with rb=0) 

o If c1<4>=0 (positive displacement) absolute addresses range: 00000b to 

01111b (0 to +15) 

o If c1<4>=1 (negative displacement) absolute addresses range: 11111b to 

10000b (-1 to -16) 

 Address range in case of relative addressing 

o The largest positive value that can be specified using 8 bits (since we have 

only 8 bits available in c2<7..0>), is 2
7
-1, and the most negative value that 

can be represented using the same is 2
7
. Therefore, the range of addresses 

or locations that can be referred to using this addressing mode is 127 

locations forward or 128 locations backward from the Program Counter 

(PC). 

Instruction Fetch Operation (using RTL) 

We will now employ the notation that we have learnt to understand the fetch-execute 

cycle of the FALCON-A processor.  

The RTL notation for the instruction fetch process is 

instruction_Fetch := (  

 !Run&Strt : Run ← 1, 

 Run : (IR ← M[PC], PC ← PC + 2;  

 instruction_Execution) ); 

 

 

This is how the instruction-fetch phase of the fetch-execute cycle for FALCON-A can be 

represented using RTL. Recall that “:=‟ is the naming operator, “!” implies a logical 

NOT, “&” implies a logical AND, “←” represents a transfer operation, “;” is used to 

separate sequential statements, and concurrent statements are separated by “,”. We can 

observe that in the instruction_Fetch phase, if the machine is not in the running state and 

the start bit has been set, then the run bit is also set to true. Concurrently, an instruction is 

fetched from the instruction memory; the program counter (PC) holds the next instruction 

address, so it is used to refer to the memory location from where the instruction is to be 

fetched. Simultaneously, the PC is incremented by 2 so it will point to the next 

instruction. (Recall that our instruction word is 2 bytes long, and the instruction memory 

is organized into 1-byte cells). The next step is the instruction execution phase.  

Difference between “,” and “;” in RTL 
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We again highlight the difference between the “,” and “;”. Statements separated by a “,” 

take place during the same clock pulse. In other words, the order of execution of 

statements separated by “,” does not matter.  

On the other hand, statements separated by a “;” take place on successive clock pulses. In 

other words, if statements are separated by  “;” the one on the left must complete before 

the one on the right starts. However, some things written with one RTL statement can 

take several clocks to complete. 

We return to our discussion of the instruction-fetch phase. The statement 

 !Run&Strt : Run ← 1 

is executed when „Run‟ is 0, and „Strt‟ is 1, that is, Strt has been set. It is used to set the 

Run bit. No action takes place when both „Run‟ and „Strt‟ are 0.  

The following two concurrent register transfers are performed when „Run‟ is set to 1, (as 

„:‟ is a conditional operator; if the condition is met, the specified action is taken). 

 IR ← M[PC] 

 PC ← PC + 2 

Since these instructions appear concurrent, and one of the instructions is using the value 

of PC that the other instruction is updating, a question arises; which of the two values of 

the PC is used in the memory access? As a rule, all right hand sides of the register 

transfers are evaluated before the left hand side is evaluated/updated. In case of 

simultaneous register transfers (separated by a “,”), all the right hand side expressions are 

evaluated in the same clock-cycle, before they are assigned. Therefore, the old, un-

incremented value of the PC is used in the memory access, and the incremented value is 

assigned to the PC afterwards. This corresponds to “master-slave” flip-flop operation in 

logic circuits.  

This makes the PC point to the next instruction in the instruction memory. Once the 

instruction has been fetched, the instruction execution starts. We can also use i.F for 

instruction_Fetch and i.E for instruction_Execution. This will make the Fetch operation 

easy to write. 

iF := ( !Run&Strt : Run ← 1,  Run : (IR ← M[PC], PC ← PC + 2;  

iE ) ); 

Instruction Execution (Describing the Execute operation using RTL) 

Once an instruction has been fetched from the instruction memory, and the program 

counter has been incremented to point to the next instruction in the memory, instruction 

execution commences. In the instruction fetch-execute cycle we showed in the preceding 

discussion, the entire instruction execution code was aliased iE (or 

instruction_Execution), through the assignment operator “:=”. Now we look at the 

instruction execution in detail. 

iE := (  

     (op<4..0>= 1) : R[ra] ← R[rb]+ (11α c1<4>)© c1<4..0>,    

 (op<4..0>= 2) : R[ra] ← R[rb]-R[rc],  

      . . . 

 . . .       

      (op<4..0>=31) : Run ← 0,);  iF ); 
As we can see, the instruction execution can be described in RTL by using a long list of 
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concurrent, conditional operators that are inherently „disjoint‟. Being inherently 

disjointed implies that at any instance, only one of the conditions can be met; hence one 

of the statements is executed. The long list of statements is basically all of the 

instructions that are a part of the FALCON-A instruction set, and the condition for their 

execution is related to the operation code of the instruction fetched. We will take a closer 

look at the entire list in our subsequent discussion. Notice that in the instruction execute 

phase, besides the long list of concurrent, disjoint instructions, there is also the instruction 

fetch or iF sequenced at the end. This implies that once one of the instructions from the 

list is executed, the instruction fetch is called to fetch the next instruction. As shown 

before, the instruction fetch will call the instruction execute after fetching a certain 

instruction, hence the instruction fetch-execute cycle continues. 

The instruction fetch-execute cycle is shown schematically in the above given figure.  

We now see how the various instructions in the execute code of the fetch-execute cycle 

of FALCON-A, are represented using the RTL. These instructions form the instruction 

set of the FALCON-A. 

 

 
jump instructions 

Some of the instructions listed for the instruction execution phase are jump instruction, as 

shown. (Note „.  .  .‟ implies that more instructions may precede or follow, depending on 

whether it is placed before the instructions shown, or after).  

iE := ( 

  .  .  .  

       .  .  .  

If op-code is 20, the branch is taken unconditionally (the jump instruction).  

(op<4..0>=20) : (cond  PC ← R[ra]+C2(sign extended)),     

If the op-code is 16, the condition for branching is checked, and if the condition is being 

met, the branch is taken; otherwise it remains untaken, and normal program flow will 

continue. 
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(op<4..0>= 16) : cond : (PC ← PC+C2 (sign extended )) 

.  .  .  

.  .  . 

Arithmetic and Logical Instructions 

Several instructions provide arithmetic and logical operations functionality. Amongst the 

list of concurrent instructions of the iE phase, the instructions belonging to this category 

are highlighted: 

iE := ( 

  .  .  .  

       .  .  .  
If op-code is 0, the instruction is „add‟. The values in register rb and rc are added and the 

result is stored in register rc 

(op<4..0>=0) : R[ra] ← R[rb] + R[rc], 
Similarly, if op-code is 1, the instruction is addi; the immediate constant specified by the 

constant field C1 is sign extended and added to the value in register rb. The result is 

stored in the register ra.   

(op<4..0>=1) : R[ra] ←R[rb] + (11α C1<4>)© C1<4..0>, 
For op-code 2, value stored in register rc is subtracted from the value stored in register rb, 

and the result is stored in register ra. 

(op<4..0>=2) : R[ra] ← R[rb] - R[rc], 

If op-code is 3, the immediate constant C1 is sign-extended, and subtracted from the 

value stored in rb. Result is stored in ra.   

(op<4..0>=3) : R[ra] ← R[rb]- (11α C1<4>)© C1<4..0>, 

For op-code 4, values of rb and rc register are multiplied and result is stored in the 

destination register. 

(op<4..0>=4) : R[ra] ← R[rb] * R[rc], 

If the op-code is 5, contents of register rb are divided by the value stored in rc, result is 

concatenated with 0s, and stored in ra. The remainder is stored in R0. 

 (op<4..0>=5) : R[ra] ← R[0] ©R[rb]/R[rc],  

                         R[0] ← R[0] ©R[rb]%R[rc], 
If op-code equals 8, bit-wise logical AND of rb and rc register contents is assigned to ra. 

(op<4..0>=8) : R[ra] ← R[rb] & R[rc], 
If op-code equals 8, bit-wise logical OR of rb and rc register contents is assigned to ra. 

(op<4..0>=10) : R[ra] ← R[rb] ~ R[c], 

 

For op-code 14, the contents of register specified by field rc are inverted (logical NOT is 

taken), and the resulting value is stored in register ra. 

(op<4..0>=14) : R[ra] ← ! R[rc], 

            .  .  .  

      .  .  . 

Shift Instructions 
The shift instructions are also a part of the instruction set for FALCON-A, and these are 

listed in the instruction execute phase in the RTL as shown.  

iE := ( 
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  .  .  .  

       .  .  .  
If the op-code is 12, the contents of the register rb are shifted right N bits. N is the 

number specified in the constant field. The space that has been created due to the shift out 

of bits is filled with 0s through concatenation. In RTL, this is shown as:   

(op<4..0>=12) : R[ra]<15..0> ← R [rb]<(15-N)..0>©(Nα0), 
If op-code is 13, rb value is shifted left, and 0s are inserted in place of shifted out 

contents at the right side of the value. The result is stored in ra. 

(op<4..0>=13) : R[ra]<15..0> ← (Nα0)©R [rb]<(15)..N>, 

For op-code 15, arithmetic shift right operation is carried out on the value stored in rb. 

The arithmetic shift right shifts a signed binary number stored in the source register to the 

right, while leaving the sign-bit unchanged. Note that α means replication, and © means 

concatenation. 

(op<4..0>=15) : R[ra]<15..0> ← Nα(R [rb]<15>)© (R [rb]<15..N>),   

.  .  .  

.  .  . 

Data transfer instructions 

Several of the instructions belong to the data transfer category.  

iE := ( 

  .  .  .  

       .  .  .  

Op-code 29 specifies the load instruction, i.e. a memory location is referenced and the 

value stored in the memory location is copied to the destination register. The effective 

address of the memory location to be referenced is calculated by sign extending the 

immediate field, and adding it to the value specified by register rb. 

(op<4..0>=29) : R[ra]← M[R[rb]+ (11α C1<4>)© C1<4..0>], 

A value is stored back to memory from a register using the op-code 28. The effective 

address in memory where the value is to be stored is calculated in a similar fashion as the 

load instruction. 

(op<4..0>=28) : M[R[rb]+ (11α C1<4>)© C1<4..0>] ← R [ra], 

The move instruction has the op-code 6. The contents of one register are copied to 

another register through this instruction. 

(op<4..0>=6) : R[ra] ← R[rb], 

To store an immediate value (specified by the field C2 of the instruction) in a register, the 

op-code 7 is employed. The constant is first sign-extended. 

(op<4..0>=7) :  R[ra] ← (8αC2<7>)©C2<7..0>, 

 

If the op-code is 24, an input is obtained from a certain input device, and the input word 

is stored into register ra. The input device is selected by specifying its address through the 

constant C2. 

(op<4..0>=24) : R[ra] ← IO[C2],  

Unconditional branch (jump)If the op-code is 25, an output (the register ra value) is sent 

to an output device (where the address of the output device is specified by the constant 

C2).  
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(op<4..0>=25) : IO[C2] ← R[ra], 

            .  .  .  

      .  .  . 

Miscellaneous instructions 

Some more instruction included in the FALCON-A are 

iE := ( 

  .  .  .  

       .  .  .  

The no-operation (nop) instruction, if the op-code is 21. This instructs the processor to do 

nothing.  

(op<4..0>= 21) :    ,  

If the op-code is 31, setting the run bit to 0 halts the processor. 

(op<4..0>= 31) : Run ← 0, Halt the processor (halt) 
At the end of this concurrent list of instructions, there is an instruction i.F (the instruction 

fetch). Hence when an instruction is executed, the next instruction is fetched, and the 

cycle continues, unless the processor is halted. 

         );      iF  ); 

 

Note: For Assembler and Simulator Consult Appendix.  

 

The EAGLE 

(Original version) 

Another processor that we are going to study is the EAGLE. We have developed two 

versions of it, an original version, and a modified version that takes care of the limitations 

in the original version. The study of multiple processors is going to help us get 

thoroughly familiar with the processor design, and the various possible designs for the 

processor. However, note that these machines are simplified versions of what a real 

machine might look like.  

Introduction 

The EAGLE is an accumulator-based machine. It is a simple processor that will help us 

in our understanding of the processor design process.  

EAGLE is characterized by the following:  

 Eight General Purpose Registers of the CPU. These are named R0, R1…R7. Each 

register is 16-bits in length. 

 Two 16-bit system registers transparent to the programmer are the Program 

Counter (PC) and the Instruction Register (IR). (Being transparent to the 

programmer implies the programmer may not directly manipulate the values to 

these registers. Their usage is the same as in any other processor) 

 Memory word size is 16 bits 

 The available memory space size is 216 bytes 

 Memory organization is 216 x 8 bits. This means that there are 216 memory cells, 

each one byte long. 
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 Memory is accessed in 16 bit words (i.e., 2 byte chunks) 

 Little-endian byte storage is employed. 

 

 

Programmer‟s View of the EAGLE 

The programmer‟s view 

of the EAGLE processor 

is shown by means of the 

given figure. 

EAGLE: Notation 

Let us take a look at the 

notation that will be 

employed for the study of 

the EAGLE.  

Enclosing the register 

name in square brackets 

refers to register 

contents; for instance, 

R[3] means contents of register R3.  

Enclosing the location address in square brackets, preceded by „M‟, lets us refer to 

memory contents. Hence M [8] means contents of memory location 8.  

As little endian storage is employed, a 

memory word at address x is defined 

as the 16 bits at address x +1 and x. 

For instance, the bits at memory 

location 9,8 define the memory word 

at location 8. So employing the special 

notation for 16-bit memory words, we 

have 

M [8]<15…0>:=M [9]©M [8] 

Where © is used to represent concatenation 

 

EAGLE Features 
The following features characterize the EAGLE. 

 Instruction length is variable. Instructions are either 8 bits or 16 long, i.e., 

instruction size is either 8-bits or 16-bits. 

 The instructions may have either one or two operands. 

 The only way to access memory is through 

load and store instructions.  

 Limited addressing modes are supported 

EAGLE: Instruction Formats 

There are five instruction formats for the EAGLE. 

These are 

Type Z Instruction Format 
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The Z format instructions are half-word (1 byte) instructions, containing just the op-code 

field of 8 bits, as shown 

Type Y Instruction Format 

The type Y instructions are also half-word. There is an op-code field of 5 bits, and a 

register operand field ra.  

Type X Instruction Format 

Type X instructions are also half-word instructions, 

with a 2-bit op-code field, and two 3-bit operand 

register fields, as shown. 

 

Type W instruction format 

The instructions in this type are 1-

word (16-bit) in length. 8 bits are 

reserved for the op-code, while the remaining 8 bits form the constant (immediate value) 

field. 

Type V instruction format 

Type V instructions are also 1-word 

instructions, containing an op-code 

field of 5 bits, an operand register field 

of 3 bits, and 8 bits for a specifying a constant. 

Encoding of the General Purpose Registers 

The encoding for the eight 

GPRs is shown in the table. 

These binary codes are to 

be used in place of the 

„place-holders‟ ra, rb in the 

actual instructions of the 

processor EAGLE. 

Listing of EAGLE 

instructions with respect to 

instruction formats 

The following is a brief introduction to the various instructions of the processor EAGLE, 

categorized with respect to the instruction formats. 

Type Z 

There are four type Z instructions,  

 halt(op-code=250) 

This instruction halts the processor 

 nop(op-code=249) 

nop, or the no-operation instruction stalls the processor for the time of execution 

of a single instruction. It is useful in pipelining.  

 init(op-code=251) 

This instruction is used to initialize all the registers, by setting them to 0 

 reset(op-code=248) 

This instruction is used to initialize the processor to a known state.In this 
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instruction the control step counter is set to zero so that the operation begins at the 

start of the instruction fetch and besides this PC is also set to a known value so 

that machine operation begins at a known instruction.       

Type Y 

Seven instructions of the processor are of type Y. These are 

 add(op-code=11) 

The type Y add instruction adds register ra‟s contents to register R0. For example, 

add r1   

In the behavioral RTL, we show this as  

R[0] ← R[1]+R[0] 

 and(op-code=19)  

This instruction obtains the logical AND of the value stored in register specified 

by field ra and the register R0, and assigns the result to R0, as shown in the 

example: 

and r5 

which is represented in RTL as 

R[0] ← R[1]&R[0] 

 div(op-code=16)  

This instruction divides the contents of register R0 by the value stored in the 

register ra, and assigns result to R0. The remainder is stored in the divisor 

register, as shown in example, 

div r6 

In RTL, this is 

R[0] ← R[0]/R[6] 

R[6] ← R[0]%R[6] 

 mul (op-code = 15) 

This instruction multiplies the values stored in register R0 and the operand 

register, and assigns the result to R0). For example, 

mul r4 

In RTL, we specify this as  

R[0]  ←   R[0]*R[4] 

 not (op-code =  23) 

The not instruction inverts the operand register‟s value and assigns it back to the 

same register, as shown in the example 

not r6 

R[6] ← ! R[6] 

 or (op-code=21) 

The or instruction obtains the bit-wise OR of the operand register‟s and R0‟s 

value, and assigns it back to R0. An example, 

or r5 

R[0]  ←  R[0] ~ R[5] 

 sub (op-code=12) 

The sub instruction subtracts the value of the operand register from R0 value, 

assigning it back to register R0. Example: 
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sub r7 

In RTL: 

R[0] ← R[0] – R[7] 

Type X 

Only one instruction falls under this type. It is the „mov‟ instruction that is useful for 

register transfers 

 mov (op-code = 0) 

The contents of one register are copied to the destination register ra. 

Example:  mov r5, r1 

RTL Notation:    R[5]← R[1] 

Type W 

Again, only one instruction belongs to this type. It is the branch instruction 

 br (op-code = 252) 

This is the unconditional branch instruction, and the branch target is specified by 

the 8-bit immediate field. The branch is taken by incrementing the PC with the 

new value. Hence it is a „near‟ jump. For instance, 

br 14 

PC ← PC+14 

Type V 

Most of the instructions of the processor EAGLE are of the format type V. These are 

 addi (op-code = 13) 

The addi instruction adds the immediate value to the register ra, by first sign-

extending the immediate value. The result is also stored in the register ra. For 

example, 

addi r4, 31   

In behavioral RTL, this is 

R[4] ← R[4]+(8αc<7>)©c<7…0>; 

 andi (op-code = 20 ) 

Logical „AND‟ of the immediate value and register ra value is obtained when this 

instruction is executed, and the result is assigned back to register ra. An example, 

andi r6, 1 

R[6] ←  R[6] &1                      

 in (op-code=29) 

This instruction is to read in a word from an IO device at the address specified by 

the immediate field, and store it in the register ra. For instance,  

in r1, 45 

In RTL this is  

R[1]  ← IO[45] 

 load (op-code=8) 

The load instruction is to load the memory word into the register ra. The 

immediate field specifies the location of the memory word to be read. For 

instance,   

load r3, 6 

R[3] ← M[6] 
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 brn (op-code = 28) 

Upon the brn instruction execution, the value stored in register ra is checked, and 

if it is negative, branch is taken by incrementing the PC by the immediate field 

value. An example is 

brn r4, 3 

In RTL, this may be written as  

if R[4]<0, PC ← PC+3  

 brnz (op-code = 25 ) 

For a brnz instruction, the value of register ra is checked, and if found non-zero, 

the PC-relative branch is taken, as shown in the example, 

brnz r6, 12 

Which, in RTL is 

if R[6]!=0, PC ← PC+12                      

 brp (op-code=27) 

brp is the „branch if positive‟. Again, ra value is checked and if found positive, the 

PC-relative near jump is taken, as shown in the example: 

brp r1, 45 

In RTL this is 

if R[1]>0, PC ← PC+45 

 brz (op-code=8) 

In this instruction, the value of register ra is checked, and if it equals zero, PC-relative 

branch is taken, as shown,  

brz r5, 8 

In RTL: 

if R[5]=0, PC ← PC+8 

 loadi (op-code=9) 

The loadi instruction loads the immediate constant into the register ra, for 

instance,  

loadi r5,54 

R[5] ← 54 

 ori (op-code=22) 

The ori instruction obtains the logical „OR‟ of the immediate value with the ra 

register value, and assigns it back to the register ra, as shown, 

ori r7, 11 

In RTL, 

R[7] ← R[7]~11 

 out (op-code=30) 

The out instruction is used to write a register word to an IO device, the address of 

which is specified by the immediate constant. For instance, 

out 32, r5  

In RTL, this is represented by 

IO[32] ← R[5] 

 shiftl (op-code=17) 

This instruction shifts left the contents of the register ra, as many times as is 
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specified through the immediate constant of the instruction. For example: 

shiftl r1, 6    

 shiftr( op-code=18) 

This instruction shifts right the contents of the register ra, as many times as is 

specified through the immediate constant of the instruction. For example: 

shiftr r2, 5 

 store (op-code=10) 

The store instruction stores the value of the ra register to a memory location 

specified by the immediate constant. An example is, 

store r4, 34 

RTL description of this instruction is 

M[34]  ←  R[4] 

 subi (op-code=14) 

The subi instruction subtracts the immediate constant from the value of register 

ra, assigning back the result to the register ra. For instance,  

subi r3, 13  

RTL description of the instruction 

R[3] ←  R[3]-13 
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(ORIGINAL) ISA for the EAGLE 

(16-bit registers, 16-bit PC and IR, 8-bit memory) 

mnemonic 

opcode 

 

operand1 

3 bits 

operand2 

3 bits 

constant 

 

  8 bits 

Format Behavioral RTL 

add 01011 ra - - Y  R [0] ← R [ra]+R [0];  

addi 01101 ra  - c V  R [ra] ← R [ra]+(8αc<7>)©c; 

and 10011 ra - - Y  R[0] ← R[ra]&R[0]; 

andi 10100 ra - c V  R [ra] ← R [ra]& (8αc<7>)©c; 

br 11111100 - - c W  PC ← PC+(8αc<7>)©c; 

brnv 11100 ra - c V  (R [ra]<0): PC ← PC+(8αc<7>)©c;  

brnz 11001 ra - c V  (R [ra]<>0): PC ← PC+(8αc<7>)©c; 

brpl 11011 ra - c V   (R [ra]>0): PC ← PC+(8αc<7>)©c; 

brzr 11010 ra - c V  (R [ra]=0): PC ← PC+(8αc<7>)©c; 

div 10000 ra - - Y  R [0] ← R [0]/R [a], R [ra] ←R [0]%R [ra], 

halt 11111010 - - - Z  RUN← 0; 

in 11101 ra - c V  R [ra] ←IO[c]; 

init 11111011 - - - Z  R [7…0] ← 0; 

load 01000 ra - c V  R [ra] ←M[c]; 

loadi 01001 ra - c V  R [ra] ←  (8αc<7>)©c; 

mov 00 ra rb - X  R [ra] ← R [rb]; 

mul 01111 ra - - Y  R [ra] © R [r0] ← R [ra]*R [0]; 

nop 11111001 - - - Z    ; 

not 10111 ra - - Y  R [ra] ←! (R [ra]); 

or 10101 ra - - Y  R [0] ← R [ra]~R [0]; 

ori 10110 ra - c V  R [ra] ← R [ra]~ (8αc<7>)©c; 

out 11110 ra - c V  IO[c] ←R [ra]; 

reset 11111000 - - - Z   TBD; 

shiftl 10001 ra - c V  R [ra] ← R [ra]<(7-n)..0>©(nα0); 

shiftr 10010 ra - c V  R [ra] ← (nα0)©R [ra]<7...n>;  

store 01010 ra - c V  M[c]← R [ra]; 

sub 01100 ra - - Y  R [0] ← R [0]-R [a];  

subi 01110 ra - c V  R [ra] ← R [ra]- (8αc<7>)©c; 

  

 

Symbol Meaning Symbol Meaning 

α Replication % Remainder after integer division 

© Concatenation & Logical AND 

: Conditional constructs (IF-THEN) ~ Logical OR 

; Sequential constructs ! Logical NOT or complement 

, Concurrent constructs ← LOAD or assignment operator 
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Limitations of the ORIGINAL EAGLE ISA 

The original 16-bit ISA of EAGLE has severe limitations, as outlined below. 

1. Use of R0 as accumulator 

In most cases, the register R0 is being used as one of the source operands as well as the 

destination operand. Thus, R0 has essentially become the accumulator. However, this 

will require some additional instructions for use with the accumulator. That should not be 

a problem since there are some unused op-codes available in the ISA. 

2. Unequal and inefficient op-code assignment 

The designer has apparently tried to extend the number of operations in the ISA by op-

code extension. Op-code 11111 combine three additional bits of the instruction for five 

instructions: unconditional branch, nop, halt, reset and init.while there is a possibility of 

including three more instructions in this scheme, notice that op-code 00 for register to 

register mov is causing a “loss” of eight “slots” in the original 5-bit op-code assignment. 

(The mov instruction is, in effect, using eight op-codes). A better way would be to assign 

a 5-bit op-code to mov and use the remaining op-codes for other instructions. 

3. Number of the operands 
Looking at the mov instruction again, it can be noted that this is the only instruction that uses 
two operands, and thus requires a separate format (Format#1) for instruction enoding. If the job 
of this instruction is given to two instructions (copy register to accumulator, and copy 
accumulator to register), the number of instruction formats can be reduced thereby, simplifying 
the assembler and the compiler needed for this ISA. 

4. Use of registers for branch conditions 
Note that one of the GPRs is being used to hold the branch condition. This would require that 
the result from the accumulator be copied to the particular GPR before the branch instruction. 
Including flags with the ALSU can eliminate this restriction 

 

The Modified EAGLE 
The modified EAGLE is an improved version of the processor EAGLE. As we have already 
discussed, there were several limitations in EAGLE, and these have been remedied in the 
modified EAGLE processor.  

Introduction 

The modified EAGLE is also an accumulator-based processor. It is a simple, yet complex 

enough to illustrate the various concepts of a processor design. 

The modified EAGLE is characterized by  

 A special purpose register, the 16-bit accumulator:  ACC 

 8 General Purpose Registers of the CPU: R0, R1, …, R7; 16-bits each 

 Two 16-bit system registers transparent to the programmer are the Program 

Counter (PC) and the Instruction Register (IR). 

 Memory word size:  16 bits 

 Memory space size: 2
16

 bytes 

 Memory organization: 2
16

 x 8 bits 

 Memory is accessed in 16 bit words (i.e., 2 byte chunks) 

 Little-endian byte storage is employed 
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Programmer‟s View of the Modified EAGLE 

The given figure is the 

programmer‟s view of the 

modified EAGLE processor. 

Notation 

The notation that is employed for 

the study of the modified EAGLE 

is the same as the original EAGLE 

processor. Recall that we know 

that: 

Enclosing the register name in 

square brackets refers to register 

contents; for instance, R [3] means 

contents of register R3.  

Enclosing the location address in square brackets, preceded by „M‟, lets us refer to 

memory contents. Hence M [8] means contents of memory location 8.  

As little endian storage is employed, a memory word at address x is defined as the 16 

bits at address x+1 and x. For instance, the bits at memory location 9,8 define the 

memory word at location 8. So employing the special notation for 16-bit memory words, 

we have 

M[8]<15…0>:=M[9]©M[8] 

Where © is used to represent 

concatenation 

The memory word access and copy to a 

register is shown in the figure. 

Features 

The following features characterize the 

modified EAGLE processor. 

 Instruction length is variable. Instructions are either 8 bits or 16 long, i.e., 

instruction size is either half a word or 1 word. 

 The instructions may have either one or two operands. 

 The only way to access 

memory is through load and 

store instructions  

 Limited addressing modes are 

supported 

Note that these properties are the same 

as the original EAGLE processor 

Instruction formats 

There are four instruction format types 

in the modified EAGLE processor as 

well. These are 
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Encoding of the General Purpose Registers 

The encoding for the eight 

GPRs is shown in the table. 

These are binary codes 

assigned to the registers 

that will be used in place of 

the ra, rb in the actual 

instructions of the modified 

processor EAGLE. 

 

ISA for the Modified EAGLE 

(16-bit registers, 16-bit ACC, PC and IR, 8-bit wide memory, 256 I/O ports) 

Mnemonic Op-code 
Operand  

3bits 
Constant 

8 bits 
Format Behavioral RTL 

Unused 00111     

addi 00100 ra  C1 X  ACC ← R[ra] +(8αC1<7>)©C1; 

subi 00101 ra C1 X  ACC ← R[ra] - (8αC1<7>)©C1; 

shiftl 01010 ra C1 X  R[ra] ← R[ra]<(15-n)..0>©(nα0); 

shiftr 01011 ra C1 X  R[ra] ← (nα0)©R[ra]<15...n>;  

andi 01100 ra C1 X  ACC ← R[ra] & (8αC1<7>)©C1; 

ori 01101 ra C1 X  ACC ← R[ra]  ~ (8αC1<7>)©C1; 

asr 01110 ra C1 X  R[ra] ← (nαR[ra}<15>)©R[ra]<15...n>;  

in 10001 ra C1 X  R[ra] ←IO[C1]; 

ldacc 10010 ra C1 X  ACC ←M[R[ra] +(8αC1<7>)©C1]; 

movir 10100 ra C1 X  R[ra] ←  (8αC1<7>)©C1; 

out 10101 ra C1 X  IO[C1] ←R[ra]; 

stacc 10111 ra C1 X  M[R[ra] +(8αC1<7>)©C1]← ACC; 

movia 10011  C1 W  ACC ←  (8αC1<7>)©C1; 

br 11000 - C1 W  PC ← PC + 8αC1<7>)©C1; 

brn 11001  C1 W  (S=1): PC ←  PC+(8αC1<7>)©C1;  

brnz 11010  C1 W  (Z=0): PC  ← PC+(8αC1<7>)©C1; 

brp 11011  C1 W  (S=0): PC ← PC+(8αC1<7>)©C1; 

brz 11100  C1 W  (Z=1): PC ← PC+(8αC1<7>)©C1; 

add 00000 ra - Y  ACC ← ACC + R[ra];      

sub 00001 ra - Y  ACC ← ACC - R[a];      

div 00010 ra - Y 
 ACC ← (R[ra] ©ACC)/R[a], 

 R[ra] ← (R[ra] ©ACC)%R[a]; 

mul 00011 ra - Y  R[ra] © ACC ← R[ra]*ACC; 

and 01000 ra - Y  ACC ← ACC & R[ra];      

or 01001 ra - Y  ACC ← ACC ~ R[ra]; 

not 01111 ra - Y  ACC ← !( R[ra]); 
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a2r  10000 ra - Y  R[ra] ← ACC 

r2a 10110 ra  Y   ACC ← R[ra] 

cla 00110   Z  ACC ← 0; 

halt 11101 - - Z  RUN← 0; 

nop 11110 - - Z    ; 

reset 11111 - - Z   TBD; 

  

 

Symbol Meaning Symbol Meaning 

α Replication % Remainder after integer division 

© Concatenation & Logical AND 

: Conditional constructs (IF-

THEN) 

~ Logical OR 

; Sequential constructs ! Logical NOT or complement 

, Concurrent constructs ← LOAD or assignment operator 
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Lecture No. 10 

The FALCON-E and ISA Comparison 
 

Reading Material 
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Summary 
3) The FALCON-E 

4) Instruction Set Architecture Comparison 

THE FALcON-E 

Introduction 

FALCON stands for First Architecture for Learning Computer Organization and 

Networks. We are already familiar with our example processor, the FALCON-A, which 

was the first version of the FALCON processor. In this section we will develop a new 

version of the processor. Like its predecessor, the FALCON-E is a General-Purpose 

Register machine that is simple, yet is able to elucidate the fundamentals of computer 

design and architecture.  
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The FALCON-E is characterized by the following  

 Eight General Purpose Registers (GPRs), named R0, R1…R7. Each registers is 4 

bytes long (32-bit registers). 

 Two special purposes registers, named BP and SP. These registers are also 32-bit 

in length. 

 Two special registers, the Program Counter (PC) and the Instruction Register 

(IR). PC points to the next instruction to be executed, and the IR holds the current 

instruction. 

 Memory word size is 32 bits (4 bytes).  

 Memory space is 2
32

 bytes 

 Memory is organized as 1-byte cells, and hence it is 2
32

 x 8 bits.  

 Memory is accessed in 32-bit words (4-byte chunks, or 4 consecutive cells) 

 Byte storage format is little endian. 

 

Programmer‟s view of the FALCON-E 

The programmer‟s view of the FALCON-E is shown in the given figure.  

FALCON-E Notation 

We take a brief look at the notation that we will employ for the FACLON-E. 

Register contents are referred to in a similar fashion as the FALCON-A, i.e. the register 

name in square brackets. So R[3] means contents of register R3. 

Memory contents (or the memory location) can be referred to in a similar way. 

Therefore, M[8] means contents of memory location 8. 

A memory word is stored in the memory in the little endian format. This means that the 

least significant byte is stored first (or the little end comes first!). For instance, a memory 

word at address 8 is defined as the 32 bits at addresses 11, 10, 9, and 8 (little-endian). So 

we can employ a special notation to refer to the memory words. Again, we will employ © 

as the concatenation operator. In our notation for the FALCON-E, the memory word 

stored at address 8 is represented as: 

M[8]<31…0>:=M[11]©M[10]©M[9]©M[8] 

The shown figure will make this easier to understand.  
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FALCON-E Features 

The following features characterize the FALCON-E 

 Fixed instruction size, which is 32 bits. So the instruction size is 1 word. 

 All ALU instructions have three operands 

 Memory access is possible only through the load and store instructions. Also, only 

a limited addressing modes are supported by the FALCON-E 

FALCON-E Instruction Formats 

Four different instruction formats are supported by the FALCON-E. These are  

Type A instructions 

The type A instructions have 5 bits reserved for the operation code (abbreviated op-code), 

and the rest of the bits are either not used or specify a displacement. 

 

 30                   27  26                                                                                        0 

  TYPE-A 

 

Type B instructions 

The type B instructions also have 5 bits (27 through 31) reserved for the op-code. There 

is a register operand field, ra, and an immediate or displacement field in addition to the 

op-code field. 

         30             27 26         24 23                                                                                           

0  

TYPE-B 

 

Type C instructions 

Type C instructions have the 5-bit op-code field, two 3-bit operand registers (rb is the 

source register, ra is the destination register), a 17-bit immediate or displacement field, as 

well as a 3-bit function field. The function field is used to differentiate between 

instructions that may have the same op-code, but different operations. 

 

         30           27  26         24  23       21  20                                                                           

0  

TYPE-C 

 

 

Type D instructions 

Type D instructions have the 5-bit op-code field, three 3-bit operand registers, 14 bits are 

unused, and a 3-bit function field. 

 
         30                27  26    24  23     21  20           18 17                                                  4 3                

0  

TYPE-C 

 

Encoding for the General Purpose Registers (GPRs) 

In the instruction formats discussed above, we used register operands ra, rb and rc. It is 

Op-Code Displacement / Not Used  

Op-Code ra Displacement /Immediate 

Op-Code ra rb Displacement /Immediate 

Op-Code ra rb rc Unused func 

0 

0 

0 

0 
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important to know that these are merely placeholders, and not the real register names. In 

an actual instruction, any one of the 8 registers of our general-purpose register file may 

be used. We need to encode our registers so we can refer to them in an instruction. Note 

that we have reserved 3 bits for each of the register field. This is because we have 8 

registers to represent, and they can be completely represented by 3 bits, since 2
3
 = 8. The 

following table shows the binary encoding of the general-purpose registers. 

 

Register Code Register Code 

0 000 R4 100 

R1 001 R5 101 

R2 010 R6 110 

R3 011 R7 111 

  Fig. Encoding of the GPRs 

 

There are two more special registers that we need to represent; the SP and the BP. We 

will use these registers in place of the operand register rb in the load and store 

instructions only, and therefore, we may encode these as 

  

Register Code 

SP 000 

BP 001 

                                             Fig. Special Registers Encoding  

 

Instructions, Instruction Formats 

The following is a brief introduction to the various instructions of the FALCON-E, 

categorized with respect to the instruction formats. 

Type A instructions 

Four instructions of the FALCON-E belong to type A. These are  

 nop (op-code = 0) 

This instruction instructs the processor to do nothing. It is generally useful in 

pipelining. We will study more on pipelining later in the course. 

 ret (op-code = 15) 

The return instruction is used to return control to the normal flow of a program 

after an interrupt or a procedure call concludes 

 iret (op-code = 17) 

The iret instruction instructs the processor to return control to the address 

specified by the immediate field of the instruction. Setting the program counter to 

the specified address returns control. 
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 near jmp (op-code = 18) 

A near jump is a PC-relative jump. The PC value is incremented (or decremented) 

by the immediate field value to take the jump. 

Type B instructions 

Five instructions belong to the type B format of instructions. These are: 

 push (op-code = 8) 

This instruction is used to push the contents of a register onto the stack. For 

instance, the instruction,  

push R4 

will push the contents of register R4 on top of the stack 

 pop (op-code =  9)   

The pop instruction is used to pop a value from the top of the stack, and the value 

is read into a register. For example, the instruction 

pop R7 

will pop the upper-most element of the stack and store the value in register R7 

 ld (op-code = 10) 

This  instruction with op-code (10) loads a memory word from the address 

specified by the immediate filed value. This word is brought into the operand 

register ra. For example, the instruction, 

ld R7, 1254h 

will load the contents of the memory at the address 1254h into the register R7. 

 

 st (op-code =  12) 

The store instruction of (opcode 12) stores a value contained in the register 

operand into the memory location specified by the immediate operand field. For 

example, in 

st R7, 1254h 

the contents of register R7 are saved to the memory location 1254h. 

Type C instructions 

There are four data transfer instructions, as well as nine ALU instructions that belong to 

type C instruction format of the FALCON-E. 

The data transfer instructions are 

 lds (op-code = 4) 

The load instruction with op-code (4)loads a register from the memory, after 

calculating the address of the memory location that is to be accessed. The 

effective address of the memory location to be read is calculated by adding the 

immediate value to the value stored by the register rb. For instance, in the 

example below, the immediate value 56 is added to the value stored by the 

register R4, and the resultant value is the address of the memory location which is 

read 

   lds R3, R4(56) 
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 In RTL, this can be shown as 

R [3]      M[R [4]+56] 

 sts (op-code = 5) 

This instruction is used to store the register contents to the memory location, by 

first calculating the effective memory address. The address calculation is similar 

to the lds instruction. An example: 

 sts R3, R4 (56)  

In RTL, this is shown as  

M[R [4]+56]      R [3] 

 in (op-code = 6)  

This instruction is to load a register from an input/output device. The effective 

address of the I/O device has to be calculated before it is accessed to read the 

word into the destination register ra, as shown in the example: 

 in R5, R4(100) 

In RTL: 

 R[5]       IO[R[4]+100] 

 out (op-code = 7) 

This instruction is used to write / store the register contents into an input/output 

device. Again, the effective address calculation has to be carried out to evaluate 

the destination I/O address before the write can take place. For example,  

out R8, R6 (36) 

RTL representation of this is  

IO[R [6]+36]   R [8] 

  Three of the ALU instructions that belong to type C format are 

 addi (op-code = 2) 

The addi instruction is to add a constant to the value of operand register rb, and 

assign the result to the destination register ra. For example, in the following 

instruction, 56 is added to the value of register R4, and result is assigned to the 

register R3. 

addi R3, R4, 56 

In RTL this can be shown as  

R[3]         R[4]+56 

Note that if the immediate constant specified was a negative number, then this 

would become a subtract operation. 

 andi (op-code = 2) 

This instruction is to calculate the logical AND of the immediate value and the rb 

register value. The result is assigned to destination register ra. For instance 

andi R3, R4, 56 

 R[3]         R[4]&56 

 Note that the logical AND is represented by the symbol „&‟ 

 ori (op-code = 2) 

This instruction calculates the logical OR of the immediate field and the value in 
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operand register rb. The result is assigned to the destination register ra. Following 

is an example: 

ori R3, R4, 56  

The RTL representation of this instruction: 

R [3]   R [4]~56 

 Note that the symbol „~‟ is used to represent logical OR. 

 

Type D Instructions 

Four of the instructions that belong to this instruction format type are the ALU 

instructions shown below. There are other instructions of this type as well, listed in the 

tables at the end of this section. 

 add (op-code = 1) 

This instruction is used to add two numbers. The numbers are stored in the registers 

specified by rb and rc. Result is stored into register ra. For instance, the instruction, 

add R3, R5, R6  

     adds the numbers in register R5, R6, storing the result in R3. In RTL, this is given by 

R [3]   R [5] + R [6] 

 sub (op-code = 1) 

This instruction is used to carry out 2‟s complement subtraction. Again, register 

addressing mode is used, as shown in the example instruction 

sub R3, R5, R6 

 RTL representation of this is 

R[3]   R[5] - R[6] 

 and (op-code = 1)  

For carrying out logical AND operation on the values stored in registers, this 

instruction is employed. For instance 

and R8, R3, R4 

In RTL, we can write this as 

R [8]   R [3] & R [4] 

 or (op-code = 1) 

For evaluating logical OR of values stored in two registers, we use this 

instruction. An example is 

or R8, R3, R4  

In RTL, this is 

R [8]   R [3] ~ R [4] 

 

Falcon-E  

Instruction Summary 

The following are the tables that list the instructions that form the instruction set of the 

FALCON-E. These instructions have been grouped with respect to the functionality they 

provide. 
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Control 

Instruction 

Mnemoic Opcode function 

Dec Bin Dec Bin 

No 

Operation 

nop 0 00000 - 

  

 Fig. Control Instructions  
 

  

Arithmetic 

Instructions 

Mnem

onic 

Opcode Function 

Dec Bin Dec Bin 

Add Add 1 00001 0 0000 

Add 

Immediate 

Addi 2 00010 0 0000 

Subtract Sub 1 00001 1 0001 

Subtract 

Immediate 

Subi 2 00010 1 0001 

Multiply Mul 1 00001 2 0010 

Multiply 

Immediate 

Muli 2 00010 2 0010 

Divide Div 1 00001 3 0011 

Divide 

Immediate 

Divi 2 00010 3 0011 

    

 Fig. Arithmetic Instructions  
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Instruction Set Architecture Comparison 

In this lecture, we compare the instruction set architectures of the various processors we 

have described/ designed up till now. These processors are: 

 EAGLE 

 FALCON-A 

 FALCON-E 

 SRC 

Classifying Instruction Set Architectures 

In the design of the ISA, the choice of some of the parameters can critically affect the 

code density (which is the number of instructions required to complete a given task), 

cycles per instruction (as some instructions may take more than one clock cycle, and the 

number of cycles per instruction varies from instruction to instruction, architecture to 

architecture), and cycle time (the total cycle time to execute a given piece of code). 

Classification of different architectures is based on the following parameters. 
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Instruction Length 

With reference to the instruction lengths in a particular ISA, there are two decisions to be 

made; whether the instruction will be fixed in length or variable, and what will be the 

instruction length or the range (in case of variable instruction lengths). 

 

Fixed versus variable 

Fixed instruction lengths are desirable when simplicity of design is a goal. It provides 

ease of implementation for assembling and pipelining. However, fixed instruction length 

can be wasteful in terms of code density. All the RISC machines use fixed instruction 

length format 

 

Instruction Length 

The required instruction length mainly depends on the number of instruction required to 

be in the instruction set of a processor (the greater the number of instructions supported, 

the more bits are required to encode the operation code), the size of the register file 

(greater the number of registers in the register file, more is the number of bits required to 

encode these in an instruction), the number of operands supported in instructions (as 

obviously, it will require more bits to encode a greater number of operands in an 

instruction), the size of immediate operand field (the greater the size, the more the range 

of values that can be specified by the immediate operand) and finally, the code density 

(which implies how many instructions can be encoded in a given number of bits). 

A summary of the instruction lengths of our processors is given in the table below. 
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Instruction types and sub-types 

The given table summarizes the number of instruction types and sub-types of the 

processors we have studied. We have already studied these instruction types, and their 

sub-types in detail in the related sections. 

 
Number of operands in the instructions 

The number of operands that may be required in an instruction depends on the type of 

operation to be performed by that instruction; some instruction may have no operands, 

other may have up to 3. But a limit on the maximum number of operands for the 

instruction set of a processor needs to be defined explicitly, as it affects the instruction  

 
 

length and code density. The maximum number of operands supported by the instruction 

set of each processor under study is given in the given table. So FALCON-A, FALCON-

E and the SRC processors may have 3, 2, 1 or no operands, depending on the instruction. 

EAGLE has a maximum number of 2 operands; it may have one operand or no operands 

in an instruction. 

Explicit operand specification in an instruction gives flexibility in storage. Implicit 

operands like an accumulator or a stack reduces the instruction size, as they need not be 

coded into the instruction. Instructions of the processor EAGLE have implicit operands, 

and we saw that the result is automatically stored in the accumulator, without the 

accumulator being specified as a destination operand in the instruction.   

Number and Size of General Purpose Registers 
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While designing a processor, another decision that has to be made is about the number of 

registers present in the register file, and the size of the registers.  

Increasing the number of registers in the register file of the CPU will decrease the 

memory traffic, which is a desirable attribute, as memory accesses take relatively much 

longer time than register access. Memory traffic decreases as the number of registers is 

increased, as variables are copied into the registers and these do not have to be accessed 

from memory over and over again. If there is a small number of registers, the values 

stored previously will have to be saved back to memory to bring in the new values; more 

registers will solve the problem of swapping in, swapping out. However, a very large 

register file is not feasible, as it will require more bits of the instruction to encode these 

registers. The size of the registers affects the range of values that can be stored in the 

registers.  

The number of registers in the register file, along with the size of the registers, for each of 

the processors under study, is in the given table. 

 
Memory specifications 

Memory design is an integral part of the processor design. We need to decide on the 

memory space that will be available to the processor, how the memory will be organized, 

memory word size, memory access bus width, and the storage format used to store words 

in memory. The memory specifications for the processor under comparison are: 



Advanced Computer Architecture   

________________________________________________________________________ 

138 

 

 
Data transfer instructions 

Data needs to be transferred between storage devices for processing. Data transfers may 

include loading, storing back or copying of the data. The different ways in which data 

transfers may take place have their related advantages and disadvantages. These are listed 

in the given table. 

 
Following are the data transfer instructions included in the instruction sets of our 

processors. 

Register to register transfers 
As we can see from the given table on the next page, in the processor EAGLE, register to 

register transfers are of two types only: register to accumulator, or accumulator to  

 

register. Accumulator is a special-purpose register.  

FALCON-A has a mov instruction, which can be used to move data of any register to any 

other register. FALCON-E has the instructions „lds‟ and „sts‟ which are used to load/store 

a register from/to memory after effective address calculation. 
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SRC does not provide any instruction for data movement between general-purpose 

registers. However, this can be accomplished indirectly, by adopting either of the 

following two approaches: 

 A register‟s contents can be loaded into another register via memory. First storing 

the content of a register to a particular memory location, and then reading the 

contents of the memory from that location into the register we want to copy the 

value to can achieve this. However, this method is very inefficient, as it requires 

memory accesses, which are inherently slow operations. 

 A better method is to use the addi instruction with the constant set to 0. 

 
Register to memory 

EAGLE has instructions to load values from memory to the special purpose register, 

names the accumulator, as well as saving values from the accumulator to memory. Other 

register to memory transfers is not possible in the EAGLE processor. FALCON-A, 

FALOCN-E and the SRC have simple load, store instructions and all register-memory 

transfers are supported. 

Memory to memory 

In any of the processors under study, memory-to-memory transfers are not supported. 

However, in other processors, these may be a possibility. 

 

Control Flow Instructions 

All processors have instructions to control the flow of programs in execution. The general 

control flow instructions available in most processors are: 

 Branches (conditional) 
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 Jumps (unconditional) 

 Calls (procedure calls) 

 Returns (procedure returns) 

Conditional Branches 

Whereas jumps, calls and call returns changes the control flow in a specific order, 

branches depend on some conditions; if the conditions are met, the branch may be taken, 

otherwise the program flow may continue linearly. The branch conditions may be 

specified by any of the following methods: 

 

 Condition codes 

 Condition register 

 Comparison and branching 

Condition codes 

The ALU may contain some special bits (also called flags), which may have been set (or 

raised) under some special circumstances. For instance, a flag may be raised if there is an 

overflow in the addition results of two register values, or if a number is negative. An 

instruction can then be ordered in the program that may change the flow depending on 

any of these flag‟s values. The EAGLE processor uses these condition codes for branch 

condition evaluation.   

Condition register 

A special register is required to act as a branch register, and any other arbitrary register 

(that is specified in the branch instruction), is compared against that register, and the 

branching decision is based on the comparison result of these two registers. None of the 

processors under our study use this mode of conditional branching. 

Compare and branch 

In this mode of conditional branching, comparison is made part of the branching 

instruction. Therefore, it is somewhat more complex than the other two modes. All the 

processors we are studying use this mode of conditional branching.  

Size of jumps  

Jumps are deviations from the linear program flow by a specified constant. All our 

processors, except the SRC, support PC-relative jumps. The displacement (or the jump) 

relative to the PC is specified by the constant field in the instruction. If the constant field 

is wider (i.e. there are more bits reserved for the constant field in the instruction), the 

jump can be of a larger magnitude. Shown table specifies the displacement size for 

various processors. 
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Addressing Modes 

All processors support a variety of addressing modes. An addressing mode is the method 

by which architectures specify the address of an object they will access. The object may 

be a constant, a register or a location in memory.  

Common addressing modes are 

 Immediate 
An immediate field may be provided in instructions, and a constant value may be 

given in this immediate field, e.g. 123 is an immediate value. 

 Register 

A register may contain the value we refer to in an instruction, for instance, 

register R4 may contain the value being referred to. 

 Direct 

By direct addressing mode, we mean the constant field may specify the location 

of the memory we want to refer to. For instance, [123] will directly refer to the 

memory location 123‟s contents. 

 Register Indirect 

A register may contain the address of memory location to which we want to refer 

to, for example, M [R3]. 

 Displacement 

In this addressing mode, the constant value specified by the immediate field is 

added to the register value, and the resultant is the index of memory location that 

is referred to, e.g. M [R3+123] 

 Relative 

Relative addressing mode implies PC-relative addressing, for example, [PC+123] 

will refer to the memory location that is 123 words farther than the memory index 

currently stored in the program counter. 

 Indexed or scaled 

The values contained in two registers are added and the resultant value is the 

index to the memory location we refer to, in the indexed addressing mode. For 

example, M [[R1]+[R2]]. In the scaled addressing mode, a register value may be 

scaled as it is added to the value of the other register to obtain the index of 

memory location to be referred to.  
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 Auto increment/ decrement 

In the auto increment mode, the value held in a register is used as the index to 

memory location that holds the value of operand. After the operand‟s value is 

retrieved, the register value is automatically increased by 1 (or by any specified 

constant). e.g. M [R4]+, or M [R4]+d. In the auto decrement mode, the register 

value is first decremented and then used as a reference to the memory location 

that referred to in the instruction, e.g. -M [R4]. 

 

As may be obvious to the reader, some of these addressing modes are quite simple, others 

are relatively complex. The complex addressing modes (such as the indexed) reduce the 

instruction count (thus improving code density), at the cost of more complex 

implementation.  

The given table lists the addressing modes supported by the processors we are studying. 

 Note that the register-addressing mode is a special case of the relative addressing mode, 

with the constant equal to 0, and only the PC can be used as a source. Also note that, in 

the shown table, relative implies PC-relative. 

 
Displacement addressing mode 

We have already talked about the displacement-addressing mode. We look at this 

addressing mode at length now.  

The displacement-addressing mode is the most common of the addressing mode used in 

general purpose processors. Some other modes such as the indexed based plus index, 

scaled and register indirect are all slightly modified forms of the displacement-addressing 

mode. The size of displacement plays a key role in efficient address calculation.  The 

following table specifies the size of the displacement field in different processors under 

study.  
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The given table lists the size of the immediate field in our processors. 

 
Instructions common to all Instruction Set Architectures 

In this section we have listed the instructions that are common to the Instruction Set 

Architectures of all the processors under our study.  

 Arithmetic Instructions 

 add, addi & sub. 

 Logic Instructions 

 and, andi, or, ori, not. 

 Shift Instructions. 

 Right shift, left shift & arithmetic right shift. 



Advanced Computer Architecture   

________________________________________________________________________ 

144 

 

 Data movement Instructions. 

 Load and store instructions. 

 Control Instructions 

 Conditional and unconditional branches, nop & reset. 

The following tables list the assembly language instruction codes of these common 

instructions for all the processors under comparison. 
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Instructions unique to each processor 

Now we take a look at the instructions that are unique to each of the processors we are 

studying.  

EAGLE 

The EAGLE processor has a minimal instruction set. Following are the instructions that 

are unique only to the EAGLE processor. Note that these instructions are unique only 

with reference to the processor set under our study; some other processors may have 

these instructions.  

 movia 

This instruction is for moving the immediate value to the accumulator (the special 

purpose register) 

 a2r 

This instruction is for moving the contents of the accumulator to a register 

 r2a 

For moving register contents to the accumulator 

 cla 

For clearing (setting to zero) the value in the accumulator 

FALCON-A 

There is only one instruction unique to the FALCON-A processor; 

 ret  

This instruction is used to return control to a calling procedure. The calling 
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procedure may save the PC value in a register ra, and when this instruction is 

called, the PC value is restored. In RTL, we write this as 

 PC  R [ra]; 

FALCON-E 

The instructions unique to the FALCON-E processor are listed: 

 push 

To push the contents of a specified general purpose register to the stack 

 pop 

To pop the value that is at the top of the stack 

 ldr 

To load a register with memory contents using displacement addressing mode 

 str 

To store a register value into memory, using displacement addressing mode 

 bl 

To branch if source operand is less than target address 

 bg 

To branch if source operand is greater than target address  

 muli 

To multiply an immediate value with a value stored in a register 

 divi 

To divide a register value by the immediate value 

 

 xor, xori 

To evaluate logical „exclusive or‟  

 ror, rori 

SRC 

Following are the instructions that are unique to the SRC processor, among of the 

processors under study 

 ldr 

To load register from memory using PC-relative address 

 lar 

To load a register with a word from memory using relative address 

 str 

To store register value to memory using relative address 

 brlnv 

This instruction is to tell the processor to „never branch‟ at that point in program. 

The instruction saves the program counter‟s contents to the register specified 

 brlpl 

This instruction instructs the processor to branch to the location specified by a 

register given in the instruction, if the condition register‟s value is positive. 

Return address is saved before branching. 

 brlmi 

This instruction instructs the processor to branch to the location specified by a 
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register given in the instruction, if the condition register‟s value is negative. 

Return address is saved before branching. 

 brlzr 

This instruction instructs the processor to branch to the location specified by a 

register given in the instruction, if the condition register‟s value equals zero. 

Return address is saved before branching. 

 brlnz 

This instruction instructs the processor to branch to the location specified by a 

register given in the instruction, if the condition register‟s value does not equal 

zero. Return address is saved before branching. 

Problem Comparison 

Given is the code for a simple C statement: 

a=(b-2)+4c  

The given table gives its implementation in all the four processors under comparison. 

Note that this table highlights the code density for each of the processors; EAGLE, which 

has relatively fewer specialized instructions, and so it takes more instructions to carry out 

this operation as compared with the rest of the processors. 
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Lecture No. 11 

CISC and RISC 
Reading Material 

Vincent P. Heuring&Harry F. Jordan                                                             Chapter 3 

Computer Systems Design and Architecture                                                   3.3, 3.4 

 

 

Summary 
1) A CISC microprocessor:The Motorola MC68000 

2) A RISC Architecture:The SPARC 

 

 

 

Material of this Lecture is included in the above-mentioned sections of Chapter 3.  
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Lecture No. 12 

CPU Design 
 

Reading Material 

Vincent P. Heuring&Harry F. Jordan                                                           Chapter 4 

Computer Systems Design and Architecture                                               4.1, 4.2, 4.3    

 

 

Summary 
5) The design process 

6) A Uni-Bus implementation for the SRC 

7) Structural RTL for the SRC instructions 

 

Central Processing Unit Design 

This module will explore the design of the central processing unit from the logic 

designer‟s view.  A unibus implementation of the SRC is discussed in detail along with 

the Data Path Design and the Control Unit Design. 

The topics covered in this module are outlined below: 

1. The Design Process 

2. Unibus Implementation of the SRC 

3. Structural RTL for the SRC 

4. Logic Design for one bus SRC 

5. The Control Unit 

6. 2-bus and 3-bus designs 

7. The machine reset 

8. The machine exceptions 

As we progress through this list of topics, we will learn how to convert the earlier 

specified behavioral RTL into a concrete structural RTL. We will also learn how to 

interconnect various programmer visible registers to get a complete data path and how to 

incorporate various control signals into it.  Finally, we will add the machine reset and 

exception capability to our processor. 

The design process 

The design process of a processor starts with the specification of the behavioral RTL for 

its instruction set. This abstract description is then converted into structural RTL which 

shows the actual implementation details. Since the processor can be divided into two 

main sub-systems, the data path and the control unit, we can split the design procedure 

into two phases. 

1. The data path design 

2. The control unit design 
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It is important that the design activity of these important components of the processor be 

carried out with the pros and cons of adopting different approaches in mind.  

As we know, the execution time is dependent on the following three factors. 

ET = IC x CPI x T  

 
During the design procedure we specify the implementation details at an advanced level. 

These details can affect the clock cycle per instruction and the clock cycle time. Hence 

following things should be kept in mind during the design phase. 

 Effect on overall performance 

 Amount of control hardware 

 Development time 

Processor Design 

Let us take a look at the steps involved in the processor design procedure.  

1. ISA Design 

The first step in designing a processor is the specification of the instruction set of 

the processor. ISA design includes decisions involving number and size of 

instructions, formats, addressing modes, memory organization and the 

programmer‟s view of the CPU i.e. the number and size of general and special 

purpose registers. 
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2. Behavioral RTL Description 

In this step, the behavior of processor in response to the specific instructions is 

described in register transfer language. This abstract description is not bound to 

any specific implementation of the processor. It presents only those static 

(registers) and dynamic aspects (operations) of the machine that are necessary to 

understand its functionality. The unit of activity here is the instruction execution 

unlike the clock cycle in actual case. The functionality of all the instructions is 

described here in special register transfer notation.  

3. Implementation of the Data Path 

The data path design involves decisions like the placement and interconnection of 

various registers, the type of flip-flops to be used and the number and kind of the 

interconnection buses. All these decisions affect the number and speed of register 

transfers during an operation. The structure of the ALU and the design of the 

memory-to-CPU interface also need to be decided at this stage. Then there are the 

control signals that form the interface between the data path and the control unit. 

These control signals move data onto buses, enable and disable flip-flops, specify 

the ALU functions and control the buses and memory operations. Hence an 

integral part of the data path design is the seamless embedding of the control 

signals into it.  

4. Structural RTL Description 

 

In accordance with the chosen data path implementation, the structural RTL for every 

instruction is described in this step. The structural RTL is formed according to the 

proposed micro-architecture which includes many hidden temporary registers 

necessary for instruction execution. Since the structural RTL shows the actual 

implementation steps, it should satisfy the time and space requirements of the CPU as 

specified by the clocking interval and the number of registers and buses in the data 

path.  

5. Control Unit Design 

The control unit design is a rather tricky process as it involves timing and 

synchronization issues besides the usual combinational logic used in the data path 

design. Additionally, there are two different approaches to the control unit design; it 

can be either hard-wired or micro-programmed. However, the task can be made 

simpler by dividing the design procedure into smaller steps as follows. 

a. Analyze the structural RTL and prepare a list of control signals to be 

activated during the execution of each RTL statement. 

b. Develop logic circuits necessary to generate the control signals 

c. Tie everything together to complete the design of the control unit. 

Processor Design 

 A Uni-bus Data Path Implementation for the SRC 

In this section, we will discuss the uni-bus implementation of the data path for the SRC. 

But before we go onto the design phase, we will discuss what a data path is. After the 

discussion of the data path design, we will discuss the timing step generation, which 

makes possible the synchronization of the data path functions.  
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The Data Path 

The data path is the arithmetic portion of the Von Neumann architecture. It consists of 

registers, internal buses, arithmetic units and shifters. We have already discussed the 

decisions involved in designing the data path. Now we shall have an overview of the 1-

Bus SRC data path design. As the name suggests, this implementation employs a single 

bus for data flow. After that we develop each of its blocks in greater detail and present 

the gate level implementation. 

 
Overview of the Unibus SRC Data Path 

The 1-bus implementation of the SRC data path is shown in the figure given. 

The control signals are omitted here for the sake of simplicity. Following units are 

present in the SRC data path. 

1. The Register File 

The general-purpose register file includes 32 registers R0 to R31 each 32 bit wide. 

These registers communicate with other components via the internal processor 

bus. 

 

2. MAR 
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The Memory Address Register takes input from the ALSU as the address of the 

memory location to be accessed and transfers the memory contents on that 

location onto the memory sub-system.  

3. MBR 

The Memory Buffer Register has a bi-directional connection with both the 

memory sub-system and the registers and ALSU. It holds the data during its 

transmission to and from memory. 

 

4. PC 

The Program Counter holds the address of the next instruction to be executed. Its 

value is incremented after loading of each instruction. The value in PC can also be 

changed based on a branch decision in ALSU. Therefore, it has a bi-directional 

connection with the internal processor bus. 

5. IR 

The Instruction Register holds the instruction that is being executed. The 

instruction fields are extracted from the IR and transferred to the appropriate 

registers according to the external circuitry (not shown in this diagram).  

6. Registers A and C 

The registers A and C are required to hold an operand or result value while the 

bus is busy transmitting some other value. Both these registers are programmer 

invisible. 

7. ALSU 

There is a 32-bit Arithmetic Logic Shift Unit, as shown in the diagram. It takes 

input from memory or registers via the bus, computes the result according to the 

control signals applied to it, and places it in the register C, from where it is finally 

transferred to its destination. 

Timing Step Generator 

To ensure the correct and 

controlled execution of 

instructions in a program, and all 

the related operations, a timing 

device is required. This is to 

ensure that the operations of 

essentially different instructions do 

not mix up in time. There exists a 

„timing step generator‟ that 

provides mutually exclusive and 

sequential timing intervals. This is 

analogous to the clock cycles in the actual processor. A possible implementation of the 

timing step generator is shown in the figure. 

Each mutually exclusive step is carried out in one timing interval. The timing intervals 

can be named T0, T1…T7. The given figure is helpful in understanding the „mutual 

exclusiveness in time‟ of these timing intervals. 
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Processor design 

Structural RTL descriptions of selected SRC instructions 

Structural RTL for the SRC 

The structural RTL describes how a particular operation is performed using a specific 

hardware implementation. In order to present the structural RTL we assume that there 

exists a “timing step generator”, which provides mutually exclusive and sequential timing 

intervals, analogous to the clock cycles in actual processor. 

 

 

 

 

Structural RTL for Instruction Fetch 

The instruction fetch procedure takes three time steps as shown in the table. During the 

first time step, T0, address of the 

instruction is moved to the Memory 

Address Register (MAR) and value of 

PC is incremented. In T1 the 

instruction is brought from the 

memory into the Memory Buffer 

Register(MBR), and the incremented 

PC is updated. In the third and final time-step of the instruction fetch phase, the 

instruction from the memory buffer register is written into the IR for execution.What 

follows the instruction fetch phase, is the instruction execution phase. The number of 

timing steps taken by the execution phase generally depends on the type and function of 

instruction. The more complex the instruction and its implementation, the more timing 

steps it will require to complete execution. In the following discussion, we will take a 

look at various types of instructions, related timing steps requirements and data path 

implementations of these in terms of the structural RTL. 
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Structural RTL for Arithmetic/Logic Instructions 

The arithmetic/logic instructions come in two formats, one with the immediate operand 

and the other with register operand. Examples of both are shown in the following tables. 

Register-to-Register sub 

Register-to-register subtract (or sub) will take three timing steps to complete execution, 

as shown in the table. Here we have assumed 

that the instruction given is: 

                        sub ra, rb, rc 
Here we assume that the instruction fetch 

process has taken up the first three timing 

steps. In step T3 the internal register A 

receives the contents of the register rb. In the 

next timing step, the value of register rc is 

subtracted (since the op-code is sub) from A. In the final step, this result is transferred 

into the destination register ra. This concludes the instruction fetch-execute cycle and at 

the end of it, the timing step generator is initialized to T0. 

The given figure refreshes our knowledge of the data path. Notice that we can visualize 

how the steps that we have just outlined can be carried out, if appropriate control signals 

are applied at the appropriate timing. 

 
As will be obvious, control signals need to be applied to the ALSU, based on the 

decoding of the op-code field of an instruction. The given table lists these control signals: 
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Note that we have used uppercase alphabets for naming the ALSU functions. This is to 

differentiate these control signals from the actual operation-code mnemonics we have 

been using for the instructions. 

The SHL, SHR, SHC and the SHRA functions are listed assuming that a barrel shifter is 

available to the processor with signals to differentiate between the various types of shifts 

that are to be performed.  

 

 

 

Structural RTL for 

Register-to-Register 

add 

 

To enhance our 

understanding of the 

instruction execution 

phase implementation, 

we will now take a 

look at some more 

instructions of the 

SRC. The structural RTL for a simple add instruction add ra, rb, rc is given in table. 

The first three instruction fetch steps are common to all instructions. Execution of 

instruction starts from step T3 where the first operand is moved to register A. The second 

step involves computation of the sum and result is transferred to the destination in step 
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T5. Hence the complete execution of the add instruction takes 6 time steps. Other 

arithmetic/logic instructions having the similar structural RTL are “sub”, “and” and 

“or”. The only difference is in the T4 step where the sign changes to (-), (^), or (~) 

according to the opcode. 

Structural RTL for the not instruction 
The first three steps T0 to T2 are used up in fetching the instruction as usual. In step T3, 

the value of the operand specified by the register is brought into the ALSU, which will 

use the control function NOT, negate the value (i.e. invert it), and the result moves to the 

register C. In the time step R4, this result is assigned to the destination register through 

the internal bus. Note that we need control signals to coordinate all of this; a control 

signal to allow reading of the instruction-specified source register in T3, control signal 

for the selection of appropriate function to be carried out at the ALSU, and control signal 

to allow only the instruction-specified destination register to read the result value from 

the data bus. 

The table shown outlines these steps for the instruction: not  ra, rb 

Structural RTL for the addi instruction 
Again, the first three time steps are for the instruction fetch. Next, the first operand is 

brought into ALSU in step T3 through register A. The step T4 is of interest here as the 
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second operand c2 is extracted from the instruction in IR register, sign extended to 32 

bits, added to the first operand and written into the result register C. The execution of 

instruction completes in step T5 when the result is written into the destination register. 

The sign extension is assumed to be carried out in the ALSU as no separate extension 

unit is provided.  

Sign extension for 17-bit c2 is the same as:(15αIR<16> ©IR<16..0>) 

Sign extension for 22-bit c1 is the same as:(10αIR<21> ©IR<21..0>) 

The given table outlines the time steps for the instruction addi: 

Other instructions that have the same structural RTL are subi, andi and ori. 

RTL for the load (ld) and store (st) instructions 

The syntax of load instructions is: 

ld ra, c2(rb) 

And the syntax of store instructions is: 

st ra, c2(rb) 

The given  table outlines the time steps in fetching and executing a load and a store 

instruction. Note that the first 6 time steps (T0 to T5) for both the instructions are the 

same. 

The first three steps are those of instruction fetch. Next, the register A gets the value of 

register rb, in case it is not zero. In time step T4, the constant is sign-extended, and added 

to the value of register A using the ALSU. The result is assigned to register C. Note that 

in the RTL outlined above, we are sign extending a field of the Instruction Register(32-

bit). It is so because this field is the constant field in the instruction, and the Instruction 

Register holds the instruction in execution. In step T5, the value in C is transferred to the 

Memory Address Register (MAR). This completes the effective address calculation of the 

memory location to be accessed for the load/ store operation.If it is a load instruction in 

time step T6, the corresponding memory location is accessed and result is stored in 

Memory Buffer Register (MBR). In step T7, the result is transferred to the destination 

register ra using the data bus.If the instruction is to store the value of a register, the time 
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step T6 is used to store the value of the register to the MBR. In the next and final step, the 

value stored in MBR is stored in the memory location indexed by the MAR.We can look 

at the data-path figure and visualize how all these steps can take place by applying 

appropriate control signals. Note that, if more time steps are required, then a counter with 

more bits and a larger decoder can be used, e.g., a 4-bit counter along with a 4-to-16 

decoder can produce up to 16 time steps.  
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Lecture No. 13 

Structural RTLDescription of the FALCON-A 
Reading Material 
               

Vincent P. Heuring & Harry F. Jordan                                                             Chapter 4 

Computer Systems Design and Architecture                                                4.2.2, slides    

                                                                                            

Summary 

 

 Structural RTL Description of the SRC (continued…)  

 Structural RTL Description of the FALCON-A 

 

This lecture is a continuation of the previous lecture. 

 

Structural RTL for branch instructions 

Let us take a look at the structural RTL for branch instructions. We know that there are 

several variations of the branch instructions including unconditional branch and different 

conditional branches. We look at the RTL for „branch if zero‟ (brzr) and „branch and link 

if zero‟ brlzr‟ conditional branches.  

The syntax for the branch if zero (brzr) is: 

         brzr rb,  rc 

As you may recall, this instruction 

instructs the processor to branch to the 

instruction at the address held in 

register rb, if the value stored in 

register rc is zero. Time steps for this 

instruction are outlined in the table. 

The first three steps are of the 

instruction fetch phase. Next, the 

value of register rc is checked and 

depending on the result, the condition flag CON is set. In time step T4, the program 

counter is set to the register rb value, depending on the CON bit (the condition flag). 

The syntax for the branch and link if zero (brlzr) is: 

          brlzr ra, rb,  rc 

This instruction is the same as the 

instruction brzr but additionally the 

return address is saved (linking 

procedure). The time steps for this 

instruction are shown in the table. 

Notice that the steps for this 

instruction are the same as the 



Advanced Computer Architecture   

________________________________________________________________________ 

163 

 

instruction brzr with an additional step after the condition bit is set; the current value of 

the program counter is saved to register ra.  

 

Structural RTL for shift instructions 

Shift instructions are rather 

complicated in the sense that they 

require extra hardware to hold and 

decrement the count. For an ALSU 

that can perform only single bit shifts, 

the data must be repeatedly cycled 

through the ALSU and the count 

decremented until it reaches zero. This 

approach presents some timing 

problems, which can be overcome by 

employing multiple-bit shifts using a 

barrel shifter.  

 The structural RTL for shr ra, rb, rc or shr ra, rb, c3 is given in the corresponding 

table shown. Here n represents a 5-bit register; IR bits 0 to 4 are copied in to it. N is the 

decimal value of the number in this register. The actual shifting is being done in step T5.   

Other instructions that will have similar tables are: shl, shc, shra 

e.g., for shra, T5 will have C← (NαR [rb] <31>) © R[rb] <31...N>; 

 

Structural RTL Description of FALCON-A Instructions 

 

Uni-bus data path implementation 
Comparing the uni-bus implementation of FALCON-A with that of SRC results in 

the following differences: 

 FALCON-A processor bus has 16 lines or is 16-bits wide while that of SRC 

is 32-bits wide.  

 All registers of FALCON-A are of 16-bits while in case of SRC all registers are 

32-bits. 

 Number of registers in FALCON-A are 8 while in SRC the number of registers is 

32. 

 Special registers i.e. Program Counter (PC) and Instruction Register (IR) are 16-

bit registers while in SRC these are 32-bits. 

 Memory Address Register (MAR) and Memory Buffer Register (MBR) are also 

of 16-bits while in SRC these are of 32-bits. 
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MAR and MBR are dual port registers. At one side they are connected to internal bus and 

at other side to external memory in order to point to a particular address for reading or 

writing data from or to 

the memory and MBR 

would get the data 

from the memory.  

ALSU functions 

needed 
ALSU of FALCON-A 

has slightly different 

functions. These 

functions are given in 

the table. 

Note that mul and div 

are two significant 

instructions in this 

instruction set. So 

whenever one of these 

instructions is 

activated, the ALSU 

unit would take the 

operand from its input 

and provide the output 
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immediately, if we neglect the propagation delays to its output. In case of FACON-A, we 

have two registers A and AH each of 16-bits. AH would contain the higher 16-bits or 

most significant 16-bits of a 32-bit operand. This means that the ALSU provides the 

facility of using 32-bit operand in certain instructions. At the output of ALSU we could 

have a 32-bit result and that can not be saved in just one register C so we need to have 

another one that is CH. CH can store the most significant 16-bits of the result. 

Why do we need to add AH and CH? 

This is because we have mul and div instructions in the instruction set of the FALCON-

A. So for that case, we can implement the div instruction in which, at the input, one of the 

operand which is dividend would be 32-bits or in case of mul instruction the output 

which is the result of multiplication of two 16-bit numbers, would be 32-bit that could be 

placed in C and CH. The data in these 2 registers will be concatenated and so would be 

the input operand in two registers AH and A. Conceptually one could consider the A and 

AH together to represent 32-bit operand. 
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Structural RTL for subtract instruction 

          sub ra, rb, rc   

In sub instruction three registers are involved. The first three steps will fetch the sub 

instruction and in T3, T4, T5 the steps for execution of the sub instruction will be 

performed. 

 

Structural RTL for addition instruction 
      add ra, rb, rc 

The table of add instruction is almost same as of sub instruction except in timing step T4 

we have + sign for addition instead of – sign as in sub instruction. Other instructions that 

belong to the same group are „and‟, „or‟ and „sub‟. 
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Structural RTL for multiplication instruction 
       mul ra, rb, rc 

This instruction is only present in this processor and not in SRC. The first three steps are 

exactly same as of other instructions and would fetch the mul instruction. In step T3 we 

will bring the contents of register R [rb] in the buffer register A at the input of ALSU. In 

step T4 we take the multiplication of A with the contents of R[rc] and put it at the output 

of the ALSU in two registers C and CH. CH would contain the higher 16-bits while 

register C would contain the lower 16-bits. Now these two registers cannot transfer the 

data in one bus cycle to the registers, since the width is 16-bits. So we need to have 2 

timing steps, in T5 we transfer the higher byte to register R[0] and in T6 the lower 16-bits 

are transferred to the placeholder R[a]. As a result of multiplication instruction we need 3 

timing steps for Instruction Fetch and 4 timing steps for Instruction Execution and 7 steps 

altogether. 

Structural RTL for division instruction 

       div ra, rb, rc 

In this instruction first three steps are the same. In step T3 the contents of register rb are 

placed in buffer register A and in step T4 we take the contents of register R[0] in to the 

register AH. We assume before using the divide instruction that we will place the higher 

16-bits of dividend to register R[0]. Now in T5 the actual division takes place in two 

concurrent operations. We have the dividend at the input of ALSU unit represented by 

concatenation of AH and A. Now as a result of division instruction, the first operation 

would take the remainder. This means divide AH concatenated with A with the contents 

given in register rc and the remainder is placed in register CH at the output of ALSU. The 

quotient is placed in C. In T6 we take C to the register R[ra] and in T7 remainder 

available in CH is taken to the default register R[0] through the bus. In divide instruction 

5 timing steps are required to execute the instruction while 3 to fetch the instruction.      

Note: Corresponding to mul and div instruction one should be careful about the 
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additional register R[0] that it should be properly loaded prior to use the instructions e.g. 

if in the divide instruction we don‟t have the appropriate data available in R[0] the result 

of divide instruction would be wrong. 

Structural RTL for not instruction 
          not ra, rb 

In this instruction first three steps will fetch the instruction. In T3 we perform the not 

operation of contents in R[rb] and transfer them in to the buffer register C. It is simply the 

one‟s complement changing of 0‟s to 1‟s and 1‟s to 0‟s. In timing step T4 we take the 

contents of register C and transfer to register R[ra] through the bus as shown in its 

corresponding table. 

Structural RTL for add immediate instruction 
         addi ra, rb, c1 

In this instruction c1 is a constant as a part of the instrucion. First three steps are for 

Instruction Fetch operation. In T3 we take the contents of register R [rb] in to the buffer 

register A. In T4 we add up the contents of A with the constant c1 after sign extension 

and bring it to C. 
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Sign extension of 5-bit c1 and 8-bit constant c2 

           Sign extension for 5-bit c1 is: (11αIR<4> ©IR<4.. 0>) 
We have immediate constant c1 in the form of lower 5-bits and bit number 4 indicates the 

sign bit. We just copy it to the left most 11 positions to make it a 16-bit number. 

                 

           Sign extension for 8-bit c2 is: (8αIR<7> ©IR<7.. 0>) 

In the same way for constant c2 we need to place the sign bit to the left most 8 position to 

make it 16-bit number. 

Structural RTL for the load and store instruction 
Tables for load and store instructions are same as SRC except a slight difference in the 

notation. So when we have square brackets [R [rb]+c1], it corresponds to the base address 

in R[rb] and an offset taken from c1. 

Structural RTL for conditional jump instructions 

        jz ra, [c2] 

 In first three steps of this table, the instruction is fetched. In T3 we set a 1-bit register 

“CON” to true if the condition is met. 
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How do we test the condition? 

This is tested by the contents given by the register ra. So condition within square brackets 

is R[ra]. This means test the data given in register ra. There are different possibilities and 

so the data could be positive, negative or zero. For this particular instruction it would be 

tested if the data were zero. If the data were zero, the “CON” would be 1. 

In T4 we just take the contents of the PC into the buffer register A. In T5 we add up the 

contents of A to the constant c2 after sign extension. This addition will give us the 

effective address to which a jump would be taken. In T6, this value is copied to the PC. 

In FALCON-A, the number of conditional jumps is more than in SRC. Some of which 

are shown below: 

 jz   (op-code= 19) jump if zero  

            jz  r3, [4]   (R[3]=0): PC← PC+ 2; 

 jnz (op-code= 18) jump if not zero 

            jnz r4, [variable]  (R[4]≠0): PC← PC+ variable; 

 jpl  (op-code= 16) jump if positive 

            jpl r3, [label]   (R[3]≥0): PC ← PC+ (label-PC); 

 jmi (op-code= 17) jump if negative 

            jmi r7, [address]  (R[7]<0): PC← PC+ address;  

The unconditional jump instruction will be explained in the next lecture. 
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Lecture No. 14 

External FALCON-A CPU 162 

 
Reading Material 
              

          Handouts                                                                                                         Slides                                                                                          

 
Summary 

 

 Structural RTL Description of the FALCON-A (continued…) 

 External FALCON-A CPU Interface 

 

This lecture is a continuation of the previous lecture. 

 

Un-conditional jump instruction 

         jump  (op-code= 20)   

In the un-conditional jump with op-code 20, the op-code is followed by a 3-bit identifier 

for register ra and then followed by an 8-bit constant c2.  

Forms allowed by the assembler to define the jump are as follows: 

 jump [ra + constant]    

            jump [ra + variable]  

 jump [ra + address]  

 jump [ra + label]    

 

For all the above instructions: 

 (ra=0):PC← PC+(8αC2<7>)©C2<7..0>,  

 (ra≠0):PC← R[ra]+(8αC2<7>)©C2<7..0>;
1
 

 

In the case of a constant, variable, an address or (label-PC) the jump ranges from –128 to 

127 because of the restriction on 8-bit constant c2. Now, for example if we have jump 

[r0+a], it means jump to a. On the other hand if we have jump [– r2] that is not allowed 

by the assembler. The target address should be even because we have each instruction 

with 2 bytes. So the types available for the un-conditional jumps are either direct, 

indirect, PC-relative or register relative. In the case of direct jump the constant c2 would 

                                                 
1
 c2 is computed by sign extending the constant,variable,address or (label-PC) 
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define the target address and in the case of indirect jump constant c2 would define the 

indirect location of memory from where we could find out the address to jump. While in 

the case of PC-relative if the contents of register ra are zero then we have near jump and 

the type of jump for this would be PC-relative. If ra is not be zero then we have a far 

jump and the contents of register ra will be added with the constant c2 after sign-

extension to determine the jump address.  

Structural RTL description for un-conditional jump instruction 

         jump [ra+c2] 

In first three steps, T0-T2, we would fetch the jump instruction, while in T3 we would 

either take the contents of PC and place them in a temporary register A if the condition 

given in jump instruction is true, that is if the ra field is zero, otherwise we would place 

the contents of register ra 

in the temporary register A. 

Comma „,‟ indicates that 

these two instructions are 

concurrent and only one of 

them would execute at a 

time. If the ra field is zero 

then it would be PC-

relative jump otherwise it 

would be register-relative jump. In step T4 we would add the constant c2 after sign-

extension to the contents of temporary register A. As a result we would have the effective 

address in the buffer register C, to which we need to jump. In step T5 we will take the 

contents of C and load it in the PC, which would be the required address for the jump. 

Structural RTL for the shift instruction 

         shiftr ra, rb, c1 

First three steps would fetch the shift instruction. c1 is the count field. It is a 5-bit 

constant and is obtained from the lower 5-bits of the instruction register IR. In step T3 we 

would load the 5-bit register „n‟ from the count field or the lower 5-bits of the IR and 

then in T4 depending upon the value of „N‟ which indicates the decimal value of „n‟, we 

would take the contents of 

register rb and shift right 

by N-bits which would 

indicate how many shifts 

are to be performed. „n‟ 

indicates the register while 

„N‟ indicates the decimal 

value of the bits present in 

the register „n‟. So as a 

result we need to copy the zeros to the left most bits, this shows that zeros are replicated 

„N‟ times and are concatenated with the shifted bits that are actually 15…N. In T5, we 

take the contents from C through the bus and feed it to the register ra which is the 
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destination register. Other instructions that would have similar tables are „shiftl‟ and 

„asr‟.  

In case of asr, when the data is shifted right, instead of copying zeros on the left side, we 

would copy the sign bit from the original data to the left-most position. 

Other instructions 

Other instructions are mov, call and ret. Note that these instructions were not available 

with the SRC processor. 

 Structural RTL for the mov 

instruction 

          mov ra, rb 

In mov instruction the data in 

register rb, which is the source 

register, is to be moved in the 

register ra, which is the destination register. In first three steps, mov instruction is 

fetched. In step T3 the contents of register rb are placed in buffer register C through the 

ALSU unit while in step T4 the buffer register C transfers the data to register ra through 

internal uni-bus. 

Structural RTL for the mov 

immediate instruction 

          movi ra, c2 

In this instruction ra is the 

destination register and constant c2 

is to be moved in the ra. First three 

steps would fetch the move 

immediate instruction. In step T3 we would take the constant c2 and place it into the 

buffer register C. Buffer register C is 16-bit register and c2 is 8-bit constant so we need to 

concatenate the remaining leftmost bits with the sign bit which is bit „7‟ shown within 

angle brackets. This sign bit which is the most significant bit would be „1‟ if the number 

is negative and „0‟ if the number is positive. So depending upon this sign bit the 

remaining 8-bits are replicated with 

this sign bit to make a 16-bit 

constant to be placed in the buffer 

register C. In step T4 the contents 

of C are taken to the destination 

register ra. 

In case of FALCON-A, „in‟ and 

„out‟ instructions are present which 

are not present in the SRC 

processor. So, for this we assume 

that there would be interconnection with the input and output addresses up to 0..255. 
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Structural RTL for the in instruction 

         in ra, c2  

First three steps would fetch the instruction In step T3 we take the IO [c2] which 

indicates that go to IO address indicated by c2 which is a positive constant in this case 

and then data would be taken to the buffer register C. In step T4 we would transfer the 

data from C to the destination register ra. 

Structural RTL for the out instruction 

        out ra, c2 

This instruction is opposite to the 

„in‟ instruction. First three 

instructions would fetch the 

instruction. In step T3 the contents 

of register ra are placed in to the 

buffer register C and then in Step 

T4 from C the data is placed at the 

output port indicated by the c2 

constant. So this instruction is just 

opposite to the „in‟ instruction. 

Structural RTL for the call 

instruction 

        call ra, rb 

In this instruction we need to give 

the control to the procedure, sub-

routine or to another address 

specified in the program. First three 

steps would fetch the call 

instruction. In step T3 we store the 

present contents of PC in to the 

buffer register C and then from C 

we transfer the data to the register 

ra in step T4. As a result register ra 

would contain the original contents 

of PC and this would be a pointer to 

come back after executing the sub-

routine and it would be later used 

by a return instruction. In step T5 

we take the contents of register rb, which would actually indicate to the point where we 

want to go. So in step T6 the contents of C are placed in PC and as a result PC would  
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indicate the position in the memory from where new execution has to begin. 

 

Structural RTL for return 

instruction 

         ret ra 

After instruction fetch in first 3 steps 

T0-T2, the register data in ra is placed 

in the buffer register C through ALSU 

unit. PC is loaded with contents of this 

buffer register in step T4. Assuming 

that bus activity is synchronized, 

appropriate control signals are 

available to us now. 

Control signals required at different 

timing steps of FALCON-A 

instructions 
The following table shows the details of the control signals needed. The first column is 

the time step, as before. In the second column the structural RTLs for the particular step 

is given, and the corresponding control signals are shown in the third column. Internal 

bus is active in step T0, causing the contents of the PC to be placed in the Memory 

Address register MAR and simultaneously the PC is incremented by 2 and placed it in the 

buffer register C. Recalling previous lectures, to write data in to a particular register we 

need to enable the load signal. In case of fetch instruction in step T0, control signal 

LMAR is enabled to cause the data from internal bus to be written in to the address 

register. To provide data to the bus through tri-state buffers we need to activate the „out‟ 

control signal named as „PCout‟, making contents of the PC available to the ALSU and 

so control unit provides the increment signal „INC2‟ to increment the PC. As the ALSU 

is the combinational circuit, the PCout signal causes the contents over the 2nd input of 

ALSU incremented by 2 and so the data is available in buffer register C. Control signal 

“LC” is required to write data into the buffer register C form the ALSU output. Now note 

that „INC2‟ is one of the ALSU functions and also it is a control signal. So knowing the 

control signals, which need to be activated at a particular step, is very important. 

So, at step T0 the control signal „PCout‟ is activated to provide data to the internal bus. 
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Now control signal „LMAR‟ causes the data from the bus to be read into the register 

MAR. The ALSU function „INC2‟ increments the PC to 2 and the output are stored in the 

buffer register C by the control signal „LC‟. The data from memory location addressed by 

MAR is read into Memory Buffer Register MBR in the next timing step T1. In the mean 

time there is no activity on the internal bus, the output from the buffer register C (the 

incremented value of the PC) is placed in the PC through bus. For this the control signal 

„LPC‟ is activated. 

To enable tri-state buffer of Memory Address Register MAR, we need control signal 

„MARout‟. Another control signal is required in step T1 to enable memory read i.e. 

„MRead‟. In order to enable buffer register C to provide its data to the bus we need 

„Cout‟ control signal and in order to enable the PC to read from C we need to enable its 

load signal, which is „LPC‟. To read data coming from memory into the Memory Buffer 

Register MBR, „LMBR‟control signal is enabled. So in T2 we need 5 control signals, as 

shown. 

In T2, the instruction register IR is loaded with data from the MBR, so we need two-

control signals,‟MBRout‟ to enable its tri-state buffers and the other signal required is the 

load signal for IR register „LIR‟. Fetch operation is completed in steps T0-T2 and 

appropriate control signals are generated. Those control signals, which are not shown, 

would remain de-activated. All control signals are activated simultaneously so the order 

of these controls signals is immaterial. Recall that in SRC the fetch operation is 

implemented in the same way, but „INC4‟ is used instead of „INC2‟ because the 

instruction length is 4 bytes. 

Now we take a look at other examples for control signals required during execution 

phase. 

For various instructions, we will define other control signals needed in the execution 

phase of each instruction but fetch cycle will be the same for all instructions. 

Another important fact is the interface of the CPU with an external memory and the I/O 

depending upon whether the I/O is memory mapped or non-memory mapped. The 

processor will generate some control signals, used by the memory or I/O to read/write 

data to/from the I/O devices or from the memory. Another assumption is that the memory 

read is fast enough. Therefore data from memory must be available to the processor in a 

fixed time interval, which in this particular example is T2. 

For a slow data transfer, the concept of handshaking is used. Some idle states are 

introduced and buffer is prepared until the data is available. But for simplicity, we will 

assume that memory is fast enough and data is available in buffer register MBR to the 

CPU. 

 

External FALCON-A CPU Interface 

This figure is a symbolic representation of the FALCON-A in the form of a chip. The 

external interface consists of a 16-bit address bus, a 16-bit data bus and a control bus on 

which different control signals like MRead, MWrite, IORead, IOWrite are present. 
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Example Problem 
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(a) What will be the logic levels on the external FALCON-A buses when each of the 

given FALCON-A 

instruction is executing 

on the processor? 

Complete the table 

given. All numbers are 

in the decimal number 

system, unless noted 

otherwise. 

(b) Specify memory-

addressing modes for 

each of the FALCON-

A instructions given. 

Assumptions 
For this particular 

example we will 

assume that all 

memory contents are 

properly aligned, i.e. memory addresses start at address divisible by 2. 

PC= C348h 

 

This table contains a partial memory map showing the addresses and the corresponding 

data values.  

 

The next table shows the register map showing the contents of all the CPU registers. 

Another important thing to note is that memory storage is big-endian. 
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Solution: 

 
In this table the second column contains the RTL descriptions of the instructions. We 

have to specify the address bus and data bus contents for each instruction execution. For 

load instruction the contents of register r5+12 are placed on the address bus. From 

register map shown in the previous table we can see that the contents of r5 are 1234h. 

Now contents of r5 are added with displacement value 12 in decimal .In other words the 

address bus will carry the hexadecimal value 1234h+ Ch = 1240h.Now for load 

instruction, the contents of memory location at address 1240h will be placed on the data 

bus. From the memory map shown in the previous table we can see that memory location 

1240h contains 785h. Now to read this data from this location, MRead control signal will 

be activated shown by 1 in the next column and MWrite would be 0.Similarly RTL 

description is given for the 2nd instruction. In this instruction, only registers are involved 

so there is no need to activate external bus. So data bus, address bus and control bus 

columns will contain „?‟ or „unknown‟. The next instruction is jump. Here PC is 

incremented by the jump offset, which is 52 in this case. As before, the external bus will 

remain inactive and control signals will be zero. The next instruction is store. Its RTL 

description is given. For store instruction, the register contents have to be placed at 

memory location addressed by R [3] +17. As this is a memory write operation, the 

MWrite will be 1 and MRead will be zero. Now the effective address will be determined 

by adding the contents of R [3] with the displacement value 17 after its conversion to the 

hexadecimal. The resulting effective address would be C300h. In this way we can 
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complete the table for other instructions. 

Addressing Modes 
This table lists the addressing mode for each instruction given in the previous example. 
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Lecture No. 15 

Logic Design and Control Signals Generation in SRC 
 

Reading Material 
Vincent P. Heuring & Harry F. Jordan                                                            Chapter 4 

Computer Systems Design and Architecture                                                      4.4 

 

Summary 
1) Logic Design for the Uni-bus SRC 

2) Control Signals Generation in SRC 

 
 Logic Design for the Uni-bus SRC 
 In the previous sections, we have looked at both the behavioral and structural RTL for 

the SRC. We saw that there is a need for some control circuitry for ensuring the proper 

and synchronized functioning of the components of the data path, to enable it to carry out 

the instructions that are part of the Instruction Set Architecture of the SRC. The control 

unit components and related signals make up the control path. In this section, we will talk 

about 

 Identifying the control signals required 

 The external CPU interface 

 Memory Address Register (MAR), and Memory Buffer Register (MBR) circuitry 

 Register Connections 

We will also take a look at how sign extension is performed. This study will help us 

understand how the entire framework works together to ensure that the operations of a 

simple computer like the SRC are carried out in a smooth and consistent fashion. 

 

Identifying control signals 

For any of the instructions that are a part of the instruction set of the SRC, there are 

certain control signals required; these control signals may be to select the appropriate 

function for the ALU to be performed, to select the appropriate registers, or the 

appropriate memory location.  

Any instruction that is to be executed is first fetched into the CPU. We look at the control 

signals that are required for the fetch operation. 

 

Control signals for the fetch operation 

Table 1 lists the control signals that are needed to ensure the synchronized register 

transfers in the instruction fetch phase. Note that we use uppercase for control signals as 

we have been using lowercase for the instruction mnemonics, and we want to distinguish 
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between the two. Also note that control signals during each time slot are activated 

simultaneously, and that the control signals for successive time slots are activated in 

sequence. If a particular control signal is not shown, its value is zero. 

 
As shown in the Table: 1, some control signals are to let register values to be written onto 

buses, or read from the buses. Similarly, some signals are required to read/ write memory 

contents onto the bus. The memory is assumed to be fast enough to respond during a 

given time slot; if that is not true, wait states have to be inserted. We require four control 

signals to be issued in the time step T0:  

PCout: This control signal allows the contents of the Program Counter register to be 

written onto the internal processor bus.  

LMAR: This signal enables write onto the memory address register (MAR), thus the 

value of PC that is on the bus, is copied into this register 

INC4: It lets the PC value to be incremented by 4 in the ALSU, and result to be 

stored in C. Notice that the value of PC has been received by the ALSU as an 

operand. This control signal allows the constant 4 to be added to it.  

The ALSU is assumed to include an INC4 function 

LC: This enables the input to the register C for writing the incremented value of PC 

onto it. 

During the time step T1, the following control signals are applied: 

LMBR: This enables the “write” for the register MBR. When this signal is activated, 

whatever value is on the bus, can be written into the MBR. 

MRead: Allow memory word to be gated from the external CPU data bus into the 

MBR. 

MARout: This signal enables the tri-state buffers at the output of MAR.  

Cout: This will enable writing of the contents of register C onto the processor‟s 

internal data bus.  

LPC: This will enable the input to the PC for receiving a value that is currently on the 

internal processor bus. Thus the PC will receive an incremented value. 

At the final time step, T2, of the instruction fetch phase, the following control signals 

are issued: 

MBRout: To enable the tri-state buffers with the MBR. 
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LIR: To allow the IR read the value from the internal bus. Thus the instruction stored 

in the MBR is read into the Instruction Register (IR). 

 

Uni-bus SRC implementation 

The uni-bus implementation of the SRC data path is given in the Fig.1. We can now 

visualize how the control signals in mutually exclusive time steps will allow the 

coordinated working of instruction fetch cycle.  

 
Fig.1  

Similar control signals will allow the instruction execution as well. We have already 

mentioned the external CPU buses that read from the memory and write back to it. In the 

given figure, we had not shown these external (address and data buses) in detail. Fig.2 

will help us understand this external interface.  
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Fig.2 

External CPU bus activity 
Let us take up a sample problem to further enhance our understanding of the external 

CPU interface. As mentioned earlier, this interface consists of the data bus/ address bus, 

and control signals for enabling memory read and write. 

 

Example problem: 

(a) What will be the logic levels on the external SRC buses when each of the given SRC 

instruction is executing on the processor? Complete Table: 2. all numbers are in the 

decimal number system, unless noted otherwise.            

(b) Specify memory addressing modes for each of the SRC instructions given in Table: 2. 

 
 

Assumptions: 

• All memory content is aligned properly.  

 In other words, all the memory accesses start at addresses divisible by 4.   

 Value in the PC = 000DC348h 
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Memory map with assumed values 

 
 

Register map with assumed values 
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Solution Part (a):  

 

SRC 

Instruction 

RTL equivalent Address bus 

<31..0> 

Data bus               

<31..0> 

MR MW 

ld  r7 , 12(r5) R[7]  M[12+ 

R[5]] 

00AB1240h 0785E53Dh 1 0 

ld  r2 , 32 R[2]  M[32] 00000020h D296492Fh 1 0 

la  r9 , 32 R[9]  32 UNKNOWN UNKNOWN ? ? 

ldr  r12 , -4 R[12]  M[pc-4] 000DC344h 4423E3D5h 1 0 

lar  r3 ,0 R[3]  PC Unknown  Unknown  ? ? 

st  r2 , 0(r6) M[R[6]] R[2] 00000020h D296492Fh 0 1 

st  r3 , -8 M[R[6]] R[2] 000DC344h 001400DCh 0 1 

st  r4 ,32 M[32] R[4] 00000020h B7432301h 0 1 

Table-3  

 

 

(Note that the SRC uses the big-endian storage format). 

 Solution part (b): 

 

SRC Instruction  Addressing Mode 

Id  r7 , 12(r5) 

Id  r2 , 32 

Ia  r9 , 32 

Idr  r12 , -4 

Iar  r3 ,0 

st  r2 , 0(r6) 

st  r3 , -8 

st  r4 ,32 

Displacement  

Direct 

Immediate  

PC relative  

Register  

Register indirect  

PC relative  

Register direct  

Fig-5 

 

Notes: 

* Relative addressing is always PC relative in the SRC 

***  Displacement addressing mode is the same as Based or Indexed in the SRC.  It is   

also the same as Register Relative addressing mode 

 

Memory address register circuitry 

We have already talked about the functionality of the MAR. It provides a temporary 

storage for the address of memory location to be accessed. We now take a detailed look 

at how it is interconnected with other components. The MAR is connected directly to the 

Table:3 
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CPU internal bus, from which it is loaded (receives a value). The LMAR signal causes 

the contents of the internal CPU bus to be loaded into the MAR. It writes onto the CPU 

external address bus. The MARout signal causes the contents of the MAR to be placed on 

the address bus. Thus, it provides the addresses for the memory and I/O devices over the 

CPU‟s address bus. A set of tri-state buffers is provided with these connections; the tri-

state buffers are controlled by the control signals, which in turn are issued when the 

corresponding instruction is decoded. The whole circuitry is shown in Fig.6. 

 
  

 

Memory buffer register circuitry 

The Memory Buffer Register (MBR) holds the value read from the memory or I/O 

device. It is possible to load the MBR from the internal CPU bus or from the external 

CPU data bus. The MBR also drives the internal CPU bus as well as the external CPU 

data bus. Similar to the MAR register, tri-state buffers are provided at the connection 

points of the MBR, as illustrated in the Fig.7. 
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Register connections 

The register file containing the General Purpose Registers is programmer visible. 

Instructions may refer to any of these registers, as source operands in an operation or as 

the destination registers. Appropriate circuitry is needed to enable the specified register 

for read/ write. Intuitively, we can tell that we require connections of the register to the 

CPU internal bus, and we need control signals that will enable specified registers to be 

read/ write enabled as a corresponding instruction is decoded. Fig.8 illustrates the register 

connections and the control signals generation in the uni-bus data path of the SRC. We 

can see from this figure that the ra, rb and rc fields of the Instruction Register specify the 

destination and source registers. The control signals RAE, RBE and RCE can be applied 

to select any of the ra, rb or rc field respectively to apply its contents to the input of 5-to-

32 decoder. Through the decoder, we get the signal for the specific register to be 

accessed. The BUS2R control signal is activated if it is desired to write into the register. 

On the other hand, if the register contents are to be written to the bus, the control signal 

R2BUS is activated.  
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Alternate control circuitry for register selection 

Fig.9 illustrates an alternate circuitry that implements the register connections with the 

internal processor bus, the instruction register fields, and the control signals required to 

coordinate the appropriate read/write for these registers. Note that this implementation is 

somewhat similar to our earlier implementation with a few differences. It illustrates the 

fact that the implementations we have presented are not necessarily the only solutions, 

and that there may be other possibilities.  
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In this alternate circuitry, there is a separate 5-to-32 decoder for each of the register fields 

of the instruction register. The output of these decoders is allowed to be read out and 

enables the decoded register, if the control signal (RAE, RBE or RCE) is active.  

 

Control signals Generation in SRC 
We take a few example instructions to study the control signals that are required in the 

instruction execution phase.  

 

Control signals for the add instruction 
The add instruction has the following syntax: 

add ra, rb, rc 

Table: 4 lists the control signals that are applied at each of the time steps. The first three 

steps are of the instruction fetch phase, and we have already discussed the control signals 

applied at this phase. 

 
 

 At time step T3, the control RBE is applied, which will enable the register rb to write its 

contents onto the internal CPU bus, as it is decoded. The writing from the register onto 

the bus is enabled by the control signal R2BUS. Control signal LA allows the bus 

contents to be transferred to the register A (which will supply it to the ALSU). At time 

step T4, the control signals applied are RCE, R2BUS, ADD, LC, to respectively enable 

the register rc, enable the register to write onto the internal CPU bus (which will supply 

the second operand to the ALSU from the bus), select the add function of the ALSU 

(which will add the values) and enable register C (so the result of the addition operation 

is stored in the register C). Similarly in T5, signals Cout, RAE and BUS2R are activated.    

Table: 4 
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Sign extension 

 

When we copy constant values to registers that are 32 bits wide, we need to sign extend 

the values first. These values are in the 2‟s complement form, and to sign-extend these 

values, we need to copy the most significant bit to all the additional bits in the register. 

We consider the field c2, which is a 17 bit constant. Sign extension of c2 requires that we 

copy c2<16> to all the left-most bits of the destination register, in addition to copying the 

original constant values to the register. This means that bus<31...17> should be the same 

as c2<16>. A 15 line tri-state buffer can perform this sign extension. So we apply c2<16> 

to all the inputs of this tri-state buffer as illustrated in the Fig.10. 

 
 

Structural RTL for the addi instruction 

We now return to our study of the control signals required in the instruction execute 

phase. We have already looked at the add instruction and the corresponding signals. Now 

we take a look at the addi (add immediate) instruction, which has the following syntax: 

addi ra, rb, c2 
Table: 5 lists the RTL and the control signals for the addi instruction: 
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The table shows that the control signals for the addi instruction are the same as the add 

instruction, except in the time step T4. At this time step, the control signals that are 

applied are c2out, ADD and LC, to respectively do the following: 

Enable the read of the constant c2 (which is sign extended) onto the internal processor 

bus. Add the values using the ALSU and finally assign the result to register C by 

enabling write for this register. 

 

To place a 0 on the bus 

When the field rb is zero, for instance, in the load and store instructions, we need to 

place a zero on the bus. The given circuit in Fig.11 can be used to do this. 

 
Note that, by default, the value of register R0 is 0 in some cases. So, when the selected 

register turns out to be 0 (as rb field is 0), the line connecting the output of the register R0 

is not enabled, and instead a hardwired 0 is output from the tri-state buffer onto the CPU 

internal bus. An alternate circuitry for achieving the same is shown in the Fig.12. 
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Control signals for the ld instruction 

Now we take a look at the control signals for the load instruction. The syntax of the 

instruction is: 

ld ra, c2 (rb) 

Table: 6 outlines the control signals as well as the RTL for the load instruction in the 

SRC. 

The first three steps are of the instruction fetch phase. Next, the control signals issued 

are: 

 
RBE is issued to allow the register rb value to be read 

R2BUS to allow the bus to read from the selected register 
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LA to allow write onto the register A. This will allow the CPU bus contents to be written 

to the register A.  

At step T4 the control signals are: 

c2out to allow the sign extended value of field c2 to be written to the internal CPU bus 

ADD to instruct the ALSU to perform the add function. 

LC to let the result of the ALSU function be stored in register C by enabling write of 

register C. 

Control signals issued at step T5: 

Cout is to read the register C, this copies the value in C to the internal CPU bus. 

LMAR to enable write of the Memory Address Register (which will copy the value 

present on the bus to MAR). This is the effective address of memory location that is to be 

accessed to read (load) the memory word. 

During the time step T6: 

MARout to read onto the external CPU bus (the address bus, to be more specific), the 

value stored in the MAR. This value is an index to memory location that is to be 

accessed. 

MRead to enable memory read at the specified location, this loads the memory word at 

the specified location onto the CPU external data bus.  

LMBR is the control signal to enable write of the MBR (Memory Buffer Register). It 

will obtain its value from the CPU external data bus. 

Finally, the control signals issued at the time step T7 are: 

MBRout is the control signal to allow the contents of the MBR to be read out onto the 

CPU internal bus. 

RAE is the control signal for the destination register field ra. It will let the actual index of 

the ra register be encoded, and 

BUS2R will let the appropriate destination register be written to with the value on the 

CPU internal bus. 
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Lecture No. 16 

Control Unit Design  

 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                            Chapter 4 

Computer Systems Design and Architecture                                                 4.2.2, 4.6.1                                                                                                                                                                                                                                                                              

 
Summary 

 

 Control Signals Generation in SRC (continued…) 

 The Control Unit  

 2-Bus Implementation of the SRC Data Path 

 

This section of lecture 16 is a continuation of the previous lecture. 

 

Control signals for the store instruction 

st ra, c2(rb) 
The store time step operations are similar to the load instruction, with the exception of 

steps T6 and T7. However, one can easily interpret these now. These are outlined in the 

given table. 

Steps  RTL INSTRUCTIONS  CONTROL SIGNALS 

T0-T2 Instruction fetch  As before  

T3 A  ((rb=0 ): 0 , (rb != 0 ) R(rb )) RBE,R2 BUS , BA out, LA  

T4 C  A +(16 α IR<16>© IR <15..0> 

) 

C2out, LMAR 

T5 MAR  C  Cout , LMAR 

T6 MBR  R[ra]; RAE , R2BUS , INT2MBR, 

LMBR  

T7  M[MAR] MBR  MARout , MWrite  

 

 

 

 

Control signals for the branch and branch link instructions 

Branch instructions can be either be simple branches or link-and-then-branch type. The 
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syntax for the branch instructions is 
brzr rb, rc 

 

This is the branch and zero instruction we looked at earlier. The control signals for this 

instruction are: 

As usual, the first three steps are for the instruction fetch phase. Next, the following 

control signals are issued: 

 

 

 

Steps  RTL 

INSTRUCTIONS  

CONTROL SIGNALS 

T0-T2 Instruction fetch  As before  

T3 CON  cond(R[rc]); LCON,RCE,R2 BUS 

T4 CON: PC  R[rb]  RBE , R2BUS, LPC (if CON =1 )  

 

LCON to enable the CON circuitry to operate, and instruct it to check for the appropriate 

condition (whether it is branch if zero, or branch if not equal to zero, etc.) 

RCE to allow the register rc value to be read. 

R2BUS allows the bus to read from the selected register. 

At step T4: 

RBE to allow the register rb value to be read. rb value is the branch target address. 

R2BUS allows the bus to read from the selected register. 

LPC (if CON=1): this control signal is issued conditionally, i.e. only if CON is 1, to 

enable the write for the program counter. CON is set to 1 only if the specified condition is 

met. In this way, if the condition is met, the program counter is set to the branch address. 

Branch and link instructions 

The branch and link instruction is similar to the branch instruction, with an additional 

step, T4. Step T4 of the simple conditional branch instruction becomes the step T5 in this 

case. 

 
The syntax of the instruction „branch and link if zero‟ is 

 brlzr ra, rb, rc 



Advanced Computer Architecture   

________________________________________________________________________ 

197 

 

Table that lists the RTL and control signals for the store instruction of the SRC is given: 

The circuitry that enables the condition checking for the conditional branches in the SRC 

is illustrated in the following  

 

Figure

 
 

 

Control signals for the shift right instruction 

The given table illustrates the RTL and the control signals for the shift right „shr‟ 

instruction. This is implemented by applying the five bits of n (nb4, nb3, nb2, nb1, nb0) 

to the select inputs of the barrel shifter and activating the control signal SHR as explained 

in an earlier lecture. 
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Generating the Test Condition N=0 
 

 

 

 

 

 

The Control Unit 
The control unit is responsible for 

generating control signals as well as the 

timing signals. Hence the control unit is responsible for the synchronization of internal as 

well as external events. By means of the control signals, the control unit instructs the data 

path what to do in every clock cycle during the execution of instructions.  

 

Control Unit Design 

Since the control unit performs quite complex tasks, its design must be done very 

carefully. Most errors in processor design are in the Control Unit design phase. There are 

primarily two approaches to design a control unit. 

1. Hardwired approach 

2. Micro programming  

 

Hardwired approach is relatively faster, however, the final circuit is quite complex. The 

micro-programmed implementation is usually slow, but it is much more flexible.  

  

 “Finite-state machine” concepts are usually used to represent the CU. Every state 

corresponds to one “clock cycle” i.e., 1 state per clock. In other words each timing step 

could be considered as just 1 state and therefore from one timing step to other timing 

step, the state would change. Now, if we consider the control unit as a black box, then 
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there would be four sets of inputs to the control unit. These are as follows: 

1. The output of timing step generator (There are 8 disjoint timing steps in our 

example T0-T7). 

2. Op-code (op-code is first given to the decoder and the output of the decoder is 

given to the control unit). 

3. Data path generated signals, like the “CON” control signal,  

4. Signals from external events, like “Interrupt” generated by the Interrupt generator.    

 

The complexity of the control is a function of the  

 Number of states 

 Number of inputs to the CU 

 Number of the outputs generated by the CU 

 

 

Hardwired Implementation of the Control Unit 

 

The accompanying block diagram shows the inputs to the control unit. The output control 

signals generated from control unit to the various parts of the processor are also shown in 

the figure. 

 
 

Example Control Unit for the FALCON-A 

 

The following figure shows how the operation code (op-code) field of the Instruction 

Register is decoded to generate a set of signals for the Control unit. 
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This is an example for the FALCON-A processor where the instruction is 16-bit long. 

Similar concepts will apply to the SRC, in which case the instruction word is 32 bits and 

IR <31...27> contains the op-code.  Similar concepts will apply to the SRC, in which case 

the instruction word is 32 bits and IR<31..27> contains the opcode. The most significant 

5 bits represent the op-code. These 5-bits from the IR are fed to a 5-to-32 decoder. These 

32 outputs are numbered from 0-to-31 and named as op0, op1 up to op31. Only one of 

these 32 outputs will be active at a given time .The active output will correspond to 

instruction executing on the processor. 

To design a control unit, the next step is to write the Boolean Equations. For this we need 

to browse through the structural descriptions to see which particular control signals occur 

in different timing steps. So, for each instruction we have one such table defining 

structural RTL and the control signals generated at each timing step. After browsing we 

need to check that which control signal is activated under which condition. Finally we 

need to write the expression in the form of a logical expression as the logical combination 

of “AND” and “OR” of different control signals. The given table shows Boolean 

Equations for some example control signals.  
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For example, PCout would be active in every T0 timing step. Then in timing interval T3 

the output of the PC would be activated if the op-code is 20 or 22 which represent jump 

and sub-routine call. In step T4 if the op-code is 16, 17, 18 or 19, again we need PCout 

activated and these 4 instructions correspond to the conditional jumps. We can say that in 

other words in step T1, PCout is always activated “OR” in T3 it is activated if the 

instruction is either jump or sub-routine call “OR” in T4 if there is one of the conditional 

jumps. We can write an equation for it as  

 

PCout=T0+T3.(OP20+OP22)+T4.(OP16+OP17+OP18+OP19) 
 

In the form of logic circuit the implementation is shown in the figure. We can see that we 

“OR” the op-ode 20 and 22 and “AND” it with T3, then “OR” all the op16 up to op19 

and “AND” it with T4, then T0 and the “AND” outputs of T3 and T4 are “OR” together 

to obtain the PCout.  
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In the same way the logic circuit for LPC control signal is as shown and the equation 

would be : 

 

LPC=T1+T5.OP20+T6.CON.(OP16+OP17+OP18+OP19) 

 
 

We can formulate Boolean equations and draw logic circuits for other control signals in 

the same way. 

 

Effect of using “real” Gates 

We have assumed so far that the gates are ideal and that there is no propagation delay. In 

designing the control unit, the propagation delays for the gates can not be neglected. In 

particular, if different gates are cascaded, the output of one gate forms the input of other. 

The propagation delays would add up. This, in turn would place an upper limit on the 

frequency of the clock which controls the generation of the timing intervals T0, T1… T7.  

So, we can not arbitrarily increase the frequency of this clock.  As an example consider 

the transfer of the contents of a register R1 to a register R2. The minimum time required 

to perform this transfer is given by  

tmin = tg + tbp + tcomb + t1 

 
The details are explained in the text with reference to Fig 4.10. Thus, the maximum clock 

frequency based on this transfer will be 1/tmin. Students are encouraged to study example 
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4.1 of the text. 

 

2-Bus Implementation of the SRC Data Path 
 

In the previous sections, we studied the uni-bus implementation of the data path in the 

SRC. Now we present a 2-bus implementation of the data path in the SRC. We observe 

from this figure that there is a bus provided for data that is to be written to a component. 

This bus is named the „in‟ bus.  Another bus is provided for reading out the values from 

these components. It is called the „out‟ bus. 

 

 
 

Structural RTL for the „sub‟ instruction using the 2-bus data path implementation 

Next, we look at the structural RTL as well as the control signals that are issued in 

sequence for instruction execution in a 2-bus implementation of the data path. The given 

table illustrates the Register Transfer Language representation of the operations for 

carrying out instruction fetch, and execution for the sub instruction.  
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The first three steps belong to the instruction fetch phase; the instruction to be executed is 

fetched into the Instruction Register and the PC value is incremented to point to the next-

in-line instruction. At step T3, the register R[rb] value is written to register A. At the time 

step T4, the subtracted result from the ALSU is assigned to the destination register R[ra]. 

Notice that we did not need to store the result in a temporary register due to the 

availability of two buses in place of one.  At the end of this sequence, the timing step 

generator is initialized to T0. 

Control signals for the fetch operation 

The control signals for the instruction fetch phase are shown in the table. A brief 

explanation is given below: 

 
At time step T0, the following control signals are issued: 

 PCout: This will enable read of the Program Counter, and so its value will be 

transferred onto the  „out‟ bus 

 LMAR: To enable the load for MAR 
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 C=B: This instruction is used to copy the value on the „out‟ bus to the „in‟ bus, so 

it can be loaded into the Memory Address Register. We can observe in the data-

path implementation figure given earlier that, at any time, the value on the „out‟ 

bus makes up the operand B for the ALSU. The result C of ALSU is connected to 

the “in” bus, and therefore, the contents transfer from one bus to the other can 

take place. 

 

 

At time step T1: 

 PCout: Again, this will enable read of the Program Counter, and so its value will 

be transferred onto the CPU internal „out‟ bus 

 INC4: To instruct the ALSU to perform the increment-by-four operation.  

 LPC: This control signal will enable write of the Program Counter, thus the new, 

incremented value can be written into the PC if it is made available on the “in” 

bus. Note that the ALSU is assumed to include an INC4 function. 

 MRead: To enable memory word read. 

 MARout: To supply the address of memory word to be accessed by allowing the 

contents of the MAR (memory address register) to be written onto the CPU 

external (address) bus.  

 LMBR: The memory word is stored in the register MBR (memory buffer 

register) by applying this control signal to enable the write of the MBR. 

At time step T2:  

 MBRout: The contents of the Memory Buffer Register are read out onto the   

„out‟ bus, by means of applying this signal, as it enables the read for the MBR. 

 C=B: Once again, this signal is used to copy the value from the „out‟ bus to the 

„in‟ bus, so it can be loaded into the Memory Address Register. 

 LIR: This instruction will enable the write of the Instruction Register. Hence the 

instruction that is on the „in‟ bus is loaded into this register.  

 

At time step T3, the execution may begin, and the control signals issued at this stage 

depend on the actual instruction encountered. The control signals issued for the 

instruction fetch phase are the same for all the instructions. 

Note that, we assume the memory to be fast enough to respond during a given time slot. 

If that is not true, wait states have to be inserted. Also keep in mind that the control 

signals during each time slot are activated simultaneously, while those for successive 

time slots are activated in sequence. If a particular control signal is not shown, its value is 

zero.  
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 Lecture No. 17 

 

 

Machine Reset and Machine Exceptions 
 

 

 

Reading Material 
 

Vincent P. Heuring&Harry F. Jordan                                                            Chapter 4 

Computer Systems Design and Architecture                                               4.6.2, 4.7, 4.8                                                                                                                                                                                                                                                                              

 
Summary 

 

 3-bus implementation for the SRC  

 The Machine Reset 

 Machine Exceptions 

 
A 3-bus Implementation for the SRC 
 

Let us now look at a 3-bus implementation of the data-path for the SRC as shown in the 

figure. Two buses, „A‟ and „B‟ bus for reading, and a bus „C‟ for writing, are part of 

this implementation. Hence all the special purpose as well as the general purpose 

registers have two read ports and one write port.  
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   Structural RTL for the Subtract Instruction using the 3-bus Data Path 

Implementation 

We now consider how instructions are fetched and executed in 3-bus architecture. For 

this purpose, the same „sub‟ instruction example is followed.  

 

The syntax of the subtract instructions is 
sub ra, rb, rc 

The structural RTL for implementing this instruction is given in the table. We observe 

that in this table, only two time steps are required for the instruction fetch phase. At 

time step T0, the Memory Address Register receives the value of the Program Counter. 

This is done in the initial phase of the time step T0. Then, the Memory Buffer Register 

receives the memory word indexed by the MAR, and the PC value is incremented. At 

time step T1, the instruction register is assigned the instruction word that was loaded 

into the MBR in the previous time step. This concludes the instruction fetch and now 

the instruction execution can commence.  
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Instruction fetch 

 

 

Instruction Execute 

 

  

 

 

In the next time step, T2, the instruction is executed by subtracting the values of 

register rc from rb, and assigning the result to the register ra.  

At the end of each sequence, the timing step generator is initialized to T0 

 

Control Signals for the Fetch Operation 

The given table lists the control signals in the instruction fetch phase. The control 

signals for the execute phase can be written in a similar fashion. 

       

Steps  RTL INSTRUCTIONS  CONTROL SIGNALS 

T1 MARPC, MBR  M[MAR] 

PC PC +4  

PCout ,INC4  ,LPC , LbMAR, 

MRead 

T3 IR  MBR  MBRout, C=B, LIR 

T4 Instruction_Execution    

 

 

 

The Machine Reset 
 

In this section, we will discuss the following  

 Reset operation  

 Behavioral RTL for SRC reset 

 Structural RTL for SRC reset 

 

The reset operation 

Reset operation is required to change the processor‟s state to a known, defined value. 

The two essential features of a reset instruction are clearing the control step counter and 

reloading the PC to a predefined value. The control step counter is set to zero so that 

operation is restarted from the instruction fetch phase of the next instruction. The PC is 

reloaded with a predefined value usually to execute a specific recovery or initializing 

program. 

Steps  RTL INSTRUCTIONS 

T0-T2 MAR  PC ,MBR , M[MAR], PC + 4 

;  

T3 IR   MBR  

T4 R[ra], R[rb] , R[rc] 
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In most implementations the reset instruction also clears the interrupt enable flags so as 

to disable interrupts during the initialization operation. If a condition code register is 

present, the reset instruction usually clears it, so as to clear any effects of previously 

executed instructions. The external flags and processor state registers are usually 

cleared too.  

The reset instruction is mainly used for debugging purposes, as most processors halt 

operations immediately or within a few cycles of receiving the reset instruction. The 

processors state may then be examined in its halted state. 

Some processors have two types of reset operations.  Soft reset implies initializing PC 

and interrupt flags. Hard reset initializes other processor state registers in addition to 

PC and interrupts enable flags. The software reset instruction asserts the external reset 

pin of the processor. 

 

Reset operation in SRC 

 

Hard Reset 

The SRC should perform a hard reset upon receiving a start (Strt) signal. This initializes 

the PC and the general registers.  

Soft Reset 

The SRC should perform a soft reset upon receiving a reset (rst) signal. The soft reset 

results in initialization of PC only. 

The reset signal in SRC is assumed to be external and asynchronous. 

PC Initialization 

There are basically two approaches to initialize a PC. 

1. Direct Approach 

The PC is loaded with the address of the startup routine upon resetting.  

2. Indirect Approach 

The PC is initialized with the address where the address of the startup routine is 

located. The reset instruction  loads the PC with the address of a jump instruction. The 

jump instruction in turn contains the address of the required routine. 

An example of a reset operation is found in the 8086 processor. Upon receiving the 

reset instruction the 8086 initializes its PC with the address FFFF0H. This memory 

location contains a jump instruction to the bootstrap loader program. This program 

provides the system initialization 

 

Behavioral RTL for SRC Reset 
The original behavioral RTL for SRC without any reset operation is: 

Instruction_Fetch :=(! Run&Strt: (Run  1; instruction_Fetch, 

                                              Run : (IR  M [PC]; PC  PC+4;instruction_execution)), 

instruction_execution:= (ld (:=op=1…) ; 

This recursive definition implies that each instruction at the address supplied by PC is 

executed. The modified RTL after adding the reset capability is 

Instruction_Fetch:=(! Run&Strt :( Run  1, 

                                             PC, R [0...31]  0), 
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                                             Run&!Rst :( IR  M [PC], 

                                             PC  PC+4, instruction_execution); 

                                             Run&Rst:( Rst  0, PC  0); 

                                             instruction_Fetch), 

The modified definition includes testing the value of the “rst” signal after execution of 

each instruction. The processor may not be halted in the midst of an instruction in the 

RTL definition 

To actually implement these changes in the SRC, the following modification are 

required to add the reset operation to the structural RTL for SRC: 

 A check for the reset signal on each clock cycle 

 A control signal for clearing the PC 

 A control signal to load zero to control step counter 

 

Example: The sub instruction with RESET processing 
To actually reset the processor in the midst of an instruction, the “Rst” condition must 

be tested after each clock cycle. 

Step RTN Control Sequence 

T0 
!Rst:(MA  PC, C  PC+4 ),  

Rst:(Rst   0,PC   0,T   0) 

!Rst: (PCout LMAR, INC4,LC, 

MRead) Rst: (ClrPC, Goto0); 

T1 !Rst: (MD  M[MA]:PC  C), 

Rst: (Rst  0:PC  0:T 0) 

!Rst: (Cout LPC, Wait), 

Rst : (ClrPC, Goto0); 

T2 !Rst: (IR  MD), 

Rst: (Rst  0: PC  0:T  0) 

!Rst: (MBRout, LIR), 

Rst: (ClrPC, Goto0); 

T3 !Rst: (C A – R [rc]), 

Rst: (Rst 0: PC  0: T 0) 

!Rst: (RBE, R2BUS, LA), 

Rst : (ClrPC, Goto0); 

T4 

 !Rst: (C  A – R[rc]), 

Rst: (Rst  0: PC  0:T 0) 

!Rst: (RCE, R2BUS, SUB, LC), 

Rst: (ClrPC, Goto0); 

T5 

 !Rst: (R [ra] C), 

Rst: (Rst  0: PC  0: T 0) 

!Rst: (LC, RAE, BUS2R, End), 

Rst : (ClrPC, Goto0); 

 

 

 Let us examine the contents of each phase in the given table. In step T0, if the Rst 

signal is not asserted, the address of the new instruction is delivered to memory and the 

value of PC is incremented by 4 and stored in another register. If the “Rst” signal is 

asserted, the “Rst” signal is immediately cleared, the PC is cleared to zero and T, the 

step counter is also set to zero. This behavior (in case of „Rst‟ assertion) is the same for 

all steps. In step T1, if the rst signal is not asserted, the value stored at the delivered 
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memory word is stored in the memory data register and the PC is set to its incremented 

value.  

In step T2, the stored memory data is transferred to the instruction register. 

In step T3, the register operand values are read. 

In step T4, the mathematical operation is executed. 

In step T5, the calculated value is written back to register file. 

During all these steps if the Rst signal is asserted, the value of PC is set to 0 and the 

value of the step counter is also set to zero. 

 

Machine Exceptions 

 
• Anything that interrupts the normal flow of execution of instructions in the 

processor is called an exception. 

• Exceptions may be generated by an external or internal event such as a mouse 

click or an attempt to divide by zero etc. 

• External exceptions or interrupts are generally asynchronous (do not depend on 

the system clock) while internal exceptions are synchronous (paced by internal 

clock) 

The exception process allows instruction flow to be modified, in response to internal or 

external events or anomalies. The normal sequence of execution is interrupted when an 

exception is thrown.  

Exception Processing 
A generalized exception handler should include the following mechanisms: 

1. Logic to resolve priority conflicts. In case of nested exceptions or an exception 

occurring while another is being handled the processor must be able to decide 

which exception bears the higher priority so as to handle it first. For example, an 

exception raised by a timer interrupt might have a higher priority than keyboard 

input. 

2. Identification of interrupting device. The processor must be able to identify the 

interrupting device that it can to load the appropriate exception handler routine. 

There are two basic approaches for managing this identification: exception 

vectors and “information” register. The exception vector contains the address of 

the exception handling routine. The interrupting process fills the exception vector 

as soon as the interruption is acknowledged. The disadvantage of this approach is 

that a lot of space may be taken up by vectors and exception handler codes. 

In the information register, only one general purpose exception handler is used. 

The PC is saved and the address of the general purpose register is loaded into the 

PC. The interrupting process must fill the information register with information to 

allow identification of the cause and type of exception. 

3. Saving the processor state. As stated earlier the processor state must be saved 

before jumping to the exception handler routine. The state includes the current 

value of the PC, general purpose registers, condition vector and external flags. 
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4. Exception disabling during critical operation. The processor must disable 

interrupts while it is switching context from the interrupted process to the 

interrupting process, so that another exception might not disrupt the transition. 

Examples of Exceptions 
• Reset Exception 

 Reset operation is treated as an exception by some machines e.g. SPARC and 

MC68000. 

• Machine Check 

      This is an external exception caused by memory failure 

• Data Access Exception 

 This exception is generated by memory management unit to protect against illegal 

accesses. 

• Instruction Access Exception 

 Similar to data access exception 

• Alignment Exception 

 Generated to block misaligned data access 

 

Types of Exception 

 

• Program Exceptions 

These are exceptions raised during the process of decoding and executing the 

instruction. Examples are illegal instruction, raised in response to executing an 

instruction which does not belong to the instruction set. Another example would 

be the privileged instruction exception. 

• Hardware Exceptions 

There are various kinds of hardware exceptions. An example would be of a timer 

which raises an exception when it has counted down to zero. 

• Trace and debugging Exceptions 

Variable trace and debugging is a tricky task. An easy approach to make it 

possible is through the use of traps. The exception handler which would be called 

after each instruction execution allows examination of the program variables. 

• Nonmaskable Exceptions 

These are high priority exceptions reserved for events with catastrophic 

consequences such as power loss.  These exceptions cannot be suppressed by the 

processor under any condition. In case of a power loss the processor might try to 

save the system state to the hard drive, or alert an alternate power supply. 

• Interrupts (External Exceptions) 

Exception handlers may be written for external interrupts, thus allowing programs 

to respond to external events such as keyboard or mouse events.  
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Lecture No. 18 

Pipelining 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                          Chapter 4 

Computer Systems Design and Architecture                                                      4.8    

Summary 
 

 SRC Exception Processing Mechanism 

 Introduction to Pipelining 

 Complications Related to Pipelining 

 Pipeline Design Requirements 

 

Correction: Please note that the phrase “instruction fetch” should be used where the 

speaker has used “instruction interpretation”. 

 

SRC Exception Processing Mechanism 

 
 

The following tables on the next few pages summarize the changes needed in the SRC 

description for including exceptions: 
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 Behavioral RTL for Exception Processing 

 

Instruction_Fetch:= 

(!Run&Strt: Run  1, 

Run & !(ireq&IE):(IR M[PC], 

PC  PC + 4; 

Instruction_Execution), 

Run&(ireq&IE): (IPC  PC<31..0>, 

II<15..0>  Isrc_info<15..0>, 

IE  0: PC  Ivect<31..0>, 

iack  1; iack  0), 

Instruction_Fetch); 

 

Start 

Normal Fetch 

 

 

Interrupt, PC copied 

II is loaded with the info. 

PC loaded with new address 

 

 

 

Additional Instructions to Support Interrupts 

 

      Mnemonic 

 

   Behavioral RTL 

 

    Meaning 

 

svi (op=16) 

 
R[ra]<15..0>  II<15..0>, 

R[rb]  IPC<31..0>; 

 

Save II and IPC 

 

ri (op=17) 

 
II<15..0>  R[ra]<15..0>, 

IPC<31..0>  R[rb]; 

 

Restore II and IPC 

 

een (op=10) 

 
IE  1; 

 

Exception enable 

 

edi (op=11) 

 
IE  0; 

 

Exception disable 

 

rfi (op=30) 

 
PC  IPC, IE  1; 

 

Return from interrupt 

 

 

Structural RTL for the Fetch Phase including Exception Processing  

 

Step Structural RTL for the 1-bus SRC 
T0 

 
!(ireq&IE): (MA  PC, C  PC + 4); 

(ireq&IE): (IPC  PC,II Isrc_info, 

IE  0,PC  (22α 0)©(Isrc_vect<7..0>)© 00, iack  1; 

iack  0, End) ; 

 

T1 

 
MD  M[MA], PC  C; 

 

T2 IR  MD; 

mailto:22@0�Isrc_vect%3c7..0
mailto:22@0�Isrc_vect%3c7..0
mailto:22@0�Isrc_vect%3c7..0
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T3 

 

Instruction_Execution;      

 

 

Combining the RTL for Reset and Exception  

 

Instruction_Fetch:=  

 

(Run&!Rst&!(ireq&IE):(IR  M[PC], PC  PC+4; 

Instruction_Execution), 

 

Run&Rst: (Rst 0 , IE  0, PC  0; Instruction_Fetch), 

 

!Run&Strt: (Run 1, PC  0, R[0..31]  0; Instruction_Fetch), 

 

Run&!Rst&(ireq&IE): (IPC  PC<31..0>,  

II<15..0> Isrc_info<15..0>, IE  0, PC  Ivect<31..0>,  

iack  1; iack  0; Instruction_Fetch) ); 

     Events 

 

Normal 

Fetch 

 

Soft Reset 

 

Hard Reset 

 

Interrupt 

 

 

Introduction to Pipelining 

 
Pipelining is a technique of overlapping multiple instructions in time. A pipelined 

processor issues a new instruction before the previous instruction completes. This results 

in a larger number of operations performed per unit of time. This approach also results in 

a more efficient usage of all the functional units present in the processor, hence leading to 

a higher overall throughput. As an example, many shorter integer instructions may be 

executed along with a longer floating point multiply instruction, thus employing the 

floating point unit simultaneously with the integer unit. 

 

Executing machine instructions with and without pipelining 

We start by assuming that a given processor can be split in to five different stages as 

shown in the diagram below, and as explained later in this section. Each stage receives its 

input from the previous stage and provides its result to the next stage. It can be easily 

seen from the diagram that in case of a non-pipelined machine there is a single instruction 

add r4, r2, r3 being processed at a given time, while in a pipelined machine, five 

different instructions are being processed simultaneously. An implied assumption in this 

case is that at the end of each stage, we have some sort of a storage place (like temporary 

registers) to hold the results of the present stage till they are used by the next stage. 
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Description of the Pipeline Stages  

In the following paragraphs, we discuss the pipeline stages mentioned in the previous 

example. 
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1. Instruction fetch 

As the name implies, the instruction is fetched from the instruction memory in this stage. 

The fetched instruction bits are loaded into a temporary pipeline register. 

 

2. Instruction decode/operand fetch 

In this stage the operands for the instruction are fetched from the register file. If the 

instruction is add r1, r2, r3 the registers r2 and r3 will be read into the temporary 

pipeline registers. 

 

3. ALU
2
 operation 

In this stage, the fetched operand values are fed into the ALU along with the function 

which is required such as addition, subtraction, etc. The result is stored into temporary 

pipeline registers. In case of a memory access such as a load or a store instruction, the 

ALU calculates the effective memory address in this stage. 

 

4. Memory access 

For a load instruction, a memory read operation takes place. For a store instruction, a 

memory write operation is performed. If there is no memory access involved in the 

instruction, this stage is simply bypassed. 

 

5. Register write 

The result is stored in the destination register in this stage. 

 

 

Latency & throughput 

Latency is defined as the time required to process a single instruction, while throughput is 

defined as the number of instructions processed per second. Pipelining cannot lower the 

latency of a single instruction; however, it does increase the throughput. With respect to 

the example discussed earlier, in a non-pipelined machine there would be one instruction 

processed after an average of 5 cycles, while in a pipelined machine, instructions are 

completed after each and every cycle (in the steady-state, of course!!!). Hence, the overall 

time required to execute the program is reduced. 

 

Remember that the performance gain in a pipeline is limited by the slowest stage in the 

pipeline.  

 

                                                 
2
 The ALU is also called the ALSU in some cases, in particular, where its “shifting” capabilities need to be 

highlighted. ALSU stands for Arithmetic Logic Shift Unit. 
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Complications Related to Pipelining 
Certain complications may arise from pipelining a processor. They are explained below: 

Data dependence 

This refers to the situation when an instruction in one stage of the pipeline uses the results 

of an instruction in the previous stage. As an example let us consider the following two 

instructions 

… 

S1: add r3, r2, r1 

S2: sub r4, r5, r3 

… 

 

There is a data-dependence among the above two instructions. The register R3 is being 

written to in the instruction S1, while it is being read from in the instruction S2. If the 

instruction S2 is executed before instruction S1 is completed, it would result in an 

incorrect value of R3 being used. 

 

Resolving the dependency 

There are two methods to remedy this situation: 

 

1. Pipeline stalls 

These are inserted into the pipeline to block instructions from entering the pipeline until 

some instructions in the later part of the pipeline have completed execution. Hence our 

modified code would become 

… 

S1: add r3, r2, r1 

stall
3
 

stall 

stall 

S2: sub r4, r5, r3 

… 

2. Data forwarding 

When using data forwarding, special hardware is added to the processor, which allows 

the results of a particular pipeline stage to be transferred directly to another stage in the 

pipeline where they are required. Data may be forwarded directly from the execute stage 

of one instruction to the decode stage of the next instruction. Considering the above 

example, S1 will be in the execute stage when S2 will be decoded. Using a comparator 

we can determine that the destination operand of S1 and source operand of S2 are the 

same. So, the result of S1 may be directly forwarded to the decode stage. 

 

Other complications include the “branch delay” and the “load delay”. These are 

explained below: 

 

                                                 
3
 A pipeline stall can be achieved by using the nop instruction. 
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Branch delay  

Branches can cause problems for pipelined processors. It is difficult to predict whether a 

branch will be taken or not before the branch condition is tested. Hence if we treat a 

branch instruction like any normal instruction, the instructions following the branch will 

be loaded in the stages following the stage which carries the branch instruction. If the 

branch is taken, then those instructions would need to be removed from the pipeline and 

their effects if any, will have to be undone. An alternate method is to introduce stalls, or 

nop instructions, after the branch instruction.  

 

Load delay 

Another problem surfaces when a value is loaded into a register and then immediately 

used in the next operation. Consider the following example: 

 

… 

S1: load r2, 34(r1) 

S2: add r5, r2, r3 

… 

  

In the above code, the “correct” value of R2 will be available after the memory access 

stage in the instruction S1. Hence even with data forwarding a stall will need to be placed 

between S1 and S2, so that S2 fetches its operands only after the memory access for S1 

has been made. 

 

Pipeline Design Requirements 

For a pipelined design, it is important that the overall meaning of the program remains 

unchanged, i.e., the program should produce the same results as it would produce on a 

non-pipelined machine. It is also preferred that the data and instruction memories are 

separate so that instructions may be fetched while the register values are being stored 

and/or loaded from data memory. There should be a single data path so as not to 

complicate the flow of instructions and maintain the order of program execution. There 

should be a three port register file so that if the register write and register read stages 

overlap, they can be performed in parallel, i.e., the two register operands may be read 

while the destination register may be written. The data should be latched in between each 

pipeline stage using temporary pipeline registers. Since the clock cycle depends on the 

slowest pipeline stage, the ALU operations must be able to complete quickly so that the 

cycle time is not increased for the rest of the pipeline. 

 

Designing a pipelined implementation 

In this section we will discuss the various steps involved in designing a pipeline. Broadly 

speaking they may be categorized into three parts: 

 

1. Adapting the instructions to pipelined execution 

The instruction set of a non-pipelined processor is generally different from that of a 

pipelined processor. The instructions in a pipelined processor should have clear and 
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definite phases, e.g., add r1, r2, r3. To execute this instruction, the processor must first 

fetch it from memory, after which it would need to read the registers, after which the 

actual addition takes place followed by writing the results back to the destination register. 

Usually register-register architecture is adopted in the case of pipelined processors so that 

there are no complex instructions involving operands from both memory and registers. 

An instruction like add r1, r2, a would need to execute the memory access stage before 

the operands may be fed to the ALU. Such flexibility is not available in a pipelined 

architecture. 

 

 

 

2. Designing the pipelined data path 

Once a particular instruction set has been chosen, an appropriate data path needs to be 

designed for the processor. The data path is a specification of the steps that need to be 

followed to execute an instruction. Consider our two examples above 

 

For the instruction add r1, r2, r3: Instruction Fetch – Register Read – Execute – Register Write, 

 

whereas for the instruction add r1, r2, a  (remember a represents a memory address), we 

have  Instruction Fetch – Register Read – Memory Access – Execute – Register Write 

 

The data path is defined in terms of registers placed in between these stages. It specifies 

how the data will flow through these registers during the execution of an instruction. The 

data path becomes more complex if forwarding or bypassing mechanism is added to the 

processor.  

 

3. Generating control signals 

Control signals are required to regulate and direct the flow of data and instruction bits 

through the data path. Digital logic is required to generate these control signals.  
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Lecture 19  
 

Pipelined SRC 
Reading Material 
Vincent P. Heuring&Harry F. Jordan                                                            Chapter 5 

Computer Systems Design and Architecture                                                     5.1.3                                               
 

Summary 

 
 Pipelined Version of the SRC 

 Adapting SRC instructions for Pipelined Execution 

 Control Signals for Pipelined SRC 

 

Pipelined Version of the SRC 
 

In this lecture, a pipelined version of the SRC is presented. The SRC uses a five-stage 

pipeline. Those five stages are given below: 

 

1. Instruction Fetch 

2. Instruction decode/operand fetch 

3. ALU operation 

4. Memory access 

5. Register write 

 

As shown in the next diagram, there are several registers between each stage. 

 

After the instruction has been fetched, it is stored in IR2 and the incremented value of the 

program counter is held in PC2. When the register values have been read, the first 

register value is stored in X3, and the second register value is stored in Y3. IR3 holds the 

opcode and ra. If it is a store to memory instruction, MD3 holds the register value to be 

stored. 

 

After the instruction has been executed in the ALU, the register Z4 holds the result. The 

op-code and ra are passed on to IR4. During the write back stage, the register Z5 holds the 

value to be stored back into the register, while the op-code and ra are passed into IR5. 

There are also two separate memories and several multiplexers involved in the pipeline 

operation. These will be shown at appropriate places in later figures.  
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The number after a particular register name indicates the stage where the value of this 

register is used.                            

 
 

 

 

Adapting SRC Instructions for Pipelined Execution 
 

As mentioned earlier, the SRC instructions fall into the following three categories: 

 

1. ALU Instructions 

2. Load/Store instructions 

3. Branch Instructions 

 

We will now discuss how to design a common pipeline for all three categories of 

instructions. 

 

1. ALU instructions 

  

ALU instructions are usually of the form: 

 

op-code ra, rb, rc  
or  

op-code ra, rb, constant.  

 

In the diagram shown, X3 and Y3 are temporary registers to hold the values between 
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pipeline stages. X3 is loaded with operand value from the register file. Y3 is loaded with 

either a register value from the register file or a constant from the instruction. The 

operands are then available to the ALU. The ALU function is determined by decoding the 

op-code bits. The result of the ALU operation is stored in register Z4, and then stored in 

the destination register in the register write back stage. There is no activity in the memory 

access stage for ALU instructions. Note that Z5, IR3, IR4, and IR5 are not shown 

explicitly in the figure. The purpose of not including these registers is to keep the 

drawing simple. However, these registers will transfer values as instructions progress 

through the pipeline. This comment also applies to some other figures in this discussion. 

 

 
 

 

2. Load/Store instructions 

 

Load/Store instructions are usually of the form: 

 

op-code  ra,  constant(rb)  

 

The instruction is loaded into IR2 and the incremented value of the PC is loaded in PC2. 

In the next stage, X3 is loaded with the value in PC2 if the relative addressing mode is 

used, or the value in rb if the displacement addressing mode is used. Similarly, C1 is 
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transferred to Y3 for the relative addressing mode, and c2 is transferred to Y3 for the 

displacement addressing mode. The store instruction is completed once memory access 

has been made and the memory location has been written to. The load instruction is 

completed once the loaded value is transferred back to the register file. The following 

figure shows the schematic for a load instruction.  A similar schematic can be drawn for 

the store instruction. 

 
 

 

 

 

 

3. Branch Instructions 
Branch Instructions usually involve calculating the target address and evaluating a 

condition. The condition is evaluated based on the c2 field of the IR and by using the 

value in R[rc]. If the condition is true, the PC is loaded with the value in R[rb], otherwise 

it is incremented by 4 as usual. The following figure shows these details. 
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The complete pipelined data path 

 

The pipelined data path implementation diagrams shown earlier for the three SRC 

instruction categories must be combined and refined to get a working system. These 

details get complicated very quickly. A detailed combined diagram is shown in Figure 

5.7 of the text book. 

Control Signals for the Pipelined SRC 
 

We define the following signals for the SRC by grouping similar op-codes: 
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In most cases, the signals defined above are used in the same stage where they are 

generated. If that is not the case, a number used after the signal name indicates the stage 

where the signal is generated. 

 

Using these definitions, we can develop RTL statements for describing the pipeline 

activity as well as the equations for the multiplexer select signals for different stages of 

the pipeline. This is shown in the next diagram. 

 

Control Signals for different pipeline Stages 

 

Consider the RTL description of the Mp1 signal, which controls the input to the PC. It 

simply means that if the branch and cond signals are not activated, then the PC is 

incremented by 4, otherwise if both are activated then the value of R1 is copied in to the 

PC.  

 

The multiplexer Mp2 is used to decide which registers are read from the register file. If 

the store signal is activated then R[rb] from the instruction bits is read from the register 

file so that its value may be stored into memory, otherwise R[rc] is read from the register 

file. 

 

The multiplexer Mp3 is used to decide which registers are read from the register file for 

operand 2. If either rl or branch is activated then the updated value of PC2 is transferred 

to X3, otherwise if dsp or alu is activated, the value of R[ra] from the register file is 

transferred to the x3. In the same way, multiplexer Mp4 is used to select an input from 
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Y3. 

 

In the same way, multiplexer Mp4 is used to select an input for Y3. 

 
The multiplexer MP5 is used to decide which value is transferred to be written back to 

the register file. If the load signal is activated data from memory is transferred to Z5, 

however if the load signal is not activated then data from Z4 (which is the result of ALU) 

is transferred to Z5 which is then written back to the register file.   
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 Lecture No. 20 

Hazards in Pipelining 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                            Chapter 5 

Computer Systems Design and Architecture                                                  5.1.5, 5.1.6 

 
Summary 

 

 Structural RTL for Pipeline Stages 

 Instruction Propagation Through the Pipeline 

 Pipeline Hazards 

 Data Dependence Distance  

 Data Forwarding 

 Compiler Solution to Hazards 

 SRC Hazard Detection and Correction 

 RTL for Hazard Detection and Pipeline Stall 

 
Structural RTL for Pipeline Stages 
The Register Transfer Language for each phase is given as follows: 

 

Instruction Fetch 

 

    IR2   M [PC]; 

    PC2   PC+4; 

 

Instruction Decode & Operand fetch            

  X3l-s2:(rel2:PC2,disp2:(rb=0):?,(rb!=0):R[rb]),brl2:PC2,alu2:R[rb], 

  Y3  l-s2:(rel2:c1,disp2:c2),alu2:(imm2:c2,!imm2:R[rc]), 

  MD3 store2:R[ra],IR3  IR2,stop2:Run  0, 

  PC  !branch2:PC+4,branch2:(cond(IR2,R[rc]):R[rb],!cond(IR2,R[rc]):PC+4; 

 

ALU operation 

 

Z4  (I-s3: X3+Y3, brl3: X3, Alu3: X3 op Y3, 

MD4  MD3, 



Advanced Computer Architecture   

________________________________________________________________________ 

229 

 

IR4  IR3; 

 

Memory access 

 

Z5  (load4: M [Z4], ladr4~branch4~alu4:Z4), 

store4: (M [Z4]  MD4), 

IR5 IR4; 

 

Write back 

 

regwrite5: (R[ra]  Z5); 

 

Instruction Propagation through the Pipeline 

 
Consider the following SRC code segment flowing through the pipeline. The instructions 

along with their addresses are 

 

   200: add r1, r2, r3  

   204: ld r5, [4(r7) 

   208: br r6 

   212: str r4, 56 

   … 

   400 

 

We shall review how this chunk of code is executed. 

 

First Clock Cycle 

Add instruction enters the pipeline in the first cycle. The value in PC is 

incremented from 200 to 204.  

 

Second Clock Cycle 

Add moves to decode stage. Its operands are fetched from the register file and 

moved to X3 and Y3 at the end of clock cycle, meanwhile the Instruction ld r5, 

[4+r7] is fetched in the first stage and the PC value is incremented from 204 to 

208. 

 

Third Clock Cycle 

 

Add instruction moves to the execute stage, the results are written to Z4 on the 

trailing edge of the clock. Ld instruction moves to decode stage. The operands 

are fetched to calculate the displacement address. Br instruction enters the 

pipeline. The value in PC is incremented from 208 to 212.  

Fourth Clock Cycle 
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Add does not access memory. The result is written to Z5 at the trailing edge of 

clock. The address is being calculated here for ld. The results are written to Z4. 

Br is in the decode stage. Since this branch is always true, the contents of PC are 

modified to new address. Str instruction enters the pipeline. The value in PC is 

incremented from 212 to 216.  

 

 

Fifth Clock Cycle 

 

The result of addition is written into register r1. Add instruction completes. Ld 

accesses data memory at the address specified in Z4 and result stored in Z5 at 

falling edge of clock. Br instruction just propagates through this stage without 

any calculation. Str is in the decode stage. The operands are being fetched for 

address calculation to X3 and Y3. The instruction at address 400 enters the 

pipeline. The value in PC is incremented from 400 to 404.  
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Pipeline Hazards 
The instructions in the pipeline at any given time are being executed in parallel. This 

parallel execution leads to the problem of instruction dependence. A hazard occurs when 

an instruction depends on the result of previous instruction that is not yet complete.  

 

Classification of Hazards 

There are three categories of hazards 

1. Branch Hazard 

2. Structural Hazard 

3. Data Hazard 

 

Branch hazards 

The instruction following a branch is always executed whether or not the branch is taken. 

This is called the branch delay slot. The compiler might issue a nop instruction in the 

branch delay slot. Branch delays cannot be avoided by forwarding schemes. 

 Structural hazards 

A structural hazard occurs when attempting to access the same resource in different ways 

at the same time. It occurs when the hardware is not enough to implement pipelining 

properly e.g. when the machine does not support separate data and instruction memories. 

 

Data hazards 

Data hazard occur when an instruction attempts to access some data value that has not yet 

been updated by the previous instruction. An example of this RAW (read after write) data 

hazard is; 

 

200:  add r2, r3, r4 

204:  sub r7, r2, r6 

 

The register r2 is written in clock cycle 5 hence the sub instruction cannot proceed 

beyond stage 2 until the add instruction leaves the pipeline. 

 

Data Hazard Detection & Correction 

Data hazards can be detected easily as they occur when the destination register of an 

instruction is the same as the source register of another instruction in close proximity. To 

remedy this situation, dependent instructions may be delayed or stalled until the ones 

ahead complete. Data can also be forwarded to the next instruction before the current 

instruction completes, however this requires forwarding hardware and logic. Data can be 

forwarded to the next instruction from the stage where it is available without waiting for 

the completion of the instruction. Data is normally required at stage 2 (operand fetch) 

however data is earliest available at stage 3 output (ALU result) or stage 4 output 

(memory access result). Hence the forwarding logic should be able to transfer data from 

stage 3 to stage 2 or from stage 4 to stage 2. 
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Data Dependence Distance 
 

Designing a data forwarding unit requires the study of dependence distances. Without 

forwarding, the minimum spacing required between two data dependent instructions to 

avoid hazard is four. The load instruction has a minimum distance of two from all other 

instructions except branch. Branch delays cannot be removed even with forwarding.   

Table 5.1 of the text shows numbers related to dependence distances with respect to some 

important instruction categories. 

 

Compiler Solution to Hazards 
Hazards can be detected by the compiler, by analyzing the instruction sequences and 

dependencies. The compiler can inserts bubbles (nop instruction) between two 

instructions that form a hazard, or it could reorder instructions so as to put sufficient 

distance between dependent instructions. The compiler solution to hazards is complex, 

expensive and not very efficient as compared to the hardware solution 

SRC Hazard Detection and Correction 
The SRC uses a hazard detection unit. The hazard can be resolved using either pipeline 

stalls or by data forwarding. 

 

Pipeline stalls 

 

Consider the following sequence of instructions going  

through the SRC pipeline 

200:  shl  r6, r3, 2 

204:  str r3, 32 

208:  sub r2, r4,r5 

212:  add r1,r2,r3 

216:  ld r7, 48 

There is a data hazard between instruction three and four  

that can be resolved by using pipeline stalls or bubbles 

 

When using pipeline stalls, nop instructions are placed in between dependent instructions. 

The logic behind this scheme is that if opcode in stage 2 and 3 are both alu, and if ra in 

stage 3 is the same as rb or rc in stage 2, then a pause signal is issued to insert a bubble 

between stage 3 and 2. Similar logic is used for detecting hazards between stage 2 and 4 

and stage 4 and 5. 

 

 

Data Forwarding 
By adding data forwarding mechanism to the SRC data path, the stalls can be completely 

eliminated at least for the ALU instructions. The hazard detection is required between 

stages 3 and 4, and between stages 3 and 5. The testing and forwarding circuits employ 

wider IRs to store the data required in later stages. The logic behind this method is that if 

the ALU is activated for both 3 and 5 and ra in 5 is the same as rb in 3 then Z5 which 
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hold the currently loaded or calculated result is directly forwarded to X3. Similarly, if 

both are ALU operations and instruction in stage 3 does not employ immediate operands 

then value of Z5 is transferred to Y3. Similar logic is used to forward data between stage 

3 and 4. 

 

RTL for Hazard Detection and Pipeline Stall 
 

The following RTL expression detects data hazard between stage 2 and 3, then stalls 

stage 1 and 2 by inserting a bubble in stage 3 

 

    alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm2)): 

   (pause2, pause1, op30) 

 

Meaning: 

If opcode in stage 2 and 3 are both ALU, and if ra in stage 3 is same as rb or rc in stage 2, 

issue a pause signal to insert a bubble between stage 3 and 2 

 

Following is the complete RTL for detecting hazards among ALU instructions in 

different stages of the pipeline 

 

 

Data Hazard 

between 

RTL for detection and stalling 

Stage 2 and 3 alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm2)): 

    (pause2, pause1, op30) 

Stage 2 and 4 alu4&alu2&((ra4=rb2)~((ra4=rc2)&!imm2)): 

    (pause2, pause1, op30) 

Stage 2 and 5 alu5&alu2&((ra5=rb2)~((ra5=rc2)&!imm2)): 

    (pause2, pause1, op30) 
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Lecture 21 
 

Instruction Level Parallelism 
 
 

Reading Material 
Vincent P. Heuring&Harry F. Jordan                                                            Chapter 5 

Computer Systems Design and Architecture                                                     5.2 
 

Summary 

 
 Data Forwarding Hardware 

 Instruction Level Parallelism 

 Difference between Pipelining and Instruction-Level Parallelism 

 Superscalar Architecture 

 Superscalar Design 

 VLIW Architecture 

 

Maximum Distance between two instructions 

Example 

Read page no. 219 of Computer System Design and Architecture (Vincent 

P.Heuring, Harry F. Jordan) 

Data forwarding Hardware 
The concept of data forwarding was introduced in the previous lecture. 
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RTL for data 

forwarding in case of ALU instructions 

 

Dependence RTL 

 

Stage 3-5 alu5&alu3:((ra5=rb3):XZ5, 

(ra5=rc3)&!imm3: Y  Z5); 

Stage 3-4 alu4&alu3:((ra4=rb3):XZ4, 

(ra4=rc3)&!imm3: Y  Z4); 

 

 

 

Instruction-Level Parallelism 
Increasing a processor‟s throughput 

There are two ways to increase the number of instructions executed in a given time by a 

processor 

 By increasing the clock speed 

 By increasing the number of instructions that can execute in parallel 

 

Increasing the clock speed 
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• Increasing the clock speed is an IC design issue and depends on the advancements in 

chip technology.  

• The computer architect or logic designer can not thus manipulate clock speeds to 

increase the throughput of the processor.  

 

Increasing parallel execution of instructions 

The computer architect cannot increase the clock speed of a microprocessor however 

he/she can increase the number of instructions processed per unit time. In pipelining we 

discussed that a number of instructions are executed in a staggered fashion, i.e. various 

instructions are simultaneously executing in different segments of the pipeline. Taking 

this concept a step further we have multiple data paths hence multiple pipelines can 

execute simultaneously. There are two main categories of these kinds of parallel 

instruction processors VLIW (very long instruction word) and superscalar. 

 

 

The two approaches to achieve instruction-level parallelism are 

– Superscalar Architecture 

 A scalar processor that can issue multiple instructions simultaneously is said to be 

superscalar 

– VLIW Architecture 

 A VLIW processor is based on a very long instruction word. VLIW relies on 

instruction scheduling by the compiler. The compiler forms instruction packets which can 

run in parallel without dependencies. 

 

 

Difference between Pipelining and Instruction-Level Parallelism 
 

           Pipelining     Instruction-Level Parallelism 

 

Single functional unit 

 

Multiple functional units 

Instructions are issued sequentially 

 

Instructions are issued in parallel 

Throughput increased by overlapping the 

instruction execution 

Instructions are not overlapped but 

executed in parallel in multiple functional 

units 

Very little extra hardware required to 

implement pipelining 

Multiple functional units within the CPU 

are required 
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Superscalar Architecture 

 
A superscalar machine has following typical features 

• It has one or more IUs (integer units) , FPUs (floating point units), and BPUs (branch 

prediction units) 

• It divides instructions into three classes 

o Integer 

o Floating point 

o Branch prediction 

The general operation of a superscalar processor is as follows 

• Fetch multiple instructions 

• Decode some of their portion to determine the class 

• Dispatch them to the corresponding functional unit 

 

As stated earlier the superscalar design uses multiple pipelines to implement instruction 

level parallelism.  

 

Operation of Branch Prediction Unit 

 

• BPU calculates the branch target address ahead of time to save CPU cycles 

• Branch instructions are routed from the queue to the BPU where target address is 

calculated and supplied when required without any stalls 

• BPU also starts executing branch instructions by speculating and discards the results 

if the prediction turns out to be wrong 

 

Superscalar Design 

 

The philosophy behind a superscalar design is  

• to prefetch and decode as many instructions as possible before execution  

• and to start several branch instruction streams speculatively on the basis of this 

decoding 

• and finally, discarding all but the correct stream of execution 

 

The superscalar architecture uses multiple instruction issues and uses techniques such as 

branch prediction and speculative instruction execution, i.e. it speculates on whether a 

particular branch will be taken or not and then continues to execute it and the following 

instructions. The results are not written back to the registers until the branch decision is 

confirmed. Most superscalar architectures contain a reorder buffer. The reorder buffer 

acts like an intermediary between the processor and the register file. All results are 

written onto the reorder buffer and when the speculated course of action is confirmed, the 

reorder buffer is committed to the register file. 

 

Superscalar Processors 



Advanced Computer Architecture   

________________________________________________________________________ 

238 

 

 

Examples of superscalar processors 

 

o PowerPC 601 

o Intel P6 

o DEC Alpha 21164 

 

VLIW Architecture 
 

VLIW stands for “Very Long Instruction Word” typically 64 or 128 bits wide. The longer 

instruction word carries information to route data to register files and execution units. 

The execution-order decisions are made at the compile time unlike the superscalar design 

where decisions are made at run time. Branch instructions are not handled very efficiently 

in this architecture. VLIW compiler makes use of techniques such as loop unrolling and 

code reordering to minimize dependencies and the occurrence of branch instructions.    
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Lecture No. 22 
 

Microprogramming 
 

Reading Material 

 
Vincent P. Heuring&Harry F. Jordan                                                            Chapter 5 

Computer Systems Design and Architecture                                                      5.3 

 

Summary 

 Microprogramming  

 Working of a General Microcoded Controller 

 Microprogram Memory 

 Generating Microcode for Some Sample Instructions 

 Horizontal and Vertical Microcode Schemes 

 Microcoded 1-bus SRC Design 

 The SRC Microcontroller 

 

Microprogramming 
 

In the previous lectures, we have discussed how to implement logic circuitry for a control 

unit based on logic gates. Such an implementation is called a hardwired control unit. In a 

micro programmed control unit, control signals which need to be generated at a certain 

time are stored together in a control word. This control word is called a microinstruction. 

A collection of microinstructions is called a microprogram. These microprograms 

generate the sequence of necessary control signals required to process an instruction. 

These microprograms are stored in a memory called the control store. 

As described above microprogramming or microcoding is an alternative way to design 

the control unit. The microcoded control unit is itself a small stored program computer 

consisting of 

 Micro-PC 

 Microprogram memory 

 Microinstruction word 

 

 

Comparison of hardwired and microcoded control unit 
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Hardwired Control Unit Microcoded Control Unit 

The relationship between control 

inputs and control outputs is a series 

of Boolean functions. 

The control signals here are stored as words 

in a microcode memory. 

Hardwired control units are generally 

faster. 

Microcode units simplify the computer logic 

but it is comparatively slower. 

 

Working of a general microcoded controller 
 

A microcoded controller works in the same way as a small general purpose computer. 

1. Fetch a micro-instruction and increment micro-PC. 

2. Execute the instruction present in micro-IR. 

3. Fetch the next instruction and so on… 

 

The microcoded control unit is like 

a small computer in itself. It 

consists of a microprogram 

memory, which is read using a 

micro program counter. The micro 

PC is controlled by the 

microprogram controller. Values of 

the micro PC depends on a 4 to 1 

MUX. The source may be the 

incremented micro PC value, or a 

calculated branch value, or a value 

derived by decoding an opcode for 

an instruction. The microprogram 

memory writes the control word at 

the chosen address into the micro 

instruction register. This control word is basically the set of all the control signals needed 

to execute the instruction at that particular instant. 
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Fields in the micro instruction 

 

 

 

 

C Bits 

These form the control signal field 

 

M Bits 
These form the branch address field 

 

B Bits 

These form the branch control field. 

 

Loading the micro-PC 
The micro-PC can be loaded from one of the four possible sources  

• Simple increment Steps sequentially from microinstruction to microinstruction 

• Lookup table A lookup table maps the opcode field to the starting address of the 

microcode routine that generates control signals. 

• External source Initializes micro-PC to begin an operation e.g. interrupts service, reset 

etc. 

• Branch addresses Jumps anywhere in the microprogram memory on the basis of 

conditional or unconditional branch. 

 

Microprogram Memory 
 

• This small memory contains microroutines for all the instructions in the ISA 

• The micro-PC supplies the address and it returns the control word stored at that 

address 

• It is much faster and smaller than a typical main memory 
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Layout of a typical microprogram memory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generating Microcode for Some Sample Instructions 
 
• The control word for an instruction is used to generate the equivalent microcode 

sequence 

• Each step in RTL corresponds to a microinstruction executed to generate the control 

signals.  

 

Each bit in the control words in the microprogram memory represents a control signal. 

The value of that bit decides whether the signal is to be activated or not. 

 

Example: Control Signals for the sub Instruction 

 

The first three addresses from 100 to 102 represent microcode for instruction fetch and 

the last three addresses from 203 to 205 represent microcode for sub instruction. In the 

first cycle at address 100, the control signal PCout, LMAR, LC, and INC4 are activated 

and all other signals are deactivated. All these control signals are for the SRC processor. 

So, if the micro-PC contains 100, the contents of microprogram memory are copied into 

the micro IR.  This corresponds to the structural RTL description of the T0 clock during 

instruction fetch phase. In the same way, the content of address 101 corresponds to T1, 

and the content of address 102 corresponds to T2.  
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Microprogram Controller functions: Branching and looping 

 

• Microprogram controller controls the sequence of the flow of microinstructions. 

• The inputs to the microcontroller are from the branch control fields specified in the           

microcode word. 

• Its output controls the 4 to 1 multiplexer inside the microcoded control unit. 

• It implements conditional execution and both conditional and unconditional branch 
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If a branch instruction is encountered within the microprogram hardwired logic selects 

the branch address as the source of micro-PC using 4 to 1 mux. This hardwired logic 

caters for all branch instructions including branch if zero. 

 

 

4-1 Multiplexer 

 

The multiplexer supplies one of the four possible values to the micro-PC 

The incremented value of the micro-PC is used when dealing with the normal flow of 

microinstructions. 

The opcode from the instruction is used to set the micro-PC when a microroutine is 

initially being loaded.  
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External address is used when it is required to reset the microprogram controller. 

Branch address is set into the micro-PC when a branch microinstruction is encountered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to form a 

branch 

 

• A branch can be 

implemented 

by choosing 

one alternative from each of the following two lists. 

• This scheme provides flexibility in choosing branches as we can form any combination 

of conditions and addresses.  
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Address 

From IR 

External address 

Branch Address 

 

 

 

 

 

 

 

 

 

 

Microcode Branching Examples 

 

Following is an example of branch instructions in microcode 
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Branching  

Action 

 

Equivalent  

C  

construct 

400 00 0 0 0 0 0 … xxx No branch,goto next 

address in sequence-401 

{…}; 

401 01 1 0 0 0 0 … xxx To the address supplied 

by opcode 

{…}; goto 

initial address; 

402 10 0 0 1 0 0 … xxx To external address if Z 

flag is set 

{…}; if Z then 

goto Ext. Add. 

403 11 0 0 0 0 1 … 200 To 200 if N flag is set, 

else to 404 

{…}; if N then 

goto Label1; 

404 11 0 0 0 1 0 000 406 To 406 if N is false, else 

to 405 

While (N) 

{...};              

405 11 1 0 0 0 0 … 404 Branch to 404 While contd… 

 

Similarity between microcode and high level programs 
• Any high level construct such as if-else, while, repeat etc. can be implemented using 

microcode  

Condition 

Unconditional 

Not zero 

Zero 

Positive 

Negative 
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• A variety of microcode compilers similar to the high level compilers are available that 

allow easier programming in microcode 

• This similarity between high level language and microcode simplifies the task of 

controller design.    

 

Horizontal and vertical microcode schemes 
In horizontal microcode schemes, there are no intermediate decoders and the control 

word bits are directly connected to their destination i.e. each bit in the control word is 

directly connected to some control signal and the total number of bits in the control word 

is equal to the total number of control signals in the CPU. 

Vertical microcode schemes employ an extra level of decoding to reduce the control 

word width. From an n bit control word we may have 2
n 

bit signal values. 

However, a completely vertical scheme is not feasible because of the high degree of fan 

out.  

Horizontal Microcode Scheme   

 
Vertical Microcode Scheme 
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Microcoded 1-bus SRC design 

In the SRC the bits from the opcode in the instruction register are decoded to fetch the 

address of the suitable microroutine from the microprogram memory. The microprogram 

controller for the SRC microcoded control unit employs the logic for handling exceptions 

and reset process. Since the SRC does not have any condition codes, we use the CON and 

n signals instead of N and Z flags to control branches in case of branch if equal to zero or 

branch if less than instructions. 

The SRC Microprogram Controller 

• The microprogram controller for the SRC microcoded control unit employs the logic 

for handling exceptions and reset process 

• Since the SRC does not have any condition codes, we use the CON and n signals 

instead of N and Z flags to control branches 
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s 

 

Microcode for some SRC instructions 
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           RTL 

300 00 0 0 0 0 0 1 1 … xxx MAR PC:    C  PC + 4; 

 

301 00 0 0 0 0 0 0 0 … xxx MBR M[MAR]: PC  C; 

302 01 1 0 0 0 0 0 0 … xxx IR,Micro-PCMBR<31…27>; 

400 00 0 0 0 0 0 0 0 … xxx A    R[rb]; 

401 00 0 0 0 0 0 0 0 … xxx C   A + R[rc]; 

402 11 1 0 0 0 1 0 0 … 300 R[ra]  C; Micro-PC    300; 

 

Assume the first control word at address 300. The RTL of this instruction is MAR  PC 

combined with C PC+4. To facilitate these actions the PCout signal bit and the LMAR 
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signal bit are set to one, so that the value of the PC may be written to the internal 

processor  bus and written onto the MAR. The instructions at 300, 301 and 302 form the 

microcode for instructions fetch. If we examine the RTL we can see all the functionality 

of the fetch instruction. The value of PC is incremented, the old value of PC is sent to 

memory, the instruction from the sent address is loaded into memory buffer register. 

Then the opcode of the fetched instruction is used to invoke the appropriate microroutine. 

Alternative approaches to microcoding 
• Bit ORing 

• Nanocoding 

• Writable Microprogram Memory 

• Subroutines in Microprogramming 
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Lecture No. 23 
 

I/O Subsystems 

 
Reading Material 
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 Introduction to I/O Subsystems 

 Major Components of an I/O Subsystems 

 Computer Interface 

 Memory Mapped I/O versus Isolated I/O 

 Considerations during I/O Subsystem Design 

 Serial and Parallel Transfers 

 I/O Buses 
 

Introduction to I/O Subsystems 

 

This module is about the computer‟s input and output. As we have seen in the case of 

memory subsystems, that when we use the terms “ read”  and “write”, then these terms 

are from the CPU‟s point of view. Similarly, when we use the terms “input” and “output” 

then these are also from the CPU‟s point of view. It means that when we are talking about 

an input cycle, then the CPU is receiving data from a peripheral device and the peripheral 

device is providing data. Similarly, when we talk about an output cycle then the CPU is 

sending data to a peripheral device and the peripheral device is receiving data. I/O 

Subsystems are similar to memory subsystems in many aspects. For example, both 

exchange bits or bytes. This transfer is usually controlled by the CPU. The CPU sends 

address information to the memory and the I/O subsystems. Then these subsystems 

decode the address and decide which device should be involved in the transfer. Finally 

the appropriate data is exchanged between the CPU and the memory or the I/O device. 

Memory and I/O subsystems differ in the following ways: 

1. Wider range of data transfer speed:  

I/O devices can be very slow such as a keyboard in which case the interval between 

two successive bytes (or keystrokes) can be in seconds. On the other extreme, I/O 
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devices can be very fast such as a disk drive sending data to the CPU or a stream of 

packets arriving over a network, in which case the interval between two successive 

bytes can be in microseconds or even nanoseconds. While I/O devices can have such 

a wide range of data transfer speed compared to the CPU‟s speed, the case of memory 

devices is not so. Even if a memory device is slow compared to the CPU, the CPU‟s 

speed can be made compatible by inserting wait states in the bus cycle. 

 

2. Asynchronous activity:  

Memory subsystems are almost always synchronous. This means that most memory 

transfers are governed by the CPU‟s clock. Generally this is not the case with I/O 

subsystems. Additional signals, called handshaking signals, are needed to take care of 

asynchronous I/O transfers. 

3. Larger degradation in data quality:  

Data transferred by I/O subsystems can carry more noise. As an example, telephone 

line noise can become part of the data transferred by a modem. Errors caused by 

media defects on hard drives can corrupt the data. This implies that effective error 

detection and correction techniques must be used with I/O subsystems. 

4. Mechanical nature of many I/O devices:  

Many I/O devices or a large portion of I/O devices use mechanical parts which 

inherently have a high failure rate. In case an I/O device fails, interruptions in data 

transfer will occur, reducing the throughput. As an example, if a printer runs out of 

paper, then additional bytes cannot be sent to it. The CPU‟s data should be buffered 

(or kept in a temporary place) till the paper is supplied to the printer, otherwise the 

CPU will not be able to do anything else during this time. 

To deal with these differences, special software programs called device drivers are made 

a part of the operating system. In most cases, device drivers are written in assembly 

language. 

You would recall that in case of memory subsystems, each location uses a unique address 

from the CPU‟s address space. This is generally not the case with I/O devices. In most 

cases, a group or block of contiguous addresses is assigned to an I/O device, and data is 

exchanged byte-by-byte. Internal buffers (memory) within the device store this data if 

needed. 

In the past, people have paid a lot of attention to improve the CPU‟s performance, as a 

result of which the performance improvement of I/O subsystems was ignored. (I/O 

subsystems were even called the “orphans” of computer architecture by some people). 

Perhaps, many benchmark programs and metrics that were developed to evaluate 

computer systems focused on the CPU or the memory performance only. Performance of 

I/O subsystems is as important as that of the CPU or the memory, especially in today‟s 

world. For example, the transaction processing systems used in airline reservation 

systems or the automated teller machines in banks have a very heavy I/O traffic, 

requiring improved I/O performance. To illustrate this point, look at the following 

example.  

Suppose that a certain program takes 200 seconds of elapsed time to execute.  Out of 

these 200 seconds, 180 seconds is the CPU time and the rest is I/O time. If the CPU 
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performance improves by 40% every year for the next seven years because of 

developments in technology,  but the I/O performance stays the same, let us look at the 

following table, which shows the situation at the end of each year. Remember that  

Elapsed time = CPU time + I/O time. 

This gives us the I/O time = 200 – 180 = 20 seconds at the beginning, which is 10 % of 

the elapsed time.  

 

Year # CPU  

Time 

I/O 

Time 

Elapsed 

Time 

   I/O Time x100  % 

Elapsed Time 

0 180 20 200 10 % 

1 129 20 149 13.42 % 

2 92 20 112 17.85 % 

3 66 20 86 23.25 % 

4 47 20 67 29.85 % 

5 34 20 54 37.03 % 

6 24 20 44 45.45 % 

7 17 20 37 54.05 % 

 

It can be easily seen that over seven years, the I/O time will become more than 50 % of 

the total time under these conditions.  Therefore, the improvement of I/O performance is 

as important as the improvement of CPU performance. I/O performance will also be 

discussed in detail in a later section. 

 

Major components of an I/O subsystem 
 

I/O subsystems have two major parts: 

 The I/O interface, which is the electronic circuitry that connects  the CPU to the 

I/O device. 

 Peripherals, which are the devices used to communicate with the  CPU, for 

example, the keyboard, the monitor, etc. 
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Computer Interface 
 

A Computer Interface is a piece of hardware whose primary purpose is to connect 

together any of the following types of computer elements in such a way that the signal 

levels and the timing requirements of the elements are matched by the interface. Those 

elements are:  

 The processor unit  

 The memory subsystem(s)  

 Peripheral (or I/O) devices  

 The buses (also called "links")  

In other words, an interface is an electronic circuit that matches the requirements of the 

two subsystems between which it is connected. An interface that can be used to connect 

the microcomputer bus to peripheral devices is called an I/O Port. I/O ports serve the 

following three purposes:  

 Buffering (i.e., holding temporarily) the data to and from the computer bus.  

 Holding control information that dictates how a transfer is to be conducted.  

 Holding status information so that the processor can monitor the activity of the 

interface and its associated I/O element.  

This control information is usually provided by the CPU and is used to tell the device 

how to perform the transfer, e.g., if the CPU wants to tell a printer to start a new page, 

one of the control signals from the CPU can be used for a paper advance command, 

thereby telling the printer to start printing from the top of the next page.  
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In the same way the CPU may send a control signal to a tape drive connected in the 

system asking it to activate the rewind mechanism so that the start of the tape is  

positioned for access by the CPU. Status information from various devices helps the CPU 

to know what is going on in the system.  Once again, using the printer as an example, if 

the printer runs out of paper, this information should be sent to the CPU immediately.  In 

the same way, if a hard drive in the system crashes, or if a sector is damaged and cannot 

be read, this information should also be conveyed to the CPU as soon as possible 

The term “buffer” used in the above discussion also needs to be understood. In most 

cases, the word buffer refers to I/O registers in an interface where data, status or control 

information is temporarily stored. A block of memory locations within the main memory 

or within the peripheral devices is also called a buffer if it is used for temporary storage. 

Special circuits used in the interfaces for voltage/current matching, at the input and the 

output, are also called buffers.  

The given figure shows a block diagram of a typical I/O subsystem connected with the 

other components in a computer.   The thick horizontal line is the system bus that serves 

as a back-bone in the entire computer system. It is used to connect the memory 

subsystems as well as the I/O subsystems together. The CPU also connects to this bus 

through a “bus interface unit”, which is not shown in this figure.  Four I/O modules are 

shown in the figure.  One module is used to connect a keyboard and a mouse to the 

system bus. A second module connects a monitor to the system bus. Another module is 

used with a hard disk and a fourth I/O module is used by a modem.  All these modules 

are examples of I/O ports. A somewhat detailed view of these modules is shown in the 

next figure. 

As we already know that the system bus actually consists of three buses, namely the 
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address bus, the data bus and the control bus. These three buses are being applied to the 

I/O module in this figure. At the bottom, we see a set of data, status and control lines 

from each “device interface logic” block.  Each of these sets connects to a peripheral 

device.  I/O decoding logic is also shown in this figure 
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Memory Mapped I/O versus Isolated I/O 

Although this concept was explained earlier as well, it will be useful to review it again in 

this context.  In isolated I/O, a separate address space of the CPU is reserved for I/O 

operations.  This address space is totally different from the address space used for 

memory devices. In other words, a CPU has two distinct address spaces, one for memory 

and one for input/output. Unique CPU instructions are associated with the I/O space, 

which means that if those instructions are executing on the CPU, then the accessed 

address space will be the I/O space and hence the devices mapped on the I/O space. The 

x86 family with the in and the out instructions is a well known example of this situation. 

Using the in instruction, the Pentium processor can receive information from a peripheral 

device, and using the out instruction, the Pentium processor can send information to a 

peripheral device. Thus, the I/O devices are mapped on the I/O space in case of the 

Pentium processor. In some processors, like the SRC, there is no separate I/O space.  In 

this case, some address space out of the memory address space must be used to map I/O 

devices. The benefit will be that all the instructions which access memory can be used for 

I/O devices.  There is no need for including separate I/O instructions in the ISA of the 

processor.  However, the disadvantage will be that the I/O interface will become 
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complex. If partial decoding is used to reduce the complexity of the I/O interface, then a 

lot of memory addresses will be consumed. The given figure shows the memory address 

space as well as the I/O address space for the Pentium processor.  The I/O space is of size 

64 Kbytes, organized as eight banks of 8 Kbytes each. 

A similar diagram for the FALCON-A was shown earlier and is repeated here for easy 

reference. 

The next question to be answered is how the CPU will differentiate between these two 

address spaces. How will the system components know whether a particular transfer is 

meant for memory or an I/O device? The answer is simple: by using signals  

 

from the control bus, the CPU will indicate which address space is meant during a 

particular transfer.  Once again, using the Pentium as an example, if the in instruction is 

executing on the processor, the IOR# signal will become active and the MEMR# signal 

will be deactivated.  For a mov instruction, the control logic will activate the MEMR# 

signal instead of the IOR# signal.  

 

Considerations during I/O Subsystem Design 
 

Certain things must be taken care of during the design of an I/O subsystem. 

Data location:  

The designer must identify the device where the data to be accessed is available, the 

address of this device and how to 

collect the data from this device. For 

example, if a database needs to be 

searched for a record that is stored in 

the fourth sector of the second track 

of the third platter on a certain hard 

drive in the system, then this 

information is related to data location.  

The particular hard drive must be 

selected out of the possibly many hard 

drives in the system, and the address 

of this record in terms of platter 

number, track number and sector 

number must be given to this hard 

drive.  

Data transfer:  

This includes the direction of transfer 

of data; whether it is out of the CPU or into the CPU, whether the data is being sent to the 

monitor or the hard drive, or whether it is being received from the keyboard or the mouse. 

It also includes the amount of data to be transferred and the rate at which it should be 

transferred. If a single mouse click is to be transferred to the CPU, then the amount of 

data is just one bit; on the other hand, a block of data for the hard drive may be several 

kilo bytes.  Similarly, the rate of the transfer of data to a printer is very different from the 
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transfer rate needed for a hard drive. 

Data synchronization: 

This means that the CPU should input data from an input device only when the device is 

ready to provide data and send data to an output device only when it is ready to receive 

data.  

There are three basic schemes which can be used for synchronization of an I/O data 

transmission: 

 Synchronous transmission 

 Semi-synchronous transmission 

 Asynchronous transmission 

Synchronous transmission:  

This can be understood by looking at the waveforms shown in Figure A. 

M stands for the bus master and S stands for the slave device on the bus. The master and 

the slave are assumed to be permanently connected together, so that there is no need for 

the selection of the particular slave device out of the many devices that may be present in 

the system. It is also assumed that the slave device can perform the transfer at the speed 

of the master, so no handshaking signals are needed.  

 

At the start of the transfer operation, the master activates the Read signal, which indicates 

to the slave that it should respond with data. The data is provided by the slave, and the 

master uses the Enable signal to latch it. All 

activity takes place synchronously with the 

system clock (not shown in the figure). 

A familiar example of synchronous 

transfer is a register-to-register transfer 

within a CPU. 

Semi-synchronous transmission:  

Figure B explains this type of transfer. 

All activity is still synchronous with 

the system clock, but in some 

situations, the slave device may not be 

able to provide the data to the master 

within the allotted time. The additional 

time needed by the slave, can be 

provided by adding an integral number 

of clock periods to the master‟s cycle 

time. 

The slave indicates its readiness by 

activating the complete signal. Upon receiving this signal, the master activates the Enable 

signal to latch the data provided by the slave. Transfers between the CPU and the main 

memory are examples of semi-synchronous transfer. 

Asynchronous transmission: 

This type of transfer does not require a common clock. The master and the slave operate 

at different speeds. Handshaking  

Figure A 

Figure A 

Figure B 
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signals are necessary in this case, and are used to coordinate the data transfer between the 

master and the slave as shown in the 

Figure C. 

When the master wants to initiate a 

data transfer, it activates its Ready 

signal. The slave detects this signal, 

and if it can provide data to the 

master, it does so and also activates 

its Acknowledge signal. Upon 

receiving the Acknowledge signal, 

the master uses the Enable signal to 

latch the incoming data .The master 

then deactivates its Ready line, and in 

response to it, the slave removes its 

data and deactivates its Acknowledge 

line. 

In all the three cases discussed above, the waveforms correspond to an “input” or a 

“read”  

operation. A similar explanation will apply to an “output” or a “write” operation. It 

should also be noted that the latching of the incoming data can be done by the master 

either by using the rising edge of the Enable signal or by using its falling-edge. This will 

depend on the way the intermediate circuitry between the master and the slave is 

designed.  

Serial and Parallel Transfers 

There are two ways in which data can be transferred between the CPU and an I/O device: 

serial and parallel. 

Serial Transfer, or serial communication of data between the CPU and the I/O devices, 

refers to the situation when all the data bits in a "piece of information", (which is a byte 

or word mostly), are transferred one bit at a time, over a single pair of wires.  

Advantages:  

 Easy to implement, especially by using UARTs
4
 or USARTs

5
.  

 Low cost because of less wires.  

 Longer distance between transmitter and receiver. 

Disadvantages:  

 Slow by its very nature.  

 Inefficient because of the associated overhead, as we will see when we discuss the 

serial wave forms. 

Parallel Transfer, or parallel communication of data between the CPU and the I/O 

devices, refers to the situation when all the bits of data (8 or 16 usually), are transferred 

over separate lines simultaneously, or in parallel.  

Advantages:  

                                                 
4
 Universal Asynchronous Receiver Transmitter. 

5
 Universal Synchronous Asynchronous Receiver Transmitter. 

Figure C 
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 Fast (compared to serial communication) 

Disadvantages:  

 High cost (because of more lines).  

 Cost increases with distance.  

 Possibility of interference (noise) increases with distance.  

Remember that the terms "serial" and "parallel" are with respect to the computer I/O 

ports and not with respect to the CPU.  The CPU always transfers data in parallel.  

Types of serial communication 

There are two types of serial communication: 

            Asynchronous:  

 Special bit patterns separate the characters.  

 "Dead time" between characters can be of any length.  

 Clocks at both ends need not have the same frequency (within permissible 

limits).  

Synchronous:  

 Characters are sent back to back.  

 Must include special "sync" characters at the beginning of each message.  

 Must have special "idle" characters in the data stream to fill up the time 

when no information is being sent.  

 Characters must be precisely spaced.  

 Activity at both ends must be coordinated by a single clock. (This implies 

that the clock must be transmitted with data).  

 

 

The "maximum information rate" of a synchronous line is higher than that of an 

asynchronous line with the same "bit rate", because the asynchronous transmission must 

use extra bits with each character. Different protocols are used for serial and parallel 

transfer. A protocol is a set of rules understood by both the sender and the receiver. In 

some cases, these protocols can be predefined for a certain system.   As an alternate, 

some available standard protocols can be used. 

Error conditions related to serial communication 

(Some related to synchronous transmission, some to asynchronous, and some to both).  

 Framing Error: is said to occur when a 0 is received instead of a stop bit (which is 

always a 1). It means that after the detection of the beginning of a character with a 

start bit, the appropriate number of stop bits was not detected. [A]  

 Parity Error: is said to occur when the parity* of the received data is not the same 

as it should be. [B] (PARITY is equivalent to the number of 1's; it is either EVEN 

or ODD. A PARITY BIT is an extra bit added to the data, for the purpose of error 

detection and correction. If even parity is used, the parity bit is set so that the total 

number of 1‟s, including the parity bit, is even. The same applies to odd parity.) 

 Overrun Error: means that the prior character that was received, was not yet read 

from the USART's "receive data register" by the CPU, and is overwritten by the 
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new received character. Thus the first character was lost, and should be 

retransmitted. [A] 

 Under-run Error: If a character is not available at the beginning of an interval, an 

under-run is said to occur. The transmitter will insert an idle character till the end 

of the interval. [S] 

I/O Buses 
The block diagram of a general purpose computer system that has been referred to 

repeatedly in this course has three buses in addition to the three most important blocks. 

These three buses are collectively referred to as the system bus or the computer bus
6
. The 

block diagram is repeated here for an easy reference in Figure 1. 

 
Another organization that is used in modern computers is shown in Figure 2. It has a 

memory bus for connecting the CPU to the memory subsystem. This bus      

is separate from the I/O bus that is used to connect peripherals and I/O devices to the 

                                                 
6
 In some cases, the external CPU bus is the same as the system bus, especially in the case of small, 

dedicated systems. However, for most systems, there is a “bus interface unit” between the CPU and the 

system bus. The bus interface unit is not shown in the figure. 

Figure 1 
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system.   

Examples of I/O buses include the PCI bus and the ISA bus. These I/O buses provide an 

“abstract interface” that can be used for interfacing a large variety of peripherals to the 

system with minimum hardware. It is also possible to standardize I/O buses, as done by 

several agencies, so that third party manufacturers can build add-on sub systems for 

existing architectures.  

The location of these I/O buses may be different in different computers.Earlier generation 

computers used a single bus over which the CPU could communicate with the memory as 

well as the I/O devices. This meant that the bandwidth of the bus was shared between the 

memory and I/O devices. However, with the passage of time, computer architects drifted 

towards separate memory and I/O buses, thereby giving more flexibility to users wanting 

to upgrade their existing systems. 

 

 
A main disadvantage of I/O buses (and the buses in general) is that every bus has a fixed 

bandwidth which is shared by all devices on the bus. Additionally, electrical constraints 

like transmission line effects and bus length further reduce the bandwidth. As a result of 

this, the designer has to make a decision whether to sacrifice interface simplicity (by 

connecting more devices to the bus) at the cost of bandwidth, or connect fewer devices to 

the bus and keep things simple to get a better bandwidth. This can be explained with the 

help of an example. 

Figure 2 
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Example # 1 
Problem statement: 

Consider an I/O bus that can transfer 4 bytes of data in one bus cycle. Suppose that a 

designer is considering to attach the following two components to this bus: 

Hard drive, with a transfer rate of 40 Mbytes/sec 

Video card, with a transfer rate of 128 Mbytes/sec.  

What will be the implications? 

Solution: 

The maximum frequency of the bus is 30 MHz
7
. This means that the maximum 

bandwidth of this bus is 30 x 4 = 120 Mbytes/sec.  Now, the demand for bandwidth from 

these two components will be 128 + 40 =168 Mbytes/sec which is more than the 120 

Mbytes/sec that the bus can provide.  Thus, if the designer uses these two components 

with this bus, one or both of these components will be operating at reduced bandwidth. 

Bus arbitration: 

Arbitration is another issue in the use of I/O buses.  Most commercially available I/O 

buses have protocols defining a number of things, for example how many devices can 

access the bus, what will happen if multiple devices want to access the bus at the same 

time, etc. In such situations, an “arbitration scheme” must be established. As an example, 

in the SCSI
8
 specifications, every device in the system is assigned an ID which identifies 

the device to the “bus arbiter”. If multiple devices send a request for the bus, the device 

with the highest priority will be given access to the bus first. Such a scheme is easy to 

implement because the arbiter can easily decide which device should be given access to 

the bus, but its disadvantage is that the device with a low priority will  

 

 

not be able to get access to the bus
9
.  An alternate scheme would be to give the highest 

priority to the device that has been waiting for the longest time for the bus. As a result of 

this arbitration, the access time, or the latency, of such buses will be further reduced.  

Details about the PCI and some other buses will be presented in a separate section. 

Example # 2 
Problem statement: 

If a bus requires 10 nsec for bus requests, 10 nsec for arbitration and the average time to 

complete an operation is 15 nsec after the access to the bus has been granted, is it 

possible for such a bus to perform 50 million IOPS? 

Solution: 

For 50 million IOPS, the average time for each IOP is 1 / (50 x 10
6
) =20 nsec.  Given the 

information about the bus, the sum of the three times is 10 + 10 + 15 = 35 nsec for a 

complete I/O operation.  This means that the bus can perform a maximum of 1 / (35 x 10
-

9
) = 28.6 million IOPS.   

Thus, it will not be able to perform 50 million IOPS. 

                                                 
7
 These numbers correspond to an I/O bus that is relatively old. Modern systems use much faster buses than 

this. 
8
 Small Computer System Interface. 

9
 Such a situation is called “starvation”. 
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Designing Parallel I/O Ports 
 

This section is about designing parallel input and output ports.  As you already know 

from the previous discussion, an interface that is used to connect the computer bus with 

I/O devices is called an I/O port. This I/O port can be connected directly to the computer 

bus (also called the system bus) or through an intermediate bus called the I/O bus. This 

intermediate bus is also called the expansion bus or the peripheral bus. In any case, the 

following general information about I/O bus cycles on a typical CPU should be kept in 

mind: At the start of a particular bus cycle (which will be an I/O bus cycle in this case), 

the CPU places an address on its address bus. This address will identify the I/O device to 

be involved in the transfer. After some time the CPU will activate certain control signals, 

which will indicate whether the particular I/O bus cycle, is an I/O read or an I/O write 

cycle. Based on these control signals, in case of I/O read cycle, the CPU will be 

expecting data from the selected input device over the data bus, and for an I/O write cycle 

the CPU will provide data to the selected device over the data bus. At the end of this I/O 

bus cycle, the address (and data) information will be removed from the buses and the 

control signals will be reset.   It can be easily understood from this discussion that we 

must match the timing requirements of the I/O ports to be designed with the timing 

parameters of the given CPU. Additionally, the voltage and current requirements of the 

I/O ports must be matched with the voltage and current specifications of the CPU.  For 

simplicity, we ignore the voltage and current matching details in this discussion and only 
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focus on the logic levels and timing aspects of the design. Voltage and current related 

discussions are the topic of an electronics course. 

Thus, there are two important functions which should be built into I/O ports. 

      1. Address decoding 

2. Data isolation for input ports or data capturing for output ports. 

  

1. Address decoding:  Since every I/O port has a unique identifier associated with it, 

(which is called its address, and no other port in the system should have the same 

address), by monitoring the system address bus, the I/O port knows when it is its turn to 

participate in a transfer.  At this time, the address decoder within the I/O port generates 

an asserted output which can be applied to the enable input of tri-state buffers in input 

ports or the latch enable input of latches in output ports.  

 

 
 

Our definition of an address decoder: 

An "Address Decoder" is a combinational (logic) circuit with n + r inputs and a single 

output, where 

n = the number of address lines into the decoder, and 

r = the number of control lines into the decoder.  

The output fD is active only when the corresponding address is present on the n address 

lines and the corresponding r control lines hold the "proper" (active or inactive) value. fD 

is inactive for all other situations. 

Suggestions for address decoder design: 
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1.1 Start by thinking of the address decoder as a “big AND gate”.  We will call this a 

“skeleton address decoder” or SAD.  The output of the SAD will be active only when the 

correct address is present on the system address bus and the relevant control bus signals 

hold the proper values.  At all other times, the output of the SAD should be deactivated. 

1.2 Always write the port address of the port to be designed in binary. Associate the 

CPU‟s address lines with each bit. Those lines which are zero will be inverted before 

being fed into the “big AND gate”; other address lines will not be inverted. 

1.3 List the relevant control signals for the system to which the port is to be attached. If 

the “proper” value of the signal is 0, it should be inverted before applying to the SAD, 

otherwise it is fed directly into the SAD. 

1.4 Determine whether the decoder output should be active high or low.  This will depend 

on the type of latch or buffer used in the design. If an active low decoder output is 

needed, invert the output from the “big AND gate”. 

1.5 Once the logic for the address decoder is established, the SAD can be implemented 

using any of the available methods of logic design.  For example, HDL code in Verilog or 

VHDL can be generated and the address decoder can be implemented using PLDs.  

Alternately, the SAD can be implemented using SSI building blocks. 

2. Data isolation or capturing: For input ports, the in coming data should be placed on 

the data bus only during the I/O read bus cycle. At all other times, this data should be 

isolated from the data bus otherwise it will cause “bus contention”. Tri-state buffers are 

used for this purpose. Their input lines are connected to the peripheral device supplying 

data and their output lines are connected to the data bus. The common enable line of such 

buffers is driven with the output of the SAD. If this enable is active low, the output of the 

big AND gate in the SAD should be inverted, as described earlier. 

 

For output ports, data is made available for the peripheral device at the data bus during 

the I/O write bus cycle. During other bus cycles, this data will be removed from the data 

bus by the processor. Latches (or registers) are used for this purpose. Their input lines are 

connected to the system data bus and their output lines are connected to the peripheral 

device receiving data. The common clock (or latch enable) line of such latches is driven 

with the output of the SAD. If this clock is active low, the output of the big AND gate in 

the SAD should be inverted. 

Example # 1 
Problem Statement:  

Design a 16-bit parallel output port mapped on address DEh of the I/O space of the 

FALCON-A CPU. 

Solution:  

Using the guidelines mentioned above, we start with a “big AND gate” (SAD) and write 

the address to be decoded (DEh) in binary. 
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Thus, DEh → 1101 1110 b. Associating one CPU address line with each bit, we get A0 = 

0, A1=1, etc as shown in the table below. 

Because the I/O space on the FALCON-A is only 256 bytes, address lines A15 .. A8 are 

don‟t cares, and will not be used in this design. 

  

1 1 0 1 1 1 1 0 

A7 A6 A5 A4 A3 A2 A1 A0 

 

Thus, A0 and A5 will be applied to the “big AND gate” after inversion.  The remaining 

address lines will be connected directly to the inputs of the SAD. 

 
Next, we look at the relevant control signals. The only signal which should be used in this 

case is IOW#.  A logic 0 (zero) on this line indicates that it is active.  Thus, it should be 

inverted before being applied to the input of the SAD. 

We can easily see that our SAD intuitively conforms to the way we defined an address 

decoder.  Its output is a 1 only when the address (xxxx xxxx 1101 1110 b) is present on 

the FALCON-A‟s address bus during an I/O write cycle (By the way, this will take place 

when the instruction out reg, addr with addr=DEh or 222d is executing on the 

FALCON-A). At all other times, its output will be inactive.  
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To make things simple, we use a circle (or a bubble) to indicate an inverter, as shown 

.Since this is a 16-bit output port, we will use two 8-bit registers to capture data from the 

FALCON-A‟s data bus. The output of the SAD will be connected to the enable inputs of 

the two registers. The D-inputs of the registers will be connected to the data bus and the 

Q outputs of the registers will be connected to the peripheral device. 

 

 
 

 

Practical implementation of the SAD 
 

Our SAD in this design is an AND gate with 9 inputs.  Using SSI chips, we can 

implement this SAD using an 8-input AND gate and a 2-input AND gate as shown in the 

figure shown below. 

Displaying output data using LED branches: 

An “LED branch” is a combination of a resistor and a light emitting diode (LED) in 

series. Sixteen LED branches can be used to display the output data captured by the 

registers as shown in the figure below. 
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Example # 2 

Problem statement: 

Given a 16-bit parallel output port attached with the FALCON-A CPU as shown in the 

figure.  The port is mapped onto address DEh of the FALCON-A‟s I/O space.  Sixteen 

LED branches are used to display the data being received from the FALCON-A‟s data 

bus. Every LED branch is wired in such a way that when a 1 appears on the particular 

data bus bit, it turns the LED on; a 0 turns it off. 

Which LEDs will be ON when the instruction  

 out r2, 222 
10

 

                                                 
10

 Depending on the way the assembler is written, the syntax of the out instruction may allow only the 

decimal form of the port address, or only the hexadecimal form, or both. Our version of the assembler for 

the FALCON-A allows the decimal form only.  It also requires that the port address be aligned on 16-bit 

“word boundaries”, which means that every port address should be divisible by 2.  
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executes on the CPU? Assume r2 contains 1234h. 

Solution: 

Since r2 contains 1234h, the bit pattern corresponding to this value will be sent out to the 

output port at address 222 (or DEh).  This is the address of the output port in this 

example. Writing the bit pattern in binary will help us determine the LEDs which will be 

ON. 

 

Now 1234h gives us the following bit associations with the data bus  

 

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 

MSB at address DEh LSB at address DFh 

 

Note that the 8-bit register which uses lines D15 .. D8 of the FALCON-A‟s data bus is 

actually mapped onto address DEh of the I/O space.  This is because the architect of the 

FALCON-A had chosen a “byte-wide” (i.e., x8) organization of the address space, a 16-

bit data bus width, and the “big-endian” data format at the ISA design stage. 

Additionally, data bus lines D15...D8 will transfer the data byte of higher significance 

(MSB) using address DEh,  and D7...D0 will transfer the data byte of lower significance 

(LSB) using address DFh. Thus the LEDs at L12, L9, L5, L4 and L2 will turn on. 

 

The NUXI Problem 
 

It can be easily understood from the previous example that the big-endian format results 

in the least significant byte being transferred over the most significant side of the data 

bus, and vice versa.  The situation will be exactly opposite when the little-endian format 

is used.  In this case, the least significant byte will be transferred over the least side of the 

data bus. Now imagine a computer using the little-endian format exchanging data with a 

computer using the big-endian format over a 16-bit parallel port. (this may be the case 

when we have a network of different types of computer, for example).  The data 

transmitted by one will be received in a “swapped” form by the other, eg., the string 

“UN” will be received as “NU” and the string “IX” will be received as “XI”.  So UNIX 

changes to NUXI --- hence the name NUXI problem.  Special software is used to resolve 

this problem. 

 

Variation in the Implementation of the Address Decoder 
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The implementation of the address decoder shown in Example #1(lec24) assumes that the 

FALCON-A does not allow the use of some part of its data bus during an I/O (or 

memory) transfer. Another restriction that was imposed by the assembler was that all port 

addresses should be divisible by 2. This implies that address line A0 will always be zero. 

If the FALCON-A architect had allowed the use some of part of its data bus (eg, 8-bits) 

during a transfer, the situation would be different. 

The logic diagram shown in the next figure is a 16-bit parallel output port at the same 

address (DEh) for the FALCON-A assuming that part of its data bus (D15..D8) or 

(D7..D0) can be used independently during an I/O transfer. Note that the enable inputs of 

the two 8-bit registers are not connected together in this case.  Moreover, since the 16-bit 

port uses two addresses, address line A0 will be at a logic 0 for address DEh, and at a 

logic 1 for address DFh. This means that it cannot be used at the input of the big AND 

gate.  So, A0 has been used in a different position with the two 2-input AND gates. The 

2-input AND gate where A0 is applied after inversion will generate a 1 at its output when 

A0 = 0.  Thus, this output will enable the 8-bit register mapped on the even address DEh.  

In case of the other AND gate, A0 is not inverted. So the corresponding 8-bit register will 

be mapped on the odd address DFh.  The input that became available after removing A0 

from its old position can be used for the IOW# control signal. The rest of the circuit is the 

same as it was in the previous figure. 

 
 

We can understand from the above discussion that the decisions made at the time of ISA 

design have a strong bearing on the implementation details and the working of the 
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computer. Suppose we assume that the assembler developer had decided not to restrict 

the port addresses to even values, then what will be the implications? 

As an example, consider the execution of the instruction out r2, 223 assuming r2 

contains 1234h.  This is a 16-bit transfer at address 223 (DFh) and 224 (E0h).  

For the output port (shown in the first figure) where the CPU does not allow the use of 

some part of its data bus in a transfer, none of the registers will be enabled as a result of 

this instruction because the output of the 8-input AND gate will be a zero for both 

addresses DFh and E0h. Thus, that output port cannot be used. 

In the second figure, where the CPU has allowed to use a portion of its data bus in an I/O 

transfer, the register at the address DEh will not be enabled. The CPU will send the high 

data byte(12h) to the register at the address DFh (because it will be enabled at that time 

due to the address DFh) over data lines D7…D0. The fact that data lines D7…D0 should 

be used for the transfer of high byte, will be taken care of by the hardware, internal to the 

CPU. 

Now the question is where the low data byte (i.e. 34h) present at D15…D8 data lines 

would be placed? If there exists an output port at address E0h in the system, then 34h will 

be placed there (in the next bus cycle), otherwise it will be lost. Again, it is the CPU‟s 

responsibility to check whether the next address in the system exists or not and if exists 

then enable that port so that the low byte of data can be placed there. 

A possible option for the architect in this case would be to revisit the design steps and 

allow the use of part of the CPU registers (or at least for some of them) for I/O transfers. 

The logic diagram shown below shows an 8-bit parallel output port at address FEF2h of 

the Pentium‟s I/O address space.  Since the Pentium allows the use of some part of its 

data bus during a transfer, we can use the BE2# signal in the address decoder to enable 

the 8-bit register. The following instructions will access this output port. 

 mov dx, 0FEF2h 

 mov al, 12h 

 out dx, al 

 



Advanced Computer Architecture   

________________________________________________________________________ 

274 

 

 
 

  



Advanced Computer Architecture   

________________________________________________________________________ 

275 

 

 

 

The Pentium does allow the use of some 

part of its 32-bit accumulator register EAX. 

In case only 8-bits are to be transferred, 

register AL can be used, as shown in the 

program fragment above. The data byte 12h 

will be sent to the 8-bit register over lines 

D23..D16. Since 12h corresponds to 0001 

0010 in binary, this will cause the LEDs L4 

and L1 to turn on.  

Example # 3 

Problem statement: 

Write an assembly language program to 

turn on the 16 LEDs one by one on the 

output port of Example #1(lec24). Each 

LED should stay on for a noticeable 

duration of time. Repeat from the first LED 

after the last LED is turned on. 

Solution: 

The solution is shown in the text box with a 

filename:  Example_3.asmfa. The working 

of this program is explained below: 

The first two instructions turn all the LEDs 

off by sending a 0 to each bit of the output 

port at address 222. 

mov r1,0 

out r1,222 

 

Then a 1 is sent to L0 causing it to turn on, and the program enters a loop which executes 

15 times to cause the other LEDs (L1 through L15) to turn on, one by one in sequence. 

Register r5 is being used as loop counter. The following three instructions introduce a 

delay between successive bit patterns sent to the output port, so that each LED stays on 

for a noticeable duration of time. 

delay1: movi r2,0 

again1: subi r2,r2,1 

       jnz r2,[again1] 

Starting with a value of 0 in r2 
11

, this value is decremented to FFFFh when the again1 

loop is entered. The jnz instruction will cause r2 to decrement again and again; thereby 

executing the loop 65,535 times. An estimate of the delay interval is presented at the end 

of this section. 

                                                 
11

 this is necessary because the immediate operand with the movi instruction of the FALCON-A has a range 

of 0h to FFh. This will not give us the large loop counter that we need here. So we use the above software 

trick. An alternate way would be to use nested loops, but that will tie up additional CPU registers. 

; filename: Example_3.asmfa; 

ALL LEDS ARE turned Off initially 

     movi r1,0 

     out r1,222; 

First LED will be turned on each time 

start:   

      movi r1,1 

 out r1,222; 

 movi r5,15;           

;DELAY LOOP; 

delay1: movi r2,0 

again1: subi r2,r2,1 

        jnz r2, [again1]; 

     movi r3,0 ;  

TURN OFF ALL LEDS 

     out r3,222; 

delay2: movi r2,0 

again2: subi r2,r2,1 

   jnz r2, [again2]; 

  shiftl r1,r1,1;  next LED ON 

 out r1,222 

 subi r5,r5,1 

 jnz r5, [delay1] 

 jump [start] 

 halt 
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After this delay, all the LEDs are turned off, and a second delay loop executes. Finally, 

the next LED on the left, in sequence, is turned on by the following two instructions: 

shiftl r1,r1,1 

out r1, 222 

After the left most LED is turned on, the process starts all over again because of the last 

jump instruction. The outermost loop executes indefinitely. 

 

Estimating the Delay Interval 
 

To make things simple, assume that the FALCON-A is operating at a clock frequency of 

1 MHz. Also, assume that the subi and the jnz instructions take 3 and 4 clock periods, 

respectively, to execute. Since these two instructions execute 65,535 times each, we can 

use the following formula to compute the execution time of this loop: 

  ET = CPI x IC x T = CPI x IC / f 
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where 

  CPI = clocks per instruction 

  IC    = instruction count 

  T      = time period of the clock, and 

  f = frequency of the clock. 

Using the assumed values, we get 

 

 ET =   (3+4) x 65535 / (1x10
6 

)  =  0. 459 sec 

Since the movi r2, 0 instruction executes only once, the time it takes to execute is 

negligible and has been ignored in this calculation. 
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 A generic I/O Interface 

 The Centronics Parallel Printer Interface 
 

Designing a parallel input port 
 

The following example illustrates a number of important concepts. 

Example # 1 

Problem statement:  

Design an 16-bit parallel input port mapped on address 7Eh of the I/O space of the 

FALCON-A CPU.  

Solution: 

The process of designing a parallel input port is very similar to the design of a parallel 

output port except for the following differences: 

1. The address in this case is 7Eh, which is different from the previous value.  

Hence, the address decoder will have the inputs A7 and A0 inverted, while the 

other address lines at its input will not be inverted. 

2. Control bus signal IOR# will be used instead of the signal IOW#. 

3. A set of sixteen tri-state buffers will be used for data isolation.  Their common 

enable line will be connected to the output of the big AND gate (in the figure, fD 

is being inverted because Enable is active low). The input of these buffers can be 

connected to the input device and the output is connected to the FALCON-A‟s 

data bus.   
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In this example, switches S15...S0 are used to simulate the input data. The complete logic 

circuit is shown in the next two figures. 

 

 
In the second figure, the CPU is assumed to allow the use of some part of its data bus 

during a transfer, while in the first figure it is not allowed. 

 

 
 

Example # 2 
Problem statement: 

Given a FALCON-A processor with a 16-bit parallel input port at address 7Eh and a 16-

bit parallel output port at address DEh.  Sixteen LED branches are used to display the 

data at the output port and sixteen switches are used to send data through the input port. 

Write an assembly language program to continuously monitor the input port and blink the 
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LED or LED(s) corresponding to the switch (es) set to logic 1. For example, if S0 and S2 

are set to 1, then only the LEDs L0 and L2 should blink.  If S7 is also set to logic 1 later, 

then L7 should also start blinking. 

 

 

Solution: 

The program is shown in the text box with 

filename: Example_2. It works as explained 

below: 

The first two instructions read the input port at 

address 7Eh and send this bit pattern to the 

output port at address DEh. This will cause the 

LEDs corresponding to the switches that are set 

to a 1 to turn on. Next, the program waits for a 

suitable amount of time, and then turns all 

LEDs off and waits again. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;filename: Example_2.asmfa 

;Notes: 

; r1 is used as an I/O register 

; r2 is used as a delay counter 

; 

start: in r1, 126 ; 126d = 7Eh 

     out r1, 222 ; 222d = DEh 

;  

 movi r2, 0  

delay1: subi r2, r2, 1 

 jnz r2, [delay1] 

; 

 movi r1, 0 ; all LEDs off 

 out r1, 222 

; 

 movi r2, 0 

delay2: subi r2, r2, 1 

 jnz r2, [delay2] 

; 

 jump [start]                

;  

 halt 



Advanced Computer Architecture   

________________________________________________________________________ 

281 
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After the second wait, the program reads the input port again. The LEDs that will be turn 

on at the output port will now be according to the new switch settings at the input port. 

The process repeats indefinitely. Please see the flowchart also. 

It is also possible to use a single address for both the input and the output port. The 

following diagram shows an address decoder for a 16-bit parallel input/output port at 

address 2Ch of the FALCON-A‟s I/O space.  Note that the control bus lines IOW# and 

IOR# will differentiate between the register and the tri-state buffer  

. 
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Memory mapped I/O ports 
 

If it is desired to map the 16-bit output port of Example 

#1(lec24) on the memory space of the FALCON-A, the 

following changes would be needed. 

1. Replace the IOW# signal with the MEMW# 

signal. 

2. Use the entire CPU address bus at the input of 

the address decoder, as shown in the next 

figure. This address decoder uses the addresses 

00DEh and 00DFh of the FALCON-A‟s 

memory space. 

3. Use the store instruction instead of the out 

instruction for sending data to the output port 

(for memory mapped input ports, use the load 

instruction instead of the in instruction). 

The program for Example #2(lec25) is rewritten for the 

case of a memory mapped output port, and is shown in 

the attached text box. The advantage will be that more 

than 256 ports are available, but the disadvantage is 

that the address decoder will become more complex, 

resulting in increased hardware costs. 

To avoid the increase in hardware complexity, many 

architects use what is called “partial decoding”. This is 

explained in the next section. 

 

Partial decoding and the “wrap around” 

effect 
 

Partial decoding is a technique in which some of the CPU‟s address lines forming an 

input to the address decoder are ignored. This reduces the complexity of the address 

decoder, and also lowers the cost. As an example, if the address lines A8...A15 from the 

FALCON-A are not used in the address decoder of the previous figure, this will save 

eight inverters and two AND gates.  Partial decoding is an attractive choice in small 

systems, where the size of the address space is large but most of the memory is 

unimplemented.  However, partial decoding has its price as well. Consider the memory 

map for the  

 

;filename: Example_2MM.asmfa 

;Notes: 

; For MEMORY MAPPED 

; output port at 00DEh 

; 

; r6 holds the output address 

; r7 holds the input address 

; 

 movi r6, 111 

 add r6, r6, r6 

; 

 movi r7, 126 

; 

; r1 is used as an I/O register 

; r2 is used as a delay counter 

; 

start: load r1,[r7] ; 126d = 7Eh 

     store r1, [r6] ; 222d = DEh 

; movi r2, 0  

delay1: subi r2, r2, 1 

 jnz r2, [delay1] 

; 

 movi r1, 0 ; all LEDs off 

 store r1, [r6] 

; movi r2, 0 

delay2: subi r2, r2, 1 

 jnz r2, [delay2] 

; jump [start]                

; halt 
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FALCON-A, shown again in the next figure. With 16 address lines, the total address 

space is 2
16

 = 64 Kbytes. When the upper eight address lines are unused, they become 

don‟t cares. The port shown in the previous figure will be accessed for address 00DEh.  

But, it will also be accessed for address 01DEh, 02DEh,......, FFDEh.  In fact, the 64 

Kbyte address space has been reduced to a 256 byte space.  It “wrapped around” itself 

256 times. If we only left 6 address lines, i.e., A15 ... A10, unconnected, then we will still 

have a “wrap around”, but of a different type. Now a 1 Kbyte (= 2
10

 ) address area will 

wrap around itself 64 times (= 2
6
 ). 

 

Data bus multiplexing 
 

Data bus multiplexing refers to the situation when one part of the data bus is connected to 

the peripheral‟s data bus at one time and the second part of the data bus is connected to 

the peripheral‟s data bus at a different time in such a way that at one time, only one 8-bit 

portion of the data bus is connected to the peripheral. 
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Consider the situation where an 8-bit peripheral is to be interfaced with a CPU that has a 

16-bit (or larger) data bus, but a byte-wide address space. Each byte transferred over the 

data bus will have a separate address associated with it. For such CPUs, data bus 

multiplexing can be used to attach 8-bit peripherals requiring a block of addresses. Tri-

state buffers can be used for this  

 

purpose as shown in the attached figure. The logic circuit shown is for an 8-bit parallel 

output port using addresses DCh and DDh of the FALCON‟s I/O address space. It is 

assumed that the CPU allows the use of a part of its data bus during a transfer, and that 

each 16-bit general purpose register can be used as two separate 8-bit registers, e.g., r1 

can be split as r1L and r1H such that                       

  r1L<7..0> := r1<7..0>, and 

  r1H<7..0> := r1<15..8> 

The LED branches and the 8-bit register shown in the diagram serve as a place holder, 

and can be replaced by a peripheral device in actual practice. For an even address, A0=0, 

and the upper group of the tri-state buffers is enabled, thereby connecting D<15..8> of 

the CPU to the peripheral, while for an odd address from the CPU, A0=1, and the lower 

group of the tri-state buffers is enabled. This causes D<7..0> of the CPU to be connected  

with the peripheral device. In such systems the instruction out r1H,220 will access the 

peripheral device using D<15..8>, while the instruction  out r1L,221 will access it using 

D<7..0>. The instruction out r1,220 will send r1H to the peripheral  and the contents of 

r1L will be lost. Why? This is left as an exercise for the student. The advantage of data 

bus multiplexing is that all addresses are utilized and none of them is wasted, while the 

disadvantage is the increased complexity and cost of the interface.  
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A generic I/O interface 
 

Most parallel I/O ports used with peripheral devices are mapped on a range of contiguous 

addresses. The following figure shows the block diagram of part of an interface that can 

be used with a typical parallel printer. It used eight consecutives addresses: address 56 to 

63. A similar interface can be used with the FALCON-A. The registers shown within the 

interface are associated with some parallel device, and have some pre-defined functions. 

For example, the 16 bit register at addresses 56 and 57 can be used as a “data out” 

register for sending data bytes to the parallel device. In the same way, the register at 

addresses 60 and 61 can be used by the CPU to send control bits to the device. The 

double arrow shown at the top corresponds to the data bus connection of the interface 

with the CPU. The address decoder shown at the bottom receives address and control 

information from the CPU and generates enable signals for these registers. These abstract 

concepts are further explained in Example #3(lec25). 

 

The Centronics Parallel Printer Interface 
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The Centronics Parallel Printer Interface is an example of a real, industry standard, set of 

signal specifications used by most printer manufacturers. It was originally developed for 

Centronics printers and can be used by devices having a uni-directional, byte-wide 

parallel interface. Table 1 shows the important signals and their functions as defined by 

the Centronics standard. Note that the direction of the signals is with respect to the printer 

and not with respect to the CPU. 

 

Typically, the printer (or any other similar device) is connected to the CPU via a cable 

which has a 25-pin connector at the CPU side and a 36-pin connector at the printer side. 

Every data bit in the 8-bit data bus D<7…0> uses a twisted pair for suppressing 

transmission-line effects, like radiation and noise. The return path of these pins should 

always be connected to signal ground. Additionally, the entire printer cable should be 

shielded, and connected to chassis ground on each side. The three signals STROBE#, 

BUSY and ACKNLG# form a set of handshaking signals. By using these signals, the 

CPU can communicate asynchronously with the printer, as shown in the accompanying 

timing waveforms. When the printer is ready for printing, the CPU starts data transfer to 

the printer by placing the 8-bit data (corresponding to the ASCII value of the character to 

be printed) on the printer‟s data bus (pin 2 through 9 on the 36-pin connector, as shown in 

Table 1). After this, a negative pulse of duration at least 0.5μs is applied to the STROBE# 

input (pin1) of the printer. The minimum set-up and hold times of the latches within the 

printer are specified as 0.5μs each, and these timing requirements must be observed by 

the CPU (the interface designer should make sure that these specifications are met). As 

soon as STROBE# goes low, the printer activates its BUSY line (pin 11) which is an 

indication to the CPU that additional bytes cannot be accepted. The CPU can monitor this 

status signal over an input port (a detailed assignment of these signals to I/O port bits is 

given in Table 2). 

 

 

 

Table 1: The Centronics Parallel Printer Interface 

(power and ground signals are not shown) 

 

 

Signal 

Name 

 

Direction 

w.r.t. 

Printer 

 

Function 

Summary 

Pin# 

(25-DB) 

CPU 

side 

Pin# 

 (36-DB) 

Printer 

side 

D<7..0> Input 8-bit data bus 9,8,…,2 9,8,…,2 

 

STROBE# 

 

Input 

1-bit control signal 

High: default value. 

Low: read-in of data is 

performed.              

 

1 

 

1 

 

 

ACKNLG# 

 

 

Output 

1-bit status signal 

Low: data has been received 

and the printer is ready to 

 

 

10 

 

 

10 
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accept new data.   

High: default value.      

 

BUSY 

 

Output 

1-bit status signal 

Low: default value 

High: see note#1 

 

11 

 

11 

 

PE# 

 

Output 

1-bit status signal 

High: the printer is out of 

paper. 

Low: default value. 

 

12 

 

12 

 

INIT# 

 

Input 

1-bit control signal 

Low: the printer controller is 

reset to its initial state and 

the print buffer is cleared. 

High: default value. 

 

16 

 

31 

 

SLCT 

 

Output 

1-bit status signal 

High: the printer is in 

selected state.  

 

13 

 

13 

 

AUTO 

FEED XT# 

 

Input 

1-bit control signal 

Low: paper is automatically 

fed after one line. 

 

14 

 

14 

 

 

SLCT IN# 

 

 

Input 

1-bit control signal 

Low: data entry to the 

printer is possible. 

High: data entry to printer is 

not Possible. 

 

 

17 

 

 

36 

 

ERROR# 

 

Output 

1-bit status signal 

Low: see note#2. 

High: default value. 

 

15 

 

32 
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Note#1 

The printer can not read data due to one of the following reasons: 

1) During data entry 

2) During data printing 

3) In offline state 

4) During printer error 

status 

 

 

 

 

 

Note#2 

When the printer is in one of the 

following states: 

1) Paper end state 

2) Offline state 

3) Error state  

 

When this character is completely received, the ACKNLG# signal (pin 10) goes low, 

indicating that the transfer is complete. Soon after this, the BUSY signal returns to logic 

zero, indicating that a new transfer can be initiated. The BUSY signal is more suitable for 

level-triggered systems, while the ACKNLG# signal is better for edge-triggered systems. 

The interface will typically use two eight bit parallel output ports of the CPU, one for the 

ASCII value of the character byte and the other for the control byte. It also specifies an 8-

bit parallel input port for the printer‟s status information that can be checked by the CPU.  

Table 2: Centronics Bit Assignment For I/O Ports 

  

Logic

al 

Addre

ss 

 

Descript

ion 

 

7 

 

6 

 

5 

 

4 

 

3 

 

2 

 

1 

 

0 

 

0 

 

8-bit 

output 

port for 

DATA 

 

D<7> 

 

D<6> 

 

D<5

> 

 

D<4> 

 

D<3> 

 

D<2> 

 

D<1> 

 

D<0> 

 

1 

 

8-bit 

input 

port for 

STATUS 

 

BUS

Y 

 

ACKNL

G# 

 

PE# 

 

SLC

T 

 

 

ERRO

R# 

 

Unus

ed 

 

Unus

ed 

 

Unused 

 

2 

 

8-bit 

 

Unus

 

Unused 

 

DIR

 

IRQE

 

SLCT 

 

INIT

 

Auto 

 

STROB
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output 

port for 

CONTR

OL 

ed 
12

 

 

N 

 

IN# # Feed 

XT# 

E# 

 

Example # 3: 
Problem statement: 

Design a Centronics parallel printer interface for the FALCON-A CPU.  Map this 

interface starting at address 38h (56 decimal) of the FALCON-A‟s I/O address space. 

Solution:  

The Centronics interface requires at least three I/O addresses. However, since the 

FALCON-A has a 16-bit data bus, and since we do not want to implement data bus 

multiplexing (to keep things simple), we will use three contiguous even addresses, i.e., 

38h, 3Ah and 3Ch for the address decoder design. This arrangement also conforms to the 

requirements of our assembler. Moreover, we will connect data bus lines D7...D0 of the 

FALCON-A to the 8-bit data bus of the printer (i.e. pins 9, 8, ... , 2 of the printer cable) 

and leave lines D15...D8 unconnected. Since the FALCON-A uses the big-endian format, 

this will make sure that the low byte of CPU registers will be transferred to the printer. 

(Recall that these bytes will actually be mapped on addresses 39h, 3Bh and 3Dh). The 

logic diagram of the address decoder for this interface is shown in the given figure. 

  

                                                 
12

 This bit, when set, enables the bidirectional mode. 
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Lecture No. 26 
 

Programmed I/O 

 
Reading Material 
 

Vincent P. Heuring & Harry F. Jordan                                                       Chapter 8                                                          

Computer Systems Design and Architecture                                                 8.2.2                                                                                                                                                                                                                                                                                                                          

Summary 

 The Centronic Parallel Printer Interface(Cont.) 

 Programmed Input/Output  

 Examples of Programmed I/O for FALCON-A and SRC 

 Comparisons of FALCON-A, SRC examples 

 

The Centronic Parallel Printer Interface (Cont.) 

 
Table 1: The Centronics Parallel Printer Interface 

                                      (power and ground signals are not shown) 

(The explanation of this table is provided in lecture 25 also) 

 

 

Signal 

Name 

 

Direction 

w.r.t. 

Printer 

 

Function 

Summary 

Pin# 

(25-DB) 

CPU 

side 

Pin# 

 (36-DB) 

Printer 

side 

D<7..0> Input 8-bit data bus 9,8,…,2 9,8,…,2 

 

STROBE# 

 

Input 

1-bit control signal 

High: default value. 

Low: read-in of data is 

performed.              

 

1 

 

1 

 

 

ACKNLG# 

 

 

Output 

1-bit status signal 

Low: data has been received 

and the printer is ready to 

accept new data.   

High: default value.      

 

 

10 

 

 

10 

 

BUSY 

 

Output 

1-bit status signal 

Low: default value 

High: see note#1 

 

11 

 

11 

  1-bit status signal   



Advanced Computer Architecture   

________________________________________________________________________ 

293 

 

PE# Output High: the printer is out of 

paper. 

Low: default value. 

12 12 

 

 

INIT# 

 

 

Input 

1-bit control signal 

Low: the printer controller is 

reset to its initial state and 

the print buffer is cleared. 

High: default value. 

 

 

16 

 

 

31 

 

SLCT 

 

Output 

1-bit status signal 

High: the printer is in 

selected state.  

 

13 

 

13 

 

AUTO 

FEED XT# 

 

Input 

1-bit control signal 

Low: paper is automatically 

fed after one line. 

 

14 

 

14 

 

 

SLCT IN# 

 

 

Input 

1-bit control signal 

Low: data entry to the 

printer is possible. 

High: data entry to printer is 

not Possible. 

 

 

17 

 

 

36 

 

ERROR# 

 

Output 

1-bit status signal 

Low: see note#2. 

High: default value. 

 

15 

 

32 

 

 

Table 2:  Centronics Bit Assignment For I/O Ports 

 

 

 

Logical 

Address 

 

Description 

 

7 

 

6 

 

5 

 

4 

 

3 

 

2 

 

1 

 

0 

 

0 

 

8-bit output 

port for 

DATA 

 

D<7> 

 

D<6> 

 

D<5> 

 

D<4> 

 

D<3> 

 

D<2> 

 

D<1> 

 

D<0> 

 

1 

 

8-bit input 

port for 

STATUS 

 

BUSY 

 

ACKNLG# 

 

PE# 

 

SLCT 

 

 

ERROR# 

 

Unused 

 

Unused 

 

Unused 
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2 

 

8-bit output 

port for 

CONTROL 

 

Unused 

 

Unused 

 

DIR
13

 

 

 

IRQEN 

 

 

SLCT 

IN# 

 

INIT# 

 

Auto 

Feed 

XT# 

 

STROBE# 

 

                                                 
13

 This bit, when set, enables the bidirectional mode. 
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Example # 1 
Problem statement: 

 

 
Problem statement: 

 

Assuming that a Getronics parallel printer is interfaced to the FALCON-A processor, as 

shown in example 3 of lecture 25, write an assembly language program to send an 80 

character line to the printer. Assume that the line of characters is stored in the memory 

starting at address 1024. 

Solution: 

The flowchart for the solution is shown in given figure and the program listing is shown 

in the textbox with filename: Example_1.   

The first thing that needs to be done is the initialization of the printer. This means that a 

“reset” command should be sent to the printer. Using the information from Table 1, this 
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can be done by writing a 0 to bit 2 (i.e., INIT#) of the control register having logical 

address 2. In our example, this maps onto address 60 of the FALCON-A. (Remember to 

set this bit to logic 1 for normal operation of the printer). Then we make STROBE# high 

by placing logic 1 in bit 0 of the control register. Bit 1 and bit 3 should be 0 because we 

want to activate auto line feed and keep the printer in selected mode. Additionally, bit 4 

and bit 5 should be 0 so that interrupts are disabled and the bi-directional mode is not 

selected.  The complete control word is 0000 0001 and this value has been assigned to the 

variable reset in the program.  The following instruction pair performs the reset 

operation: 

 movi r1, reset 

 out r1, controlp 

As it is given that the starting address of the printer buffer is 1024
14

, so we place this 

address in r5. The mask to test the BUSY flag is placed in r3. The value for the mask is 

80h. This corresponds to a logic 1 in bit 7 and logic zeros elsewhere for the status register 

having address 58 (logical address 1 in Table 1). Then the program enters a loop, called 

the polling loop, to test the status of the printer.  If the printer is busy, the loop repeats. 

The following three instructions form the polling loop: 

 

 in r1, statusp 

 and r1, r1, r3 

 jnz r1, [again] 

The status of the printer is placed in register r1, and bit 7 is tested for logic 0.  If not so, 

the program repeats the status check operation. 

 

When the printer is ready to accept a new character, it clears bit 7 (i.e., the BUSY bit) of 

the status register. At this time, the program picks the next character from the memory 

and sends it to the printer. The STROBE# line is activated and then it is deactivated to 

generate the necessary pulse on this input of the printer. Finally, the buffer pointer is 

advanced, the loop counter is decremented and the process repeats. When all the 

characters have been printed, the program halts.  

A number of equates have been used in the program to make it flexible as well as easily 

readable. The program is shown on the next page. 

                                                 
14

 The mul instruction is used for this purpose because the 8-bit immediate operand in the movi instruction 

can only be within the range –128 and +127. Using the mul instruction in this way overcomes the 

limitation of the FALCON-A. Similarly, the shiftl instruction is used to bring 80h in register r3. 
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; filename: Example_1.asmfa 

; 

; This program sends an 80 character line 

; to a FALCON-A parallel printer 

; 

; Notes: 

; 1. 8-bit printer data bus connected to 

; D<7...0> of the FALCON-A (remember big-endian) 

; Thus, the printer actually uses addresses 57, 59 & 61 

; 

; 2. one character per 16-bits of data xfered 

; 

; 

 .org 400 

; 

NOB:   .equ  80 

; 

 movi r5, 32 

 mul r5, r5, r5 ; r5 holds 1024 temporarily 

; 

 movi r3, 1 

 shiftl r3, r3, 7 ; to set mask to 0080h 

; 

datap:   .equ 56 

statusp:  .equ 58 

controlp: .equ 60 

; 

reset:  .equ 1 

; used to set unidirectional, no interrupts, 

; auto line feed, and strobe high 

; 

strb_H:  .equ 5 

strb_L:  .equ 4 

; 

 movi r1 reset ; use r1 for data xfer 

 out r1, controlp 

; 

 movi r7, NOB ; use r7 as character counter 

; 

 

again: in r1, statusp 

; 

 and r1, r1, r3 ; test if BUSY = 1? 

 jnz r1, [again] ; wait if BUSY = 1 

; 

 load r1, [r5] 

 out r1, datap 

 movi r1, strb_L 

 out r1, controlp 

 movi r1, strb_H 

 out r1, controlp 

 addi r5, r5, 2 

 subi r7, r7, 1 

 jnz r7, [again] 

 halt 
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I/O techniques: 

 
There are three main techniques using which a CPU can exchange data with a peripheral 

device, namely 

 Programmed I/O 

 Interrupt driven I/O 

 Direct Memory Access (DMA). 

 

In this section, we present the first one. 

 

Programmed Input/Output 

 
Programmed I/O refers to the situation when all I/O operations are performed under the 

direct control of a program running on the CPU. This program, which usually consists of 

a “tight loop”, controls all I/O activity, including device status sensing, issuing read or 

write commands, and transferring the data
15

. A subsequent I/O operation cannot begin 

until the current I/O operation to a certain device is complete. This causes the CPU to 

wait, and thus makes the scheme extremely inefficient. The solution to Example # 

3(lec24), Example #2(lec25), and Example #1(lec26) are examples of programmed 

input/output. We will analyze the program for Example  #1(lec26) to explain a few things 

related to the programmed I/O technique. 

 

Timing analysis of the program in Example # 1(lec26) 

 

The main loop of the program given in the 

solution to Example #1(lec26) executes 80 

times. This is equal to the number of 

characters to be printed on one line. This 

portion of the program is shown again with 

the execution time of each instruction listed 

in brackets with it. The numbers shown are 

for a uni-bus CPU implementation. A 

complete list of execution times for all the 

FALCON-A‟s instructions is given in 

Appendix A. A number of things can be 

noted now. 

1. Assuming that the output at the 

hardware pins changes at the end of 

the (I/O write) bus cycle, the 

STROBE# signal will go from logic1 

                                                 
15

 The I/O device has no direct access to the memory or the CPU, and transfer is generally done by using 

the    CPU registers. 

            movi r7, NOB  [2] 

; 

again:  in r1, statusp  [3] 

             and r1 , r1, r3  [3] 

             jnz  r1, [again] [4] 

;  

              load r1, [r5]  [5] 

              out r1, datap  [3] 

              movi r1, strob_L [2] 

              out r1, controlp [3] 

              movi r1, s trob_H [2] 

              out r1, controlp [3] 

     addi r5, r5, 2   [3] 

              subi r7, r7, 1  [3] 

              jnz r7, [again] [4] 

              halt 
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to logic 0 at the end of the instruction pair. 

 

           movi r1, strb_L  [2] 

           out r1, controlp  [3] 

 

The execution time for these two instructions is 2+3 = 5 clock periods. Therefore, 

STROBE# stays at logic1 for at least 5 clock periods i.e., during these two instructions. 

For a 10MHz FALCON-A CPU, this will correspond to 5x100 = 500nsec = 0.5µsec. 

Since the data to the printer is being sent by the CPU using the two instructions (load r1, 

[r5] and out r1, datap) which are before the first movi instruction, the printer‟s data 

setup time requirement is satisfied as long as we do not increase the clock frequency 

beyond 10MHz. 

 

After these two instructions, the next two instructions in the program cause STROBE# to 

go to logic 1 again. 

 

                               movi r1, strb_H [2] 

                              out r1, controlp [3] 

 

These two instructions also take 5 clock periods, or 0.5µsec, to execute. Thus, the timing 

requirement of the STROBE# pulse width will also be satisfied as long as we do not 

increase the clock frequency beyond 10MHz. In case the frequency is greater than 

10MHz, other instruction can be used in between these two pairs of instructions. 

 

The printer‟s data hold time requirement is easily satisfied because there are a number of 

instructions after this out instruction which do not change the control port, and the 

character value is already present in the data register within the interface since the end of 

the out r1, datap instruction. 

 

2. The three instructions given below: 

              again:  in r1, statusp [3]      

                        and r1, r1, r3 [3]  

                        jnz r1, [again] [4] 

 

form what is called a “polling loop”. The process of periodically checking the status of a 

device to see if it is ready for the next I/O operation is called “polling”. It is the simplest 

way for an I/O device to communicate with the CPU. The device indicates its readiness 

by setting certain bits in a status register, and the CPU can read these bits to get 

information about the device. Thus, the CPU does all the work and controls all the I/O  

activities.  The polling loop given above takes 10 clock periods. For a 10MHz FALCON-

A CPU, this is 10x100=1µsec. One pass of the main  loop takes a total of 

3+3+4+5+3+2+3+2+3+3+3+4 = 38 clock periods which is 38x100 = 3.8µsec. This is the 

time that the CPU takes to send one character to the printer. If we assume that a 1000 

character per second (cps) printer is connected to the CPU, then this printer has the 
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capability to print one character in every 1msec or every 1000µsec. So, after sending a 

character in 3.8µsec to the printer, the CPU will wait for about 996µsec before it can send 

the next character to the printer. This implies that the polling loop will be executed about 

996 times for each character. This is indeed a very inefficient way of sending characters 

to the printer. 

 

An improved way of doing this would be to include a memory of suitable size within the 

printer. This memory is also called a buffer, as explained earlier. The CPU can fill this 

buffer in a single “burst” at its own speed, and then do something else, while the printer 

picks up one character at a time from this buffer and prints it at its own speed. This is 

exactly the situation with today‟s printers. The task of generating the STROBE# pulse 

will also be done by the electronic circuits within the printer. In effect, a dedicated 

processor within the printer will do this job. However, if the buffer within the printer fills 

up, the CPU will still not be able to transfer additional data to it. A different handshaking 

scheme will then be needed to make the CPU to communicate asynchronously with the 

buffer in the printer, resulting in an inefficient operation again. This is explained below.  

 

Assume that the printer has a FIFO type buffer of size 64 bytes that can be filled up 

without any delay at the time when the printer is not printing anything. When one or 

more character values are present in the buffer, the printer will pick up one value at a 

time and print it. Remember we have a 1000 cps printer, so it takes 1msec to print a 

character. The program for Example #1(lec26) is modified for this situation and is given 

below. All the assumptions are the same, unless otherwise mentioned. 

 

                again:   in r1, statusp [3]  

                             and r1, r1, r3  [3] 

                             jnz  r1, [again] [4] 

                             load r1, [r5] [5] 

                             out r1, datap [3] 

                            addi r5, r5, 2 [3] 

                            subi r7, r7, 1 [3] 

                            jnz r7, [again] [4] 

 

Note that while the instructions for generating the STROBE# pulse have been eliminated, 

the polling loop is still there. This is necessary because the BUSY signal will still be 

present, although it will have a different meaning n now. In this case, BUSY =1 will 

mean that the buffer within the printer is full and it can not accept additional bytes. 

 

The main loop shown in the program has an execution time of 28 clock periods, which is 

2.8µsec for a 10MHz FALCON-A CPU. The polling loop still takes 10 clock periods or 

1µsec. Assuming that this program starts when the buffer in the printer is empty, the 

outer loop will execute 64 times  before the CPU encounters a BUSY=1 condition. After 

that the situation will be the same as in the previous case. The polling loop will execute 

for about 996 times before BUSY goes to logic 0. This situation will persist for the 
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remaining 16 characters (remember we are sending an 80 character line to the printer). 

 

One can argue that the problem can be solved by increasing the buffer size to more than 

80 bytes. Well, first of all, memory is not free. So, a large buffer will increase the cost of 

the printer. Even if we are willing to pay more for an improved printer, the larger buffer 

will still fill up whenever the number of characters is more than the buffer size. When 

that happens, we will be back to square one again. 

 

A careful analysis of the situation reveals that there is something wrong with the scheme 

that is being used to send data to the printer. This problem of having a larger overhead of 

polling was recognized long ago, and therefore, interrupts were invented as an alternate 

to programmed I/O. Interrupt driven I/O will be the topic of the next lecture. 

 

Programmed I/O in SRC 
In this section, we will discuss some more examples of programmed I/O with our 

example processor SRC which uses the memory mapped I/O technique. 

 

Program for Character Output 

To understand how programmed I/O works in SRC, we will discuss a program which 

outputs the character to the printer. The first instruction loads the branch target and the 

second instruction loads the character into lower 8 bits of register r2. The 2-instruction 

loop reads the status register and tests the ready signal by checking its sign bit. It 

executes until the ready signal becomes logic one. On exit from the loop, the character is 

written to the device data register by the store instruction. 

lar r3, wait 

ldr r2, char 

wait: ld r1, COSTAT 

brpl r3, r1 

   st r2, COUT 

A 10 MIPS, SRC would execute 10,000 instructions waiting for a 1,000 character/sec 

printer. 

 

Program Fragment to Print 80-Character Line 

The next example for the SRC is of a program which sends an 80-character line to a line 

printer with a command register. There are two nested loops starting at label wait. The 

two instruction inner loop, which waits for ready and the outer seven instruction loop 

which performs the following tasks. 

 Outputs a character  

 Advance the buffer pointer 

 Decrement the register containing the number of characters left to print 

 Repeat if there are more characters left to send. 

The last two instructions issue the command to print the line. 

The next example discussed from the book is of a driver program for 32-character input 

devices (Figure 8.10, Page 388). 
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Comparisons of the SRC and FALCON-A Examples 
The FALCON-A and SRC programmed I/O examples discussed are similar with some 

differences. In the first example discussed for the SRC (i.e. Character output), the control 

signal responsible for data transfer by the CPU is the ready signal while for FALCON-A 

Busy (active low)signal is checked. In the second example for the SRC, the instruction 

set, address width and no. of lines on address is different. 

Although different techniques have been used to increase the efficiency of the 

programmed I/O, overheads due to polling can not be completely eliminated. 
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Lecture No. 27 
 

Interrupt Driven I/O 
 
Reading Material 
 

Vincent P. Heuring & Harry F. Jordan                                                       Chapter 8                                                          

Computer Systems Design and Architecture                                                 8.2.2 

Summary 

 Programmed I/O Driver for SRC 

 Interrupt Driven I/O 

 

Programmed I/O Driver for SRC 

 
Please refer to Figure 8.10 of the text and its associated explanation. 

 

Interrupt Driven I/O: 
 

Introduction: 
An interrupt is a request to the CPU to suspend normal processing and temporarily divert 

the flow of control through a new program. This new program to which control is 

transferred is called an Interrupt Service Routine or ISR. Another name for an ISR is an 

Interrupt Handler. 

 

• Interrupts are used to demand attention from the CPU. 

• Interrupts are asynchronous breaks in program flow that occur as a result of events 

outside the running program. 

• Interrupts are usually hardware related, stemming from events such as a key or button 

press, timer expiration, or completion of a data transfer. 

 

The basic purpose of interrupts is to divert CPU processing only when it is required. As 

an example let us consider the example of a user typing a document on word-processing 

software running on a multi tasking operating system. It is up to the software to display a 

character when the user presses a key on the keyboard. To fulfill this responsibility the 

processor can repeatedly poll the keyboard to check if the user has pressed a key. 

However, the average user can type at most 50 to 60 words in a minute. The rate of input 

is much slower than the speed of the processor. Hence, most of the polling messages that 

the processor sends to the keyboard will be wasted. A significant fraction of the 
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processor‟s cycles will be wasted checking for user input on the keyboard. It should also 

be kept in mind that there are usually multiple peripheral devices such as mouse, camera, 

LAN card, modem, etc. If the processor would poll each and every one of these devices 

for input, it would be wasting a large amount of its time. To solve this problem, interrupts 

are integrated into the system. Whenever a peripheral device has data to be exchanged 

with the processor, it interrupts the processor; the processor saves its state and then 

executes an interrupt handler routine (which basically exchanges data with the device).  

Program Flow 

 
                                                                      Program Flow 

 

 

 

 

 

 

 

 

 

 

 

 

After this exchange is completed, the processor resumes its task. Coming back to the 

keyboard example, if it takes the average user approximately 500 ms to press consecutive 

keys a modern processor like the Pentium can execute up to 300,000,000 instructions in 

these 500 Ms. Hence, interrupts are an efficient way to handle I/O compared to polling.  

 

Advantages of interrupts: 
• Useful for interfacing I/O devices with low data transfer rates. 

• CPU is not tied up in a tight loop for polling the I/O device. 

 

Program Flow for an interrupt driven interface: 
The attached figure shows the program flow executing on a processor with interrupts 

enabled. As we can see, the program is interrupted in several locations to service various 

types of interrupts. 

 

Types of Interrupts: 
The general categories of interrupts are as follows: 

• Internal Interrupts 

• External Interrupts 

• Hardware Interrupts 

• Software Interrupts 

 

Internal Interrupts: 

Key Board  

Interrupt  

Serial Port 

Interrupt 
Key Board 

Interrupt 

Main 

Program 
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• Internal interrupts are generated by the processor. 

• These are used by processor to handle the exceptions generated during instruction 

execution. 

Internal interrupts are generated to handle conditions such as stack overflow or a divide-

by-zero exception. Internal interrupts are also referred to as traps. They are mostly used 

for exception handling. These types of interrupts are also called exceptions and were 

discussed previously. 

 

External Interrupts: 
External interrupts are generated by the devices other than the processor. They are of two 

types. 

• Hardware interrupts are generated by the external hardware. 

• Software interrupts are generated by the software using some interrupt instruction. 

 

As the name implies, external interrupts are generated by devices external to the CPU, 

such as the click of a mouse or pressing a key on a keyboard. In most cases, input from 

external sources requires immediate attention. These events require a quick service by the 

software, e.g., a word processing software must quickly display on the monitor, the 

character typed by the user on the keyboard. A mouse click should produce immediate 

results. Data received from the LAN card or the modem must be copied from the buffer 

immediately so that pending data is not lost because of buffer overflow, etc. 

 

Hardware interrupts:  
Hardware interrupts are generated by external events specific to peripheral devices. Most 

processors have at least one line dedicated to interrupt requests. When a device signals on 

this specific line, the processor halts its activity and executes an interrupt service routine. 

Such interrupts are always asynchronous with respect to instruction execution, and are 

not associated with any particular instruction. They do not prevent instruction completion 

as exceptions like an arithmetic overflows does. Thus, the control unit only needs to 

check for such interrupts at the start of every new instruction. Additionally, the CPU 

needs to know the identification and priority of the device sending the interrupt request. 

 

There are two types of hardware interrupt: 

 Maskable Interrupts 

 Non-maskable Interrupts 

 

Maskable Interrupts: 
• These interrupts are applied to the INTR pin of the processor. 

• These can be blocked by resetting the flag bit for the interrupts. 

 

Non-maskable Interrupts: 
• These interrupts are detected using the NMI pin of the processor. 

• These can not be blocked or masked. 

•  Reserved for catastrophic event in the system. 



Advanced Computer Architecture   

________________________________________________________________________ 

306 

 

 

 Software interrupts: 
Software interrupts are usually associated with the software. A simple output operation in 

a multitasking system requires software interrupts to be generated so that the processor 

may temporarily halt its activity and place the data on its data bus for the peripheral 

device. Output is usually handled by interrupts so that it appears interactive and 

asynchronous. Notification of other events, such as expiry of a software timer is also 

handled by software interrupts. Software interrupts are also used with system calls. When 

the operating system switches from user mode to supervisor mode it does so through 

software interrupts. Let us consider an example where a user program must delete a file.  

The user program will be executing in the user mode. When it makes the specific system 

call to delete the file, a software interrupt will be generated, this will cause the processor 

to halt its current activity (which would be the user program) and switch to supervisor 

mode. Once in supervisor mode, the operating system will delete the file and then control 

will return to the user program. While in supervisor mode the operating system would 

need to decide if it could delete the specified file with out harmful consequences to the 

systems integrity, hence it is important that the system switch to supervisor mode at each 

system call. 

 

I/O Software System Layers: 

 
The above diagram shows the various software layers related to I/O.  At the bottom lies 

the actual hardware itself, i.e. the peripheral device. The peripheral device uses the 

hardware interrupts to communicate with the processor. The processor responds by 

executing the interrupt handler for that particular device. The device drivers form the 

bridge between the hardware and the software. The operating system uses the device 

drivers to communicate with the device in a hardware independent fashion, e.g.,  the 
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operating system need not cater for a specific brand of CRT monitors, or keyboards, the 

specific device driver written for that monitor or keyboard will act as an intermediary 

between the operating system and the device. It would be clear from the previous 

statement that the operating system expects certain common functions from all brands of 

devices in a category. Actually implementing these functions for each particular brand or 

vendor is the responsibility of the device driver. The user programs run at top of the 

operating system. 

 

Interrupt Service Routine (ISR): 
• It is a routine which is executed when an interrupt occurs. 

• Also known as an Interrupt Handler. 

• Deals with low-level events in the hardware of a computer system, like a tick of a 

real-time clock. 

As it was mentioned earlier, an interrupt once generated must be serviced through an 

interrupt service routine. These routines are stored in the system memory ready for 

execution. Once the interrupt is generated, the processor must branch to the location of 

the appropriate service routine to execute it. The branch address of the ISR is discussed 

next. 

 

Branch Address of the ISR: 
There are two ways used to choose the branch address of an Interrupt Service Routine. 

 Non-vectored Interrupts 

 Vectored Interrupts 

 

Non-vectored Interrupts: 
In non-vectored interrupts, the branch address of the interrupt service routine is fixed. 

The code for the ISR is loaded at fixed memory location. Non-vectored interrupts are 

very easy to implement and not flexible at all. In this case, the number of peripheral 

devices is fixed and may not be increased. Once the interrupt is generated the processor 

queries each peripheral device to find out which device generated the interrupt. This 

approach is the least flexible for software interrupt handling. 

 

Vectored Interrupts: 
Interrupt vectors are used to specify the address of the interrupt service routine. The code 

for ISR can be loaded anywhere in the memory. This approach is much more flexible as 

the programmer may easily locate the interrupt vector and change its addresses to use 

custom interrupt servicing routines. Using vectored interrupts, multiple devices may 

share the same interrupt input line to the processor. A process called daisy chaining is 

then used to locate the interrupting device.  

 

Interrupt Vector: 
Interrupt vector is a fixed size structure that stores the address of the first instruction of 

the ISR. 

Interrupt Vector Table: 
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• All of the interrupt vectors are stored in the memory in a special table called 

Interrupt Vector Table. 

• Interrupt Vector Table is loaded at the memory location 0 for the 8086/8088. 

 

Interrupts in Intel 8086/8088: 

• Interrupts in 8086/8088 are vector interrupts. 

• Interrupt vector is of 4 bytes to store IP and CS. 

• Interrupt vector table is loaded at address 0 of main memory. 

• There is provision of 256 interrupts. 

Branch Address Calculation: 
• The number of interrupt is the number of interrupt vector in the interrupt vector 

table. 

• Since size of each vector is 4 bytes and interrupt vector starts from address 0, 

therefore, the address of interrupt vector can be calculated by simply multiplying 

the number by 4. 

 

Interrupt Vector Example: 

In 8086/8088 machines the size of interrupt vector is 4 bytes that holds IP and CS of ISR. 

 

 

 
 

 

Returning from the ISR: 

Every ISA should have an instruction, like the IRET instruction, which should be 

executed when the ISR terminates. This means that the IRET instruction should be the 

last instruction of every ISR. This is, in effect, a FAR RETURN in that it restores a 

number of registers, and flags to their value before the ISR was called. Thus the previous 

environment is restored after the servicing of the interrupt is completed. 

 

Interrupt Handling: 
The CPU responds to the interrupt request by completing the current instruction, and then 

Code Segment Register Value  
(Most Significant Byte) 

Code Segment Register Value  
 (Least Significant Byte) 

Instruction Pointer Value 
(Most Significant Byte) 

Instruction Pointer Value 
(Least Significant Byte) 

a+3 

a+2 

a+1 

a 
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storing the return address from PC into a memory stack. Then the CPU branches to the 

ISR that processes the requested operation of data transfer. In general, the following 

sequence takes place. 

 

Hardware Interrupt Handling: 

 Hardware issues interrupt signal to the CPU. 

 CPU completes the execution of current instruction. 

 CPU acknowledges interrupt. 

 Hardware places the interrupt number on the data bus. 

 CPU determines the address of ISR from the interrupt number available on the data 

bus. 

 CPU pushes the program status word (flags) on the stack along with the current value 

of program counter. 

 The CPU starts executing the ISR. 

 After completion of the ISR, the environment is restored; control is transferred back 

to the main program. 

 

Interrupt Latency: 

Interrupt Latency is the time needed by the CPU to recognize (not service) an interrupt 

request. It consists of the time to perform the following: 

 Finish executing the current instruction.  

 Perform interrupt-acknowledge bus cycles.  

 Temporarily save the current environment. 

 Calculate the IVT address and transfer control to the ISR.  

If wait states are inserted by either some memory module or the device supplying the 

interrupt type number, the interrupt latency will increase accordingly. 

Interrupt Latency for external interrupts depends on how many clock periods remain in 

the execution of the current instruction. 

On the average, the longest latency occurs when a multiplication, division or a variable-

bit shift or rotate instruction is executing when the interrupt request arrives. 

Response Deadline: 
It is the maximum time that an interrupt handler can take between the time when interrupt 

was requested and when the device must be serviced. 

 

Expanding Interrupt Structure: 
When there is more than one device that can interrupt the CPU, an Interrupt Controller is 

used to handle the priority of requests generated by the devices simultaneously. 

 

Interrupt Precedence: 

Interrupts occurring at the same time i.e. within the same instruction are serviced 
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according to a pre-defined priority.  

 In general, all internal interrupts have priority over all external interrupts; the 

single-step interrupt is an exception.  

 NMI has priority over INTR if both occur simultaneously.  

 The above mentioned priority structure is applicable as far as the recognition of 

(simultaneous) interrupts is concerned. As far as servicing (execution of the 

related ISR) is concerned, the single-step interrupt always gets the highest 

priority, then the NMI, and finally those (hardware or software) interrupts that 

occur last. If IF is not 1, then INTR is ignored in any case. Moreover, since any 

ISR will clear IF, INTR has lower "service priority" compared to software 

interrupts, unless the ISR itself sets IF=1.  

Simultaneous Hardware Interrupt Requests: 

The priority of the devices requesting service at the same time is resolved by using two 

ways: 

 Daisy-Chained Interrupt 

 Parallel Priority Interrupt 

 

Daisy-Chaining Priority: 

• The daisy-chaining method to resolve the priority consists of a series connection of 

the devices in order of their priority. 

• Device with maximum priority is placed first and device with least priority is placed 

at the end. 

 

Daisy-Chain Priority Interrupt 
• The devices interrupt the CPU. 

• The CPU sends acknowledgement to the maximum priority device. 

• If the interrupt was generated by the device, the interrupt for the device is 

serviced. 

• Otherwise the acknowledgement is passed to the next device. 

 

 

If the higher priority devices are going to interrupt continuously then the device with the 

lower priority is not serviced. So some additional circuitry is also needed to introduce 

fairness. 
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Parallel Priority: 
• Parallel priority method for resolving the priority uses individual bits of a priority 

encoder. 

• The priority of the device is determined by position of the input of the encoder 

used for the interrupt. 

 

 

 

Parallel Priority Interrupt: 
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 Comparison of Interrupt driven I/O and Polling 

 Design Issues 

 Interrupt Handler Software 

 Interrupt Hardware 

 Interrupt Software 

 

Comparison of Interrupt driven I/O and Polling 

 
Interrupt driven I/O is better than polling. In the case of polling a lot of time is wasted in 

questioning the peripheral device whether it is ready for delivering the data or not. In the 

case of interrupt driven I/O the CPU time in polling is saved. 

 

Now the design issues involved in implementation of the interrupts are twofold. There 

would be a number of interrupts that could be initiated. Once the interrupt is there, how 

the CPU does know which particular device initiated this interrupt. So the first question is 

evaluation of the peripheral device or looking at which peripheral device has generated 

the interrupt. Now the second important question is that usually there would be a number 

of interrupts simultaneously available. So if there are a number of interrupts then there 

should be a mechanism by which we could just resolve that which particular interrupt 

should be serviced first. So there should be some priority mechanism. 

 

Design Issues 
 

There are two design issues: 

1. Device Identification 

2. Priority mechanism 
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Device Identification 

In this issue different mechanisms could be used. 

 Multiple interrupt lines 

 Software Poll 

 Daisy Chain 

 

1. Multiple Interrupt Line 

 

This is the most straight forward approach, and in this method, a number of interrupt 

lines are provided between the CPU and the I/O module. However, it is impractical to 

dedicate more than a few bus lines or CPU pins to interrupt lines. Consequently, even if 

multiple lines are used, it is likely that each line will have multiple I/O modules attached 

to it. Thus on each line, one of the other technique would still be required. 

 

2. Software Poll 

 

CPU polls to identify the interrupting module and branches to an interrupt service routine 

on detecting an interrupt. This identification is done using special commands or reading 

the device status register. Special command may be a test I/O. In this case, CPU raises 

test I/O and places the address of a particular I/O module on the address line. If I/O 

module sets the interrupt then it responds positively. In the case of an addressable status 

register, the CPU reads the status register of each I/O module to identify the interrupting 

module. Once the correct module is identified, the CPU branches to a device service 

routine which is specific to that particular device. 

 

Simplified Interrupt Circuit for an I/O Interface 

 

For above two techniques the implementation might require some hardware. The 

hardware would be specific to the processor which is being used. For example, for the 

case of SRC, simple hardware machanism is indicated. Now the basic technique is 
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handshaking and in this case of handshaking, the peripheral device would initiate an 

interrupt. This interrupt needs to be enabled. We will have a mechanism of ANDing the 

two signals. One is interrupt enable and other is interrupt request. Now these two requests 

would be passed on the CPU. The CPU passes on the acknowledge signal to the device. 

The acknowledge signal is shared and it goes on to different devices. 

The information about interrupt vector is given in 8-bits, from bit 0 to 7, which is 

translated to bit 16 to 23 on the data bus. Now the other 16-bits, from 0 to 15 are mapped 

to the data lines from 0 to 15. Now both of these are available through the tri-state 

buffers, which would be enabled through interrupt acknowledge. 

 3. Daisy Chain 

The wired or interrupt signal allows several devices to request interrupt simultaneously. 

However, for proper operation one and only one requesting device must receive an 

acknowledge signal, otherwise if we have more than one devices, we would have a data 

bus contention and the interrupt information would not be resolved. The usual solution is 

called a daisy chain. Assuming that if we have jth devices requesting for interrupt then 

first device 0 would receive the acknowledge signal, so therefore, iack0=iack. 

 

 The next device would only receive an acknowledge i.e., the jth device would receive an 

acknowledge if the previous device that means j-1 does not have an enabled interrupt 

request, that means interrupt was not initiated by the previous device. Now the figure 

shows this concept in the form of a connection from device 0 to 1. From 0, we see the 

acknowledge is generated for device 1, device 1 generates acknowledge for device2 and 

so on. So this signal propagates from one device to other device. Logically we could 

write it in the form of equation:                          

                                   iackj= iack j-1^(reqj-1^enb j-1) 

 

As we said that the previous device should not have generated an interrupt, that 

means its interrupt was not enabled and therefore, it passes on the acknowledge 

signal from its output to he next device.  
  

Disadvantages of Software Poll and Daisy Chain 

 

The software poll has a disadvantage is that it consumes a lot of time, while the daisy 
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chain is more efficient. The daisy chain has the disadvantage that the device nearest to the 

CPU would have highest priority. So, usually those devices which require higher priority 

would be connected nearer to the CPU. Now in order to get a fair chance for other 

devices, other mechanisms could be initiated or we could say that we could start instead 

of device 0 from that device where the CPU finishes the last interrupt and could have a 

cyclic provision to different devices. 

 

 

 

Interrupt Handler Software 

 
Example using SRC 

                                   

                                (Read from Book, Jordan page395) 

Example using FALCON-A 

 

As an example of interrupt-driven I/O, consider an output device, such as a parallel 

printer connected to the FALCON-A CPU. Now suppose that we want to print a 

document while using an application program like a word processor or a spread sheet. In 

this section, we will explain the important aspects of hardware and software for 

implementing an interrupt driven parallel printer interface for the FALCON-A. During 

this discussion, we will also explain the differences and similarities between this interface 

and the one discussed earlier. To make things simple, we have made the assumption that 

only one interrupt pin is available on the FALCON-A, and only one interrupt is possible 

at a given time with this CPU.  Implications of allowing only one interrupt at a time are 

that 

 

 No NMI is possible 

 No nesting of interrupts is possible 

 No priority structure needed for multiple devices 

 No arbitration needed for simultaneous interrupts 

 No need for vectored interrupts, therefore, no need of interrupt vectors and 

interrupt vector tables 

 Effect of software initiated interrupts and internal interrupts (exceptions) has to 

be ignored in this discussion 

     

Along with the previous assumption, the following assumptions have also been used: 

 

 Hardware sets and clears the interrupt flag, in addition to handling other   

things like saving PC, etc. 

 The address of the ISR is stored at absolute address 2 in memory. 

 The ISR will set up a stack in the memory for saving the CPU‟s environment 
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 One ASCII character stored per 16-bit word in the FALCON-A‟s memory and 

one character transferred during a 16-bit transfer. 

 The calling program will call the ISR for printing the first character through 

the printer driver. 

 Printer will activate ACKNLG# only when not BUSY. 

 

  Interrupt Hardware: 
 

The logic diagram for the interrupt hardware is shown in the Figure. The interrupt request 

is synchronized by handshaking signals, called IREQ and IACK. The timing diagram for 

the handshaking signals used in the interrupt driven I/O is shown in the next Figure. The 

printer will assert IREQ as soon as the ACKNLG# signal goes low (i.e. as soon as the 

printer is ready to accept new data) provided that IREQN=1. 
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The processor will complete the current instruction and respond by executing the 

interrupt service routine. The inverting tri-state buffer at the clock input of the D flip 

flop is enabled by IRQEN. This will make sure that after the current print job is 

complete, additional requests on IREQ are disabled. This can happen as a result of the 

printer being available even through the user may not have requested a print operation. 

The IACK line from the CPU is connected to the asynchronous reset, R, of the D flip 

flop so that the same interrupt request from the printer is not presented again to the 

CPU. The asynchronous set input of the D flip flop, labeled S in the diagram, is 

permanently connected to logic 1. This will make sure that the flip flop will never be 

set asynchronously. The D input is 

also permanently connected to logic 

1, as a result of which the flip flop 

will always be set synchronously in 

response to ACKNLG# provided 

IRQEN=1. Recall that IRQEN is bit 

4 on the centronics control port at 

logical address 2, and this is mapped 

onto address 60 of the FALCON-A‟s 

I/O space. The rest of the hardware 

is case of the same as in the case of 

the programmed I/O example.  

 

Interrupt Software:    

 
Our software for the interrupt driven printer example consists of three parts: 

1). Dummy calling program 

2). Printer Driver 

3). ISR 
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We are assuming that normal processing is taking place
16

 e.g., a word processor is 

executing. The user wants to print a document. This  

 

 

 

document is placed in a buffer by the word processor. This buffer is usually present 

somewhere else in the memory. The responsibility of the calling program is to pass the 

number of bytes to be printed and the starting address of the buffer where these bytes are 

stored to the printer driver. The calling program can also be called the main program. 

Suppose that the total number of bytes to be printed are 40. (They are placed in a buffer 

having the starting address 1024.) When the user invokes the print command, the calling 

program calls the printer driver and passes these two parameters in r7 and r5 respectively. 

The return address of the calling program is stored in r4. A dummy calling program code 

is given below. 

Bufp, NOB, PB, and temp are the spaces reserved in memory for later use in the program. 

The first instruction is jump [main]. It is stored at absolute memory address 0 by using 

the .org 0 directive. It will transfer control to the main program. The first instruction of 

the main program is placed at address “main”, which is the entry point in this example. 

Note that the entry point is different in this case from the reset address, which is address 0 

for the FALCON-A. Also note that the address of the first instruction in the printer driver 

is stored at address “a4PD” using the .sw directive. This value is then brought into r6. 

                                                 
16

 Since only one interrupt is possible, a question may arise about the way the print command is presented 

to the word processor. It can be assumed that polling is used for the input device in this case. 
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The main program calls the printer driver by using the instruction call r4, r6. In an actual 

program, after returning from the printer driver, the normal processing resumes and if 

there are any error conditions, they will be handled at this point. Next, consider the code 

for the printer driver, shown in the attached text box. 

 

 

; filename: Example_Falcon-A .asmfa 

;This program sends a single character 

;to a FALCON-A parallel printer 

;using an interrupt driven I/O interface 

; 

; Notes: 

; 1. 8-bit printer data bus connected to  

; D<7..0> of the FALCON-A (remember big-endian) 

; Thus, the printer actually uses addresses 57, 59 & 61 

; 

; 2. one character per 16-bits of data xfered ;     

; 

 .org 0 

 jump [main] 

a4ISR: .sw  beginISR 

a4PD: .sw  Pdriver 

dv1:  .sw 1024 

dv2:    .sw 40 

Bufp: .dw  1 

NOB: .dw  1 

PB: .dw 1 

temp:  .dw 6 

; 

; Dummy Calling Program, e.g., a word processor 

; 

 .org 32  

main: load r6, [a4PD] ;r6 holds address of printer driver 

; 

; user invokes print command here 

; 

 load r5, [dv1]  ;Prepare registers for passing   

 load r7, [dv2]  ; information about print buffer. 

; 

; 

; call printer driver 

; 

 call r4, r6 

; Handle error conditions, if any , upon return. 
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; Normal processing resumes 

; 

 halt 

 

 

The printer driver is loaded at address 50. Initialization of the variables includes setting 

of port addresses, variables for the STROBE# pulse, initializing the printer and enabling 

its IRQEN. The variables can be defined anywhere in the program because they reserve 

no memory space. When the printer driver starts, the PB flag is tested to make sure that a 

previous print job is not in progress. If so, the ISR is not invoked and a message is 

returned to the main program indicating that printing is in progress. This may display a 

“printer busy” icon on the user‟s screen, or cause some other appropriate action. If the 

printer is available, it is initialized by the driver.  

 

 
 

The following activities are also performed by the driver (see the attached flow chart 

also). 

 Set port addresses 
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 Set up variables for the STROBE# puls 

 Initialize printer and enable its IRQEN. 

 Set up printer ISR by pointing to the buffer and initializing counter 

 Make sure that the previous print job is not in progress 

 Set PB flag to block further print jobs till current one is complete 

 Invoke ISR for the first time 

 Pass error message to main program if ISR reports an error 

 Return to main program 
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The code and flow chart for the interrupt service routine (ISR) are discussed in the next 

few paragraphs. 

We have assumed that the address of the ISR is stored at absolute memory address 2 by 

the operating system. One way to do that is by using the .sw directive (as done in the 

dummy calling program). The symbol sw stands for “storage of word”. It enables the user 

; Printer driver 

; 

 .org 50   ; starting address of Printer driver 

; 

datap:    .equ 56 

statusp:  .equ 58 

controlp: .equ 60 

; 

reset:  .equ 17  ; or 11h  

; used to set unidirectional, enable interrupts,  

; auto line feed, and strobe high 

disable: .equ 5 

; 

strb_H: .equ 21  ; or 15h 

strb_L:  .equ 20  ; or 14h 

; 

; check PB flag first, if set,  

; return with message. 

; 

Pdriver: load r1, [PB] 

 jnz r1, [message] 

 movi r1, 1 

 store r1, [PB]  ; a 1 in PB indicates Print In Progress 

 movi r1, reset  ; use r1 for data xfer 

 out r1, controlp 

 store r5, [Bufp] 

 store r7, [NOB] 

; 

; 

 int 

; 

 jump [finish] 

message: nop   ; in actual situation, put a message routine here 

    ;to indicate print in progress 

finish: ret r4 

; 
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to identify storage for a constant, or the value of a variable, an address or a label at a 

fixed memory location during the assembly process.  

 

 
 

 

These values become part of the binary file and are then loaded into the memory when 

the binary file is loaded and executed. In response to a hardware interrupt or the software 

interrupt int, the control unit of the FALCON-A CPU will pick up the address of the first 

instruction in the ISR from memory location 2, and transfer control to it. This effectively 

means that the behavioral RTL of the int instruction will be as shown below:  
 

int    IPC← PC, PC ← M[2], IF ← 0 
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The IPC register in the CPU is a holding place for the current value of the PC. It is 

invisible to the programmer. Since the iret instruction should always be the last 

instruction in every ISR, its behavior RTL will be as shown below: 

 

 iret    PC ← IPC, IF ← 1 

   

The saving and restoring of the other elements of the CPU environment like the general 

purpose registers should be done within the ISR. The five store instructions at the 

beginning are used to save these registers into the memory block starting at address 

temp, and the five load instructions at the end are used to restore these registers to their 

original values.  

 

;   ISR starts here 

 .org 100  

beginISR: movi r6, temp 

 store r1, [r6] 

 store r3, [r6+2] 

 store r4, [r6+4] 

 store r5, [r6+6] 

 store r7, [r6+8] 

 movi r3, 1 

 shiftl r3,r3,7  ; to set mask to 0080h 

 load r5, [Bufp]  ; not necessary to use r5 & r7 here 

 load r7, [NOB] ; using r7 as character counter 

 in r1, statusp 

 and r1,r1,r3  ; test if BUSY = 1 ? 

 jnz r1, [error]  ; error if BUSY = 1 

 load r1, [r5]  ; get char from printer buffer 

 out r1, datap 

 movi r1, strb_L 

 out r1, controlp 

 movi r1, strb_H 

 out r1, controlp 

 addi r5, r5, 2 

 store r5, [Bufp] ; update buffer pointer 

 subi r7, r7, 1  ; update character counter 

 store r7, [NOB] 

 jz r7, [suspend] 

 jump [last] 

suspend: store r7, [PB] ; clear PB flag 

 movi r1, disable ; disable future interrupts till  

      out r1, controlp ; printer driver called again 

 jump [last] 

error: movi r7, -1    ; error code in r7 
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; other error codes go here 

; 

last: load r1, [r6] 

 load r3, [r6+2] 

 load r4, [r6+4] 

 load r5, [r6+6] 

 load r7, [r6+8] 

 iret 

 .end 

 

After setting the mask to 80h in r3, the current value of the buffer pointer and the number 

of bytes to be printed are brought from the memory into r5 and r7 respectively. After a 

byte is printed, these values are updated in the memory for use by the ISR when it is 

invoked again. The rest of the code in the ISR is the same as it was in case of the 

programmed I/O example. Note that we are testing the printer‟s BUSY flag within the 

ISR also. However, the difference here is that this testing is being done for a different 

reason, and it is done only once for each call to the ISR. 
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The memory map for this program is as shown in the Figure. The point to be noted here 

is that the ISR can be loaded anywhere in the memory but its address will be present at 

memory location 2 i.e. M[2]. 

  



Advanced Computer Architecture   

________________________________________________________________________ 

328 

 

 

 

 

Lecture No. 29 
 

FALSIM 

 
Reading Material 
       Handouts                                                                                                         Slides    

 

Summary      
 Introduction to FALSIM 

 Preparing source files for FALSIM 

 Using FALSIM 

 FALCON-A assembly language techniques 

 

Introduction to FALSIM: 

FALSIM is the name of the software application which consists of the FALCON-A 

assembler and the FALCON-A simulator. It runs under Windows XP.  

 

FALCON-A Assembler:  

Figure 1 shows a snapshot of the graphical user interface (GUI) for the FALCON-A 

Assembler. This tool loads a FALCON-A assembly file with a (.asmfa) extension and 

parses it. It shows the parsed results in an error log, lets the user view the assembled file‟s 

contents in the file listing and also provides the features of printing the machine code, an 

Instruction Table and a Symbol Table to a FALCON-A listing file. It also allows the user 

to run the FALCON-A Simulator.  

The FALCON-A Assembler source code has two main modules, the 1st-pass module and 

the 2nd-pass module. The 1st-pass module takes an assembly file with a (.asmfa) 

extension and processes the file contents. It then generates a Symbol Table which 

corresponds to the storage of all program variables, labels and data values in a data 

structure at the implementation level. The Symbol Table is used by the 2nd-pass module. 

Failures of the 1st-pass are handled by the assembler using its exception handling 

mechanism.  

The 2nd-pass module sequentially processes the .asmfa file to interpret the instruction op-

codes, register op-codes and constants using the Symbol Table. It then produces a list file 

with a .lstfa extension independent of successful or failed pass. If the pass is successful a 

binary file with a .binfa extension is produced which contains the machine code for the 

program contained in the assembly file.  

 

FALCON-A Simulator:  
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Figure 6 shows a snapshot of the GUI for the FALCON-A Simulator. This tool loads 

a FALCON-A binary file with a (.binfa) extension and presents its contents into 

different areas of the simulator. It allows the user to execute the program to a specific 

point within a time frame or just executes it, line by line. It also allows the user to 

view the registers, I/O port values and memory contents as the instructions execute.  

FALSIM Features:  

The FALCON-A Assembler provides its user with the following features: 

 Select Assembly File: Labeled as “1” in Figure 1, this feature enables the user to choose 

a FALCON-A assembly file and open it for processing by the assembler. 

 Assembler Options: Labeled as “2” in Figure 1.  

 Print Symbol Table  

This feature, if selected, writes the Symbol Table (produced after the execution of the 1st-

pass of the assembler) to a FALCON-A list file with an extension of (.lstfa). The Symbol 

Table includes variables, addresses and labels with their respective values.  

 Print Instruction Table  

This feature, if selected, writes the FALCON-A instructions along with their op-codes at 

the end of the list file.  

List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed insight of the 

FALCON-A listing file, which is produced as a result of the execution of the 1st and 2nd-

pass. It shows the Program Counter value in hexadecimal and decimal formats along with 

the machine code generated for every line of assembly code. These values are printed 

when the 2nd-pass is completed.  

Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user about the 

errors and their respective details, which occurs in any of the  two passes of the 

assembler. The size of this window can be changed by dragging the boundary line up or 

down. 

Highlight:  This feature is labeled as “5” in Figure 1 and helps the user to search for a 

certain input with the options of searching with “match whole” and “match any” parts 

of the string. The search also has the option of checking with/without considering “case-

sensitivity”. It searches the List File area and highlights the search results using the 

yellow color. It also indicates the total number of matches found.   

Start Simulator: This feature is labeled as “6” in Figure 1. The FALCON-A Simulator is 

run using the FALCON-A Assembler‟s “Start Simulator” option. Its features are detailed 

as follows:  

Load Binary File: The button labeled as “11” in Figure 6, allows the user to choose and 

open a FALCON-A binary file with a (.binfa) extension. When a file is being loaded into 

the simulator all the register, constants (if any) and memory values are set.  

Registers: The area labeled as “12” in Figure 6. enables, the user to see values present in 

different registers before, during and after execution.  
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Instruction: This area is labeled as “13” in Figure 6 and contains the value of PC, address 

of an instruction, its representation in Assembly, the Register Transfer Language, the op-

code and the instruction type.  

I/O Ports: I/O ports are labeled as “14” in Figure 6. These ports are available for the 

user to enter input operation values and visualize output operation values whenever 

an I/O operation takes place in the program. The input value for an input operation is 

given by the user before an instruction executes. The output values are visible in the 

I/O port area once the instruction has successfully executed.  

Memory: The memory is divided into two areas and is labeled as “15” in Figure 6, to 

facilitate the view of data stored at different memory locations before, during and after 

program execution.  

Processor’s State: Labeled as “16” in Figure 6, this area shows the current values of the 

Instruction Register and the Program Counter while the program executes.  

Highlight: The highlight option for the FALCON-A simulator is labeled as “17” in 

Figure 6. This feature is similar to the way the highlight feature of the FALCON-A 

Assembler works. It offers to highlight the search string which is entered as an input, 

with the “All “ and “ Part “ option. The results of the search are highlighted using the 

yellow color. It also indicates the total number of matches.  

The following is a description of the options available on the button panel labeled as “18” 

in Figure 6. 

 Single Step: “Single Step” lets the user execute the program, one instruction at a time. 

The next instruction is not executed unless the user does a “single step” again. By default, 

the instruction to be executed will be the one next in the sequence. It changes if the user 

specifies a different PC value using the Change PC option (explained below).  

Change PC: This option lets the user change the value of PC (Program Counter). 

By changing the PC the user can execute the instruction to which the specified PC 

points. The value in the PC must be an even address. 

Execute: By choosing this button, the user is able to execute the loaded program 

with the options of execution with/without breakpoint insertion. In case of 

breakpoint insertion, the user has the option to choose from a list of valid 

breakpoint values. It also has the option to set a limit on the time for execution. 

This “Max Execution Time” option restricts the program execution to a time 

frame specified by the user.  

Change Register: Using the Change Register feature, the user can change the 

value present in a particular register.  

Change Memory Word: This feature enables the user to change values present at a 

particular memory location.  

Display Memory: Display Memory shows an updated memory area, after a 

particular memory location other than the pre-existing ones is specified by the 
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user.  

Change I/O: Allows the user to give an I/O port value if the instruction to be 

executed requires an I/O operation. Giving in the input in any one of the I/O ports 

areas before instruction execution, indicates that a particular I/O operation will be 

a part of the program and it will have an input from some source. The value given 

by the user indicates the input type and source.  

Display I/O: Display I/O works in a manner similar to Display Memory. Here the 

user specifies the starting index of an I/O port. This features displays the I/O ports 

stating from the index specified. 

 

2. Preparing Source Files for FALSIM: 

In order to use the FALCON-A assembler and simulator, FALSIM, the source file 

containing assembly language statements and directives should be prepared 

according to the following guidelines: 

 The source file should contain ASCII text only. Each line should be terminated by 

a carriage return. The extension .asmfa should be used with each file name. After 

assembly, a list file with the original filename and an extension .lstfa, and a 

binary file with an extension .binfa will be generated by FALSIM.  

 Comments are indicated by a semicolon (;) and can be placed anywhere in the 

source file. The FALSIM assembler ignores any text after the semicolon. 

 Names in the source file can be of one of the following types: 

 Variables: These are defined using the .equ directive. A value must also be 

assigned to variables when they are defined. 

 Addresses in the “data and pointer area” within the memory: These can be defined 

using the .dw or the .sw directive. The difference between these two directives is 

that when .dw is used, it is not possible to store any value in the memory.  The 

integer after .dw identifies the number of memory words to be reserved starting at 

the current address. (The directive .db can be used to reserve bytes in memory.) 

Using the .sw directive, it is possible to store a constant or the value of a name in 

the memory. It is also possible to use pointers with this directive to specify 

addresses larger than 127. Data tables and jump tables can also be set up in the 

memory using this directive. 

 Labels: An assembly language statement can have a unique label associated with 

it. Two assembly language statements cannot have the same name. Every label 

should have a colon (:) after it. 

 Use the .org 0 directive as the first line in the program. Although the use of this 

line is optional, its use will make sure that FALSIM will start simulation by 

picking up the first instruction stored at address 0 of the memory. (Address 0 is 

called the reset address of the processor). A jump [first] instruction can be placed 

at address 0, so that control is transferred to the first executable statement of the 

main program.  Thus, the label first serves as the identifier of the “entry point” in 

the source file. The .org directive can also be used anywhere in the source file to 

force code at a particular address in the memory. 
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 Address 2 in the memory is reserved for the pointer to the Interrupt Service 

Routine (ISR). The .sw directive can be used to store the address of the first 

instruction in the ISR at this location. 

 Address 4 to 125 can be used for addresses of data and pointers
17

. However, the 

main program must start at address 126 or less
18

, otherwise FALSIM will 

generate an error at the jump [first] instruction. 

 The main program should be followed by any subprograms or procedures. Each 

procedure should be terminated with a ret instruction. The ISR, if any, should be 

placed after the procedures and should be terminated with the iret instruction. 

 The last line in the source file should be the .end directive.   

 The .equ directive can be used anywhere in the source file to assign values to 

variables. 

 It is the responsibility of the programmer to make sure that code does not 

overwrite data when the assembly process is performed, or vice versa. As an 

example, this can happen if care is not exercised during the use of the .org 

directive in the source file. 

 

3. Using FALSIM:   

 To start FALSIM (the FALCON-A assembler and simulator), double click on the 

FALSIM icon. This will display the assembler window, as shown in the Figure 1. 

 Select one or both assembler options shown on the top right corner of the 

assembler window labeled as “2”. If no option is selected, the symbol table and 

the instruction table will not be generated in the list (.lstfa) file. 

 Click on the select assembly file button labeled as “1”. This will open the dialog 

box as shown in the Figure 2. 

 Select the path and file containing the source program that is to be assembled. 

 Click on the open button. FALSIM will assemble the program and generate two 

files with the same filename, but with different extensions. A list file will be 

generated with an extension .lstfa, and a binary (executable) file will be generated 

with an extension .binfa. FALSIM will also display the list file and any error 

messages in two   separate panes, as shown in Figure 3. 

 Double clicking on any error message highlights and displays the corresponding 

erroneous line in the program listing window pane for the user. This is shown in 

Figure 4. The highlight feature can also be used to display any text string, 

including statements with errors in them. If the assembler reported any errors in 

the source file, then these errors should be corrected and the program should be 

assembled again before simulation can be done. Additionally, if the source file 

had been assembled correctly at an earlier occasion, and a correct binary (.binfa) 

                                                 
17

 Any address between 4 and 14 can be used in place of the displacement field in load or store instructions. 

Recall that the displacement field is just 5 bits in the instruction word.   
18

 This restriction is because of the fact that the immediate operand in the movi instruction must fit an 8-bit 

field in the instruction word. 
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file exists, the simulator can be started directly without performing the assembly 

process. 

 To start the simulator, click on the start simulation button labeled as “6”. This will 

open the dialog box shown in Figure 6. 

 Select the binary file to be simulated, and click Open as shown in Figure 7. (It is 

also possible to open the file by double clicking on the file name in the “Open” 

window). 

 This will open the simulation window with the executable program loaded in it as 

shown in Figure 8. The details of the different panes in this window were given in 

section 1 earlier. Notice that the first instruction at address 0 is ready for 

execution.  All registers   are initialized to 0. The memory contains the address of 

the ISR (i.e., 64h which is 100 decimal) at location 2 and the address of the 

printer driver at location 4. These two addresses are determined at assembly time 

in our case.  In a real situation, these addresses will be determined at execution 

time by the operating system, and thus the ISR and the printer driver will be 

located in the memory by the operating system (called re-locatable code). 

Subsequent memory locations contain constants defined in the program. 

 Click single step button labeled as “19”. FALSIM will execute the jump [main] 

instruction at address 0 and the PC will change to 20h (32 decimal), which is the 

address of the first instruction in the main program (i.e., the value of main).  

 Although in a real situation, there will be many instructions in the main program, 

those instructions are not present in the dummy calling program. The first useful 

instruction is shown next. It loads the address of the printer driver in r6 from the 

pointer area in the memory. The registers r5 and r7 are also set up for passing the 

starting address of the print buffer and the number of bytes to be printed. In our 

dummy program, we bring these values in to these registers from the data area in 

the memory, and then pass these values to the printer driver using these two 

registers. Clicking on the single step button twice, executes these two instructions. 

 The execution of the call instruction simulates the event of a print request by the 

user. This transfers control to the printer driver. Thus, when the call r4, r6 

instruction is single stepped, the PC changes to 32h (50 decimal) for executing the 

first instruction in the printer driver. 

 Double click on memory location 000A, which is being used for holding the PB 

(printer busy) flag. Enter a 1 and click the change memory button. This will store 

a 0001 in this location, indicating that a previous print job is in progress. Now 

click single step and note that this value is brought from memory location 000E 

into register r1. Clicking single step again will cause the jnz r1, [message] 

instruction to execute, and control will transfer to the message routine at address 

0046h. The nop instruction is used here as a place holder. 

 Click again on the single step button.  Note that when the ret r4 instruction 

executes, the value in r4 (i.e., 28h) is brought into the PC. The blue highlight bar 

is placed on the next instruction after the call r4, r6 instruction in the main 

program. In case of the dummy calling program, this is the halt instruction. 
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 Double click on the value of the PC labeled as “20”. This will open a dialog box 

shown below. Enter a value of the PC (i.e., 26h) corresponding to the call r4, r6  

 

 

instruction, so  

 

 that it can be executed again. A “list” of possible PC values can also be pulled 

down using, and 0026h can be selected from there as well. 

 Click single step again to enter the printer driver again. 

 Change memory location 000A to a 0, and then single step the first instruction in 

the printer driver. This will bring a 0 in r1, so that when the next jnz r1, 

[message] instruction is executed, the branch will not be taken and control will 

transfer to the next instruction after this instruction. This is movi r1, 1 at address 

0036h. 

 Continue single stepping. 

 Notice that a 1 has been stored in memory location 000A, and r1 contains 11h, 

which is then transferred to the output port at address 3Ch (60 decimal) when the 

out r1, controlp instruction executes. This can be verified by double clicking on 

the top left corner of the I/O port pane, and changing the address to 3Ch. Another 

way to display the value of an I/O port is to scroll the I/O window pane to the 

desired position.  

  Continue single stepping till the int instruction and note the changes in different 

panes of the simulation window at each step. 

    When the int instruction executes, the PC changes to 64h, which is the address of 

the first instruction in the ISR.  Clicking single step executes this instruction, and 

loads the address of temp (i.e., 0010h) which is a temporary memory area for 

storing the environment. The five store instructions in the ISR save the CPU 

environment (working registers) before the ISR change them.  

  Single step through the ISR while noting the effects on various registers, 

memory locations, and I/O ports till the iret instruction executes. This will pass 

control back to the printer driver by changing the PC to the address of the jump 

[finish] instruction, which is the next instruction after the int instruction.  

   Double click on the value of the PC. Change it to point to the int instruction 

and click single step to execute it again. Continue to single step till the in r1, 

statusp instruction is ready for execution. 
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  Change the I/O port at address 3Ah (which represents the status port at address 

58) to 80 and then single step the in r1, statusp instruction. The value in r1 

should be 0080.  

 Single step twice and notice that control is transferred to the movi r7, FFFF
19

  

     instruction,which stores an error code of –1 in r1. 

 

                                                          

 

 

                                                 
19

 The instruction was originally movi r7, -1. Since it was converted to machine language by the assembler, 

and then reverse assembled by the simulator, it became movi r7, FFFF.  This is because the machine code 

stores the number in 16-bits after sign-extension. The result will be the same in both cases.  
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Figure 7 

 

 
 

 

 

 

 

 

 

 

4. FALCON-A assembly language programming techniques:   

 If a signed value, x, cannot fit in 5 bits (i.e., it is outside the range -16 to +15), 

FALSIM will report an error with a load r1, [x] or a store r1, [x] instruction. To 

overcome this problem, use movi r2, x followed by load r1, [r2].   
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 If a signed value, x, cannot fit in 8 bits (i.e., it is outside the range      -128 to +127), 

even the previous scheme will not work. FALSIM will report an error with the movi 

r2, x instruction. The following instruction sequence should be used to overcome this 

limitation of the FALCON-A. First store the 16-bit address in the memory using the 

.sw directive. Then use two load instructions as shown below: 

a:   .sw x 

 load r2, [a] 

 load r1, [r2]  
This is essentially a “memory-register-indirect” addressing. It has been made possible 

by the .sw directive. The value of a should be less than 15. 

 A similar technique can be used with immediate ALU instructions for large values of 

the immediate data, and with the transfer of control (call and jump) instructions for 

large values of the target address. 

 Large values (16-bit values) can also be stored in registers using the mul instruction 

combined with the addi instruction. The following instructions bring a 201 in register 

r1. 

movi r2, 10 

movi r3, 20 

mul r1, r2, r3  ; r1 contains 200 after this instruction 

addi r1, r1, 1   ; r1 now contains 201 

 Moving from one register to another can be done by using the instruction  addi r2, 

r1, 0. 

 Bit setting and clearing can be done using the logical (and, or, not, etc) instructions. 

 Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the multiplier or 

divisor is a power of 2. 
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 Lecture No. 30 
 

Interrupt Priority and Nested Interrupts 

 
Reading Material 

 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 8                                                          

Computer Systems Design and Architecture                                               8.3.3, 8.4                                                                                                                                                                                                                                                                                                                          

 

Summary                                                                                                                                                                                                                                                                          

 
 Nested Interrupts 

 Interrupt Mask 

 DMA 
 

Nested Interrupts 
                                    (Read from Book, Jordan Page 397) 

 

Interrupt Mask 
                                    (Read from Book, Jordan Page 397) 

 

Priority Mask 
                                     (Read from Book, Jordan Page 398) 

 

 

Examples 

 
Example # 1

20
 

Assume that three I/O devices are connected to a 32-bit, 10 MIPS CPU. The first device 

is a hard drive with a maximum transfer rate of 1MB/sec. It has a 32-bit bus. The second 

device is a floppy drive with a transfer rate of 25KB/sec over a 16-bit bus, and the third 

device is a keyboard that must be polled thirty times per second. Assuming that the 

polling operation requires 20 instructions for each I/O device, determine the percentage 

of CPU time required to poll each device. 

 

                                                 
20

 Adopted from [H&P org] 
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Solution: 
The hard drive can transfer 1MB/sec or 250 K 32-bit words every second. Thus, this hard 

drive should be polled using at least this rate. 

 

Using 1K=2
10,

 the number of CPU instructions required would be  

 

 250 x 2
10

 x 20 = 5120000 instructions per second. 

Percentage of CPU time required for polling is  

 

 (5.12 x 10
6
)/ (10 x10

6
) = 51.2% 

 

The floppy disk can transfer 25K/2= 12.5 x 2
10

 half-words per second.  It should be 

polled with at least this rate. The number of CPU instructions required will be 12.5 x 2
10

 

x 20 = 256,000 instructions per second. 

 

Therefore, the percentage of CPU time required for polling is  

 

 (0.256 x 10
6
)/ (10 x 10

6
) = 2.56%.  

 

For the keyboard, the number of instructions required for polling is  

 

 30 x 20 = 600 instructions per second.  

 

Therefore, the percentage of CPU time spent in polling is  

 

 600 / (10 x 10
6
) = 0.006% 

 

It is clear from this example that while it is acceptable to use polling for a keyboard or a 

floppy drive, it is very risky to use polling for the hard drive. In general, for devices with 

a high data rate, the use of polling is not adequate. 

 

Example # 2
2
 

a. What should be the polling frequency for an I/O device if the average delay 

between the time when the device wants to make a request and the time when it is 

polled, is to be at most 10 ms?  

b. If it takes 10,000 cycles to poll the I/O device, and the processor operates at 

100MHz, what % of the CPU time is spent polling? 

c. What if th
21

e system wants to provide an average delay of 1msec? 

 

Solution: 

a. Assuming that the I/O requests are distributed evenly in time, the average time 

that a device will have to wait for the processor to poll is half the time between 

                                                 
21

 Adopted from [Schaum] 
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polling attempts. Therefore, to provide an average delay of 10 ms, the processor 

will have to poll every 20 ms, or 50 times per second.  

b. If each polling attempt takes 10,000 cycles, then the processor will spend 500,000 

cycles polling each second. The % of CPU time spent in polling is then 

(0.5x10
6
)/(100x10

6
)=0.5% 

c. To provide an average delay of 1ms, the polling frequency must be increased. The 

processor will have to poll every 2ms, or 500 times per second. This will consume 

5,000,000 cycles for polling. The % of CPU time spent polling then becomes 

5/100=5%.  

 

 

Example # 3
22

  

What percentage of time will a 20MIPS processor spend in the busy wait loop of an 80-

character line printer when it takes 1 msec to print a character and a total of 565 

instructions need to be executed to print an 80 character line. Assume that two 

instructions are executed in the polling loop. 

 

Solution: 
Out of the total 565 instructions executed to print a line, 80x2=160 are required for 

polling. For a 20MIPS processor, the execution of the remaining 405 instructions takes 

405/ (20x10
6
) = 20.25sec. Since the printing of 80 characters takes 80ms, (80-0.02025) 

=79.97msec is spent in the polling loop before the next 80 characters can be printed. This 

is 79.97/80=99.96% of the total time. 

 

Example # 4
23

 

Consider a 20 MIPS processor with several input devices attached to it, each running at 

1000 characters per second. Assume that it takes 17 instructions to handle an interrupt. If 

the hardware interrupt response takes 1sec, what is the maximum number of devices 

that can be handled simultaneously? 

 

Solution: 

A service for one character requires 17/ (20x10
6
) +1sec=1.85sec. Since each device 

runs at 1000 characters per second, 1.85 ms of handling time is required by each device 

every second. Therefore the maximum number of devices that can be handled is 1/ 

(1.85x10
-3

) = 540. 

 

Example # 5
24

  

Assume that a floppy drive having a transfer rate of 25KB per second  is attached to a 32 

bit, 10MIPS CPU using an interrupt driven interface. The drive has a 16-bit data bus. 

                                                 
22

 Adopted from [H&J] 
23

 Adopted from [H&J] 
24

 Adopted from [H&P org] 
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Assume that the interrupt overhead is 20 instructions. Calculate the fraction of CPU time 

required to service this drive when it is active. 

 

Solution: 
Since the floppy drive has a 16-bit data bus, it can transfer two bytes at one time. Thus its 

transfer rate is 25/2 = 12.5K half-words (16-bits each) per second. This corresponds to an 

overhead of 20 instructions or 12.5K x 20 = 12.5 x 2
10 

x 20 = 256000 instructions per 

second.  

 

Example # 6
25

 
A processor with a 500 MHz clock requires 1000 clock cycles to perform a context 

switch and start an ISR. Assume each interrupt takes 10,000 cycles to execute the ISR 

and the device makes 200 interrupt requests per second. Also, assume that the processor 

polls every 0.5msec during the time when there are no interrupts. Further assume that 

polling an I/O device requires 500 cycles. Compute the following: 

a. How many cycles per second does the processor spend handling I/O from the 

device if only interrupts are used? 

b. What fraction of the CPU time is used in interrupt handling for part (a)? 

c. How many cycles per second are spent on I/O if polling is also used with 

interrupts?  

d. How often should the processor poll so that polling incurs the same overhead as 

interrupts? 

 

Solution: 

a. The device makes 200 interrupt requests per second, each of which takes  

      10,000 + 2x1000 (context switching to the ISR and back from it)  

      = 12,000 cycles.  

 

      Thus, a total of 200x12,000=2,400,000 cycles per second are spent handling I/O 

using      interrupts. 

 

b. The percentage of the processor time used in interrupt handling is 

 2,400,000/(500x106)   or 0.48%. 

 

c. There are 200 interrupt requests per second, or one interrupt request every 5 ms. 

Every interrupt consumes a total of 12,000 cycles, as calculated in part (a). For a 

500 MHz CPU, this is  

  

 12000/(500 x 10
6 

) = 24 microseconds. 

 

 For 200 interrupts per second, this is 4.8 msec.  

 

                                                 
25

 Adopted from [Schaum] 
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 This leaves 1000 - 4.8 = 995.2 msec for polling. 

 

 Since the processor polls once every 0.5 msec during the time when there is no      

interrupt, this corresponds to  

  

 995/0.5 = 1990 times per second. 

 

 The total number of cycles required for polling is 

 

 1990 x 500 = 995,000 cycles per second. 

 

 Thus, the total time spent on I/O when using polling with  interrupts is  

  

 2,400,000 + 995,000 = 3,395,000 cycles per second. 

 

d. The interrupt overhead is 1000 cycles per second for a context switch to the ISR 

and 1000 cycles per second back from it.  This is a total of 2 x 1000 cycles per 

second.  With 200 interrupts per second, this is  

 200 x 2000 = 400,000 cycles per second. 

 

The polling overhead is 500 cycles per second. Thus, for the same  overhead as 

interrupts, the polling operation should be performed  

 400,000 / 500 = 800 times per second,  

 or 1/800 =  every 1.25 msec. 

 

Direct Memory Access (DMA) 
Direct memory access is a technique, where by the CPU passes its control to the memory 

subsystem or one of its peripherals, so that a contiguous block of data could be 

transferred from peripheral device to memory subsystem or from memory subsystem to 

peripheral device or from one peripheral device to another peripheral device. 

 
Advantage of DMA 

The transfer rate is pretty fast and conceptually you could imagine that through disabling 

the tri-state buffers, the system bus is isolated and a direct connection is established 

between the I/O subsystem and the memory subsystem and then the CPU is free. It is idle 

at that time or it could do some other activity. Therefore, the DMA would be quite useful, 

if a large amount of data needs to be transferred, for example from a hard disk to a printer 

or we could fill up the buffer of a printer in a pretty short time. 

As compared to interrupt driven I/O or the programmed I/O, DMA would be much faster. 

What is the consequence? The consequence is that we need to have another chip, which is 

a DMA controller. “A DMA controller could be a CPU in itself and it could control the 

total activity and synchronize the transfer of data”. DMA could be considered as a 

technique of transferring data from I/O to memory and from memory to I/O without the 

intervention of the CPU. The CPU just sets up an I/O module or a memory  
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subsystem, so that it passes control and the data could be passed on from I/O to memory 

or from memory to I/O or within the memory from one subsystem to another subsystem 

without interaction of the CPU. After this data transfer is complete, the control is passed 

from I/O back to the CPU. 

Now we can illustrate further the advantage of DMA using following example. 

 

 

 

Example of DMA 

If we write instruction load as follows: 

                                                             load [2], [9] 

 

This instruction is illegal and not available in the SRC processor. The symbols [2] and [9] 

represent memory locations. If we want to have this transfer to be done then two steps 

would be required. The instruction would be: 

                                                             load  r1, [9] 

                                                             store r1, [2] 

 

Thus it is not possible to transfer from one memory location to another without involving 

the CPU. The same applies to transfer between memory and peripherals connected to I/O 

ports. For example we cannot have: 

                                                            out [6], datap 

It has to be done again in two steps: 

                                                            load r1, [6] 

                                                            out   r1, datap 

Similar comments apply to the “in” instruction. Thus the real cause of the limited transfer 

rate is the CPU itself. It acts as an unnecessary middle man. The example illustrates that 

in general, every data word travels over the system bus twice and this is not necessary, 

and therefore, the DMA in such cases is pretty useful. 

 

DMA Approach 

The DMA approach is to turn off i.e. through tri-state buffers and therefore, electrically 

disconnect from the system bus, the CPU and let a peripheral device or a memory 

subsystem or any other module or another block of the same module communicate 

directly with the memory or with another peripheral device. This would have the 

advantage of having higher transfer rates which could approach that of limited by the 

memory itself. 

 

 

Disadvantage of DMA 

The disadvantage however, would be that an additional DMA controller would be 

required, that could make the system a bit more complex and expensive. Generally, the 

DMA requests have priority over all other bus activities including interrupts. No 

interrupts may be recognized during a DMA cycle. 
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Direct Memory Access (DMA) 
 

 

Reading Material 
 

Vincent P. Heuring & Harry F. Jordan                                                            Chapter 8 

Computer Systems Design and Architecture                                                        8.4 

 

Summary 
 Direct Memory Access (DMA): 

 

Direct Memory Access (DMA): 
 

Introduction 
Direct Memory Access is a technique which allows a peripheral to read from and/or write 

to memory without intervention by the CPU. It is a simple form of bus mastering where 

the I/O device is set up by the CPU to transfer one or more contiguous blocks of memory. 

After the transfer is complete, the I/O device gives control back to the CPU.  

The following DMA transfer combinations are possible:  

 Memory to memory  

 Memory to peripheral  

 Peripheral to memory  

 Peripheral to peripheral  

The DMA approach is to "turn off" (i.e., tri-state and electrically disconnect from the 

system buses) the CPU and let a peripheral device (or memory - another module or 

another block of the same module) communicate directly with the memory (or another 

peripheral).  

ADVANTAGE: Higher transfer rates (approaching that of the memory) can be achieved.  

DISADVANTAGE: A DMA Controller, or a DMAC, is needed, making the system 

complex and expensive.  

Generally, DMA requests have priority over all other bus activities, including interrupts. 

No interrupts may be recognized during a DMA cycle.  

 

Reason for DMA:  
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The instruction load [2], [9] is illegal. The symbols [2] and [9] represent memory 

locations. This transfer has to be done in two steps:  

 load r1,[9]  

 store r1,bx  
Thus, it is not possible to transfer from one memory location to another without involving 

the CPU. The same applies to transfer between memory and peripherals connected to I/O 

ports. e.g., we cannot have out [6], datap.  It has to be done in two steps:  

 load r1,[6]  

 out r1, datap  
Similar comments apply to the in instruction.  

Thus, the real cause of the limited transfer rate is the CPU itself. It acts as an 

unnecessary "middleman". The above discussion also implies that,  in general, every 

data word travels over the system bus twice. 

   

Some Definitions: 

 MASTER COMPONENT: A component connected to the system bus and 

having control of it during a particular bus cycle.  

 SLAVE COMPONENT: A component connected to the system bus and with 

which the master component can communicate during a particular bus cycle. 

Normally the CPU with its bus control logic is the master component.  

 QUALIFICATIONS TO BECOME A MASTER: A Master must have the 

capability to place addresses on the address bus and direct the bus activity during 

a bus cycle.  

 QUALIFIED COMPONENTS:  
o Processors with their associated bus control logic.  

o DMA controllers.  

 CYCLE STEALING: Taking control of the system bus for a few bus cycles. 

Data Transfer using DMA: 
Data transfer using DMA takes place in three steps. 

1
st
 Step: 

in this step when the processor has to transfer data it issues a command to the DMA 

controller with the following information: 

 Operation to be performed i.e., read or write operation. 

 Address of I/O device. 

 Address of memory block. 

 Size of data to be transferred. 

After this, the processor becomes free and it may be able to perform other tasks.  

2
nd

 Step: 

In this step the entire block of data is transferred directly to or from memory by the DMA 

controller. 

3
rd

 Step: 

In this, at the end of the transfer, tthhee  DDMMAA  ccoonnttrroolllleerr  iinnffoorrmmss  tthhee  pprroocceessssoorr  bbyy  sseennddiinngg  aann  

http://www.lums.edu.pk/~rafay/UG/CS353/FILES/definitions.html
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iinntteerrrruupptt  ssiiggnnaall..      

 

See figure 8.18 on the page number 400 of text book. 

The DMA Transfer Protocol:  
 Most processors have a separate line over which an external device can send a request 

for DMA. There are various names in use for such a line.  HOLD, RQ, or Bus Request 

(BR), etc. are examples of these names. 

The DMA cycle usually begins with the alternate bus master requesting the system bus 

by activating the associated Bus Request line and, of course, satisfying the setup and hold 

times. The CPU completes the current bus cycle, in the same way as it does in case of 

interrupts, and responds by floating the address, data and control lines.  A Bus Grant 

pulse is then output by the CPU to the same device from where the request occurred. 

After receiving the Bus Grant pulse, and waiting for the "float delay" of the CPU, the 

requesting device may drive the system bus. This precaution prevents bus contention. To 

return control of the bus to the CPU, the alternate bus master relinquishes bus control and 

issues a release pulse on the same Bus Request line. The CPU may drive the system bus 

after detecting the release pulse. The alternate bus master should be tri-stated off the local 

bus and have other CPU interface circuits re-enabled within this time.  

 

DMA has priority over Interrupt driven I/O: 

In interrupt driven I/O the I/O transfer depends upon the speed at which the processor 

tests and service a device. Also, many instructions are required for each I/O transfer. 

These factors become bottleneck when large blocks of data are to be transferred. While in 

the DMA technique the I/O transfers take place without the intervention by the CPU, 

rather CPU pauses for one bus cycle. So DMA technique is the more efficient technique 

for I/O transfers. 

 

DMA Configurations: 
• Single Bus Detached DMA 

• Single Bus Integrated DMA 

• I/O Bus 

 

Single Bus Detached DMA 
In the example provided by the above diagram, there is a single bidirectional bus 

connecting the processor, the memory, the DMA module and all the I/O modules. 

When a particular I/O module needs to read or write large amounts contiguous data it 

requests the processor for direct memory access. If permission is granted by the 

processor, the I/O module sends the read or write address and the size of data needed to 
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be read or written to the DMA module. Once the DMA module acknowledges the 

request, the I/O module is free to read or write its contiguous block of data from or onto 

main memory. Even though in this situation the processor will not be able to execute 

while the transfer is going on (as there is a just a single bus to facilitate transfer of data), 

DMA transfer is much faster then having each word of memory being read by the 

processor and then being written to its location. 

 

Single Bus Integrated DMA 
In this configuration the DMA and one or more I/O modules are integrated without the  

 
inclusion of system bus functioning as the part of I/O module or may be as a separate 

module controlling the I/O module. 

 

IO Bus 
In this configuration we integrate the DMA and I/O modules through an I/O bus.  

 
So it will cut the number of I/O interfaces required between DMA and I/O module. 

 

Example  

An I/O device transfers data at a rate of 10MB/s over a 100MB/s bus. The data is 

transferred in 4KB blocks. If the processor operates at 500MHz, and it takes a total of 



Advanced Computer Architecture   

________________________________________________________________________ 

353 

 

5000 cycles to handle each DMA request, find the fraction of CPU time handling the data 

transfer with and without DMA. 

 

Solution 

Without DMA 

 The processor here copies the data into memory as it is sent over the bus. Since 

the I/O device sends data at a rate of 10MB/s over the 100MB/s bus, 10 % of each second 

is spent transferring data. Thus 10% of the CPU time is spent copying data to memory.   

With DMA 

 Time required in handling each DMA request is 5000 cycles. Since 2500 DMA 

requests are issued (10MB/4KB) the total time taken is 12,500,000 cycles. As the CPU 

clock is 500MHZ, the fraction of CPU time spent is  12,500,000/(500x106) or 2.5%. 

 

Example  

A hard drive with a maximum transfer rate of 1Mbyte/sec is connected to a 32-bit, 

10MIPS CPU operating at a clock frequency of 100 MHz. Assume that the I/O interface 

is DMA based and it takes 500 clock cycles for the CPU to set-up the DMA controller. 

Also assume that the interrupt handling process at the end of the DMA transfer takes an 

additional 300 CPU clock cycles. If the data transfer is done using 2 KB blocks, calculate 

the percentage of the CPU time consumed in handling the hard drive. 

 

Solution 

Since the hard drive transfers at 1MB/sec, and each block size is 2KB, there are  

 

1000/2= 500 blocks transferred/sec 

 

Every DMA transfer uses 500+300=800 CPU cycles. This gives us  

 

  800x500 = 400,000 = 400x10
3
 cycles/sec 

 

For the 100 MHz CPU, this corresponds to  

 

  (400x10
3
) / (100x10

6
)= 4x10

-3
 = 0.4% 

This would be the case when the hard drive is transferring data all the time. In actual 

situation, the drive will not be active all the time, and this number will be much smaller 

than 0.4%.  

Another assumption that is implied in the previous example is that the DMA controller is 

the only device accessing the memory. If the CPU also tries to access memory, then 

either the DMAC or the CPU will have to wait while the other one is actively accessing 

the memory. If cache memory is also used, this can free up main memory for use by the 

DMAC.   

 

Cycle Stealing 
The DMA module takes control of the bus to transfer data to and from memory by 
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forcing the CPU to temporarily suspend its operation. This approach is called Cycle 

Stealing because in this approach DMA steals a bus cycle. 

 

 

 
 

DMA and Interrupt breakpoints during an instruction cycle 
The figure shows that the CPU suspends or pauses for one bus cycle when it needs a bus 

cycle, transfers the data and then returns the control back to the CPU. 

 

I/O processors 

When I/O module has its own local memory to control a large number of I/O devices 

without the involvement of CPU is called I/O processor. 

 

I/O Channels 
When an I/O module has a capability of executing a specific set of instructions for 

specific I/O devices in the memory without the involvement of CPU is called I/O 

channel. 
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I/O channel architecture: 

 
Types of I/O channels: 

 

Selector Channel 
It is the DMA controller that can do block transfers for several devices but only one at a 

time. 

 

Multiplexer Channel 

It is the DMA controller that can do block transfers for several devices at once. 
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Types of Multiplexer Channel 
• Byte Multiplexer 

• Block Multiplexer 

 

Byte Multiplexer 
• Byte multiplexer accepts or    transmits characters. 

• Interleaves bytes from several devices. 

• Used for low speed devices. 

 

 Block Multiplexer 
• Block multiplexer accepts or transmits block of characters. 

• Interleaves blocks of bytes from several devices. 

• Used for high speed devices. 

 

Virtual Address: 

Virtual address is generated be the logical by the memory management unit for 

translation. 

 

Physical Address: 

Physical address is the address in the memory. 

 

DMA and memory system 

DMA disturbs the relationship between the memory system and CPU.  

 

Direct memory access and the memory system 

Without DMA, all memory accesses are handled by the CPU, using address translation 

and cache mechanism. When DMA is implemented into an I/O system memory accesses 

can be made without intervening the CPU for address translation and cache access. The 

problems created by the DMA in virtual memory and cache systems can be solved using 

hardware and software techniques. 

 

Hardware Software Interface 

One solution to the problem is that all the I/O transfers are made through the cache to 

ensure that modified data are read and updated in the cache on the I/O write. This method 

can decrease the processor performance because of infrequent usage of the I/O data. 

Another approach is that the cache is invalidated for an I/O read and for an I/O write, 

write-back (flushing) is forced by the operating system. This method is more efficient 

because flushing of large parts of cache data is only done on DMA block accesses.  

Third technique is to flush the cache entries using a hardware mechanism, used in 

multiprogramming system to keep cache coherent. 

 

SOME clarifications: 

 The terms "serial" and "parallel" are with respect to the computer I/O ports --- not 

with respect to the CPU. The CPU always transfers data in parallel.  



Advanced Computer Architecture   

________________________________________________________________________ 

357 

 

 The terms "programmed I/O", "interrupt driven I/O" and "DMA" are with respect 

to the CPU. Each of these terms refers to a way in which the CPU handles I/O, or 

the way data flow through the ports is controlled.  

 The terms "simplex" and "duplex" are with respect to the transmission medium or 

the communication link.  

 The terms "memory mapped I/O" and "independent I/O" are with respect to the 

mapping of the interface, i.e., they refer to the CPU control lines used in the 

interface.  
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Magnetic Disk Drives 

 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                           Chapter 9 

Computer Systems Design and Architecture                                                       9.1 

                                                                                                                       

Summary 

 Hard Disk 

 Static and Dynamic Properties 

 Examples 

 Mechanical Delays and Flash Memory 

 Semiconductor Memory vs. Hard Disk 

 
Hard Disk 

 

Peripheral devices connect the outside world with the central processing unit through the 

I/O modules. One important feature of these peripheral devices is the variable data rate. 

Peripheral devices are important because of the function they perform. 

A hard disk is the most frequently used peripheral device. It consists of a set of platters. 

Each platter is divided into tracks. The track is subdivided into sectors. To identify each 

sector, we need to have an address. So, before the actual data, there is a header and this 

header consisting of few bytes like 10 bytes. Along with header there is a trailer. Every 

sector has three parts: a header, data section and a trailer. 

 

 

Static Properties 

The storage capacity can be determined from the number of platters and the number of 

tracks. In order to keep the density same for the entire surface, the trend is to use more 

number of sectors for outer tracks and lesser number of sectors for inner tracks. 

 

Dynamic Properties 

When it is required to read data from a particular location of the disk, the head moves 

towards the selected track and this process is called seek. The disk is constantly rotating 

at a fixed speed. After a short time, the selected sector moved under the head. This 

interval is called the rotational delay. On the average, the data may be available after half 
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a revolution. Therefore, the rotational latency is half revolution. 

The time required to seek a particular track is defined by the manufacturer. Maximum, 

minimum and average seek times are specified. Seek time depends upon the present 

position of the head and the position of the required sector.  For the sake of calculations, 

we will use the average value of the seek time.  

 

 Transfer rate 

When a particular sector is found, the data is transferred to an I/O module. This would 

depend on the transfer rate. It would typically be between 30 and 60 Mbytes/sec defined 

by the manufacturer.  

 

 Overhead time 

Up till now, we have assumed that when a request is made by the CPU to read data, then 

hard disk is available. But this may not be the case. In such situation we have to face a 

queuing delay. There is also another important factor: the hard disk controller, which is 

the electronics present in the form of a printed circuit board on the hard disk. So the time 

taken by this controller is called over head time. 

The following examples will clarify some of these concepts. 

 

 

 

Example 1 

Find the average rotational latency if the disk rotates at 20,000 rpm. 

 

Solution 

The average latency to the desired data is halfway round the disk so 

Average rotational latency  =0.5/(20,000/60) 

                                          =1.5ms 

Example 2 
A magnetic disk has an average seek time of 5 ms. The transfer rate  

is 50 MB/sec. The disk rotates at 10,000 rpm and the controller overhead is 0.2 msec. 

Find the average time to read or write 1024 bytes.    

 

Solution 

Average Tseek=5ms 

Average Trot=0.5*60/10,000=3 ms 

Ttransfer=1KB/50MB=0.02ms 

Tcontroller=0.2ms 

The total time taken= Tseek +Trot+ Ttsfr +Tctr 

                                =5+3+0.02+0.2 

                                =8.22 ms 

Example 3 

A hard disk with 5 platters has 1024 tracks per platter,512 sectors  

per track and 512 bytes/sector. What is the total capacity of the  
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disk? 

 

 

Solution  

512 bytes x 512  

sectors=0.2MB/track 

0.2MB x 1024 tracks=0.2GB/platter 

Therefore the hard disk has the total capacity of 5 x 0.2=1GB 

 

 

 

Example 4 

How many platters are required for a 40GB disk if there are 1024  

bytes/sector, 2048 sectors per track and 4096 tracks per platter 

 

Solution 

The capacity of one platter 

= 1024 x 2048 x 4096 

= 8GB 

For a 40GB hard disk, we need 40/8 

= 5  such platters. 

 

Example 5 

Consider a hard disk that rotates at 3000 rpm. The seek time to move  

the head between adjacent tracks is 1 ms. There are 64sectors per  

track stored in linear order. 

Assume that the read/write head is initially at the start of sector 1 on track 7.  

a. How long will it take to transfer sector 1 on track 7 to sector 1 on track 9? 

b. How long will it take to transfer all the sectors on track 12 to corresponding 

sectors on track 13? 

 

Solution 

Time for one revolution=60/3000=20ms 

a. Total transfer time=sector read time+head  

 movement time+rotational delay+sector write time 

  

         Time to read or write on sector=20/64=0.31ms/sector 

  

          Head movement time from track 7 to track 9=1msx2=2ms 

   

After reading sector 1 on track 7, which takes .31ms, an    additional 19.7 ms of 

rotational delay is needed for the head to line   up with sector 1 again.  

The head movement time of 2 ms gets included in the19.7 ms.               Total 

transfer time=0.31ms+19.7ms+0.31ms=20.3ms 
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b. The time to transfer all the sectors of track 12 to track 13 can be computed in the 

similar way. Assume that the memory buffer can hold an entire track. So the time 

to read or write an entire track is simply the rotational delay for a track, which is 

20 ms. The head movement time is 1ms, which is also the time for 1/0.3=3.3 4 

sectors to pass under the head. Thus after reading a track and repositioning the 

head, it is now on track 13, at four sectors past the initial sector that was read on 

track 12. (Assuming track 13 is written starting at sector 5)  

 therefore total transfer time= 20+1+20=41ms.  

If writing of track 13 start at the first sector, an additional 19 ms      should be 

added, giving a total transfer time= 60 ms 

  

 

 

 

Example 6 

 

Calculate time to read 64 KB (128 sectors) for the following disk parameters. 

–180 GB, 3.5 inch disk 

–12 platters, 24 surfaces 

–7,200 RPM; (4 ms avg. latency) 

–6 ms avg. seek (r/w) 

–64 to 35 MB/s (internal) 

–0.1 ms controller time 

 

Solution   

Disk latency =  average seek time + average rotational delay + transfer             time + 

controller overhead 

 = 6 ms + 0.5 x 1/(7200 RPM) /(60000ms/M)) + 64 KB / (64 MB/s) + 0.1 ms  

 = 6 + 4.2 + 1.0 + 0.1 ms = 11.3 ms 

 

Mechanical Delay and Flash Memory 

 

Mechanical movement is involved in data transfer and causes mechanical delays which 

are not desirable in embedded systems. To overcome this problem in embedded systems, 

flash memory is used. Flash memory can be thought of a type of electrically erasable 

PROM. Each cell consists of two MOSFET and in between these two transistors, we have 

a control gate and the presence/absence of charge tells us that it is a zero or one in that 

location of memory. 

The basic idea is to reduce the control overheads, and for a FLASH chip, this  control 

overhead is low. Furthermore flash memory has low power dissipation. For embedded 

devices, flash is a better choice as compared to hard disk. Another important feature is 

that read time is small for flash. However the write time may be significant. The reason is 



Advanced Computer Architecture   

________________________________________________________________________ 

362 

 

that we first have to erase the memory and then write it. However in embedded system, 

number of write operations is less so flash is still a good choice. 

 

Example 7 

Calculate the time to read 64 KB for the previous disk, this time using 1/3 of quoted seek 

time, 3/4 of internal outer track bandwidth 

 

Solution 

 

Disk latency =  average seek time + average rotational delay + transfer time + controller 

overhead 

 = (0.33* 6 ms) + 0.5 * 1/(7200 RPM)  

+ 64 KB / (0.75* 64 MB/s) + 0.1 ms  

 = 2 ms + 0.5 /(7200 RPM/(60000ms/M))  

+ 64 KB / (48 KB/ms) + 0.1 ms 

 = 2 + 4.2 + 1.3+ 0.1 ms = 7.6 ms  

 

 

 

Semiconductor Memory vs. Hard Disk 

At one time developers thought that development of semiconductor memory would 

completely wipe out the hard disk. There are two important features that need to be kept 

in mind in this regard: 

1. Cost  

It is low for hard disk as compared to semi-conductor memory. 

2. Latency 
Typically latency of a hard disk is in milliseconds. For SRAM, it is 10

5
 times lower as 

compared to hard disk. 
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 Error Control 

 
Reading Material 

 

William Stallings 6th edition                                                         

Computer Organization and Architecture                                                

 

Summary 

 Operating System Interface 

 Error Control 

 RAID 

 

Operating System Interface 
The Operating system interface plays an important role for disk operation. Operating 

system would define a logic block telling the controller about the track, sector, etc. There 

are different ways to define logic blocks. For example, we can define 5 bytes containing 

this  information such that: the first 4 bits contain disk number(in case of a system having 

more than one disk), the next 4 bits contain the address of a particular track followed by a 

sector number and at the end, the number of  bytes to transferred. So this defines a logical 

block transferred by the controller. Along this, we have additional information about 

control and status of the controller. The operating system essentially insulates the users 

from the hardware details of the disk. 

 

Error Control 

There are two main issues in   error control: 

1. Detection of Error 

2. Correction of Error 

For detection of error, we just need to know that there exists an error. When the error is 

detected then the next step is to ask the source to resend that information. This process is 

called automatic request for repeat. In some cases there is also possibility that redundancy 

is enough and we reconstruct and find out exactly which particular bits are in error. This 

is called error correction. 

There are three schemes commonly used for error control. 

1. Parity code 

2. Hamming code 

3. CRC mechanism 
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1. Parity code 

Along with the information bits, we add up another bit, which is called the parity bit. The 

objective is the total number of 1‟s as even or odd. If the parity at the receiving end is 

different, an error is indicated. Once error is found, CPU may request to repeat that data. 

The concept of parity bit could be enhanced. In such a case, we would like to increase the 

distance between different code words. Consider a code word consists of four bits, 0000, 

and second code word consists of 1111. The distance between two codes is four. So the 

distance between the two codes would be the number of bits in which they differ from 

each other. So the concept of introducing redundancy is increase this distance. Larger the 

distance, higher will be the capacity of the code. For single parity, the distance is two, we 

can only detect the parity. But if the distance is three, we could also correct these single 

errors.  

If D= minimum distance between two code words then D-1 errors could be detected and 

D/2 errors could be corrected. 

 

2. Hamming code 

Hamming code is an example of block code. We have an encoder which could be a 

program or a hardware device. We feed k inputs to it. These are k information input bits. 

We also feed some extra bits. Let r be the number of redundant bits. So at output we have 

r+k = m bits. As an example, for parity bit, we have k=7 and r=1 and m=8. So for 7 bits 

we get eight output bits. 

For any positive integer m<=3, a Hamming code with following parameters exists: 

 

• Code Length:                 

           n=2
m

-1 

• Number of information symbols: 

           k = 2
m

-1-m 

• Number of parity-check symbols: 

           n – k = m 

 

3. CRC 

The basic principle for CRC is very simple. We divide a particular code word and make it 

divisible by a prime number, and if it is divisible by a prime number then it is a valid 

code word. 

CRC does not support error correction but the CRC bits generated can be used to detect 

multi-bit errors. At the transmitter, we generate  extra CRC bits, which are appended to 

the data word and sent along. The receiving entity can check for errors by re computing 

the CRC and comparing it with the one that was transmitted. 

CRC has lesser overhead as compared to Hamming code. It is practically quite simple to 

implement and easy to use. 

 

RAID 

The main advantage of having an array of disks is that we could have a simultaneous I/O 
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request. Latency could also be reduced.. 

 

RAID Level 0 

 

• Not a true member of the RAID family. 

• Does not include redundancy to improve performance. 

• In few applications, capacity and performance are primary concerns than 

improved reliability. So RAID level 0 is used in such applications. 

• The user and system data are distributed across all the disks in the array. 

• Notable advantage over the use of a single large disk. 

• Two requests can be issued in parallel, reducing the I/O queuing time. 

 

Performance of RAID Levels 

Performance of RAID Levels depends upon two factors: 

 

•   Request pattern of the host system 

•   Layout of the data 

 

Similarities between RAID Levels 2 and 3 

 

• Make use of parallel access techniques. 

• All member disks participate in execution of every request. 

• Spindles of the individual drives are synchronized  

• Data striping is used. 

• Strips are as small as a single byte or word. 
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Differences between RAID2 and RAID 3 

 

• In RAID 2, error-correcting code is calculated across corresponding bits on each 

data disk.  

• RAID 3 requires only a single redundant disk. 

• Instead of an error-correcting code, a simple parity bit is computed for the set of 

individual bits in RAID 3 

 

 

RAID Level 4  

 

• Make use of independent access technique. 

• Data striping is used. 

• A bit-by-bit parity strip is calculated across corresponding strip on each data disk. 

• Involves a write penalty when an I/O write request of small size is performed. 

• To calculate the new parity, the array management software must read the old 

user parity strip.  
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RAID Level 5 

 

• Organized in a similar fashion to RAID 4  

• The only difference is that RAID 5 distributes the parity strips across all disks. 
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Lecture No. 34 
 

Number Systems and Radix Conversion 

 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                              Chapter 6                                          

Computer Systems Design and Architecture                                                      6.1, 6.2 

 

Summary 

 

 Introduction to ALSU 

 Radix Conversion 

 Fixed Point Numbers 

 Representation of Numbers  

 Multiplication and Division using Shift Operation 

 Unsigned Addition Operation 

 

Introduction to ALSU 
26

 

ALSU is a combinational circuit so inside an ALSU, we have AND, OR, NOT and other 

different gates combined together in different ways to perform addition, subtraction, and, 

or, not, etc. Up till now, we consider ALSU as a “black box” which takes two operands, a 

and b, at the input and has c at the output. Control signals whose values depend upon the 

opcode of an instruction were associated with this black box. 

 

In order to understand the operation of the ALSU, we need to understand the basis of the 

representation of the numbers. For example, a designer needs to specify how many bits 

are required for the source operands and how many will be needed for the destination 

operand after an operation to avoid overflow and truncation.  

 

Radix Conversion 
Now we will consider the conversion of numbers from a representation in one base to 

another. As human works with base 10 and computers with base 2, this radix conversion 

operation is important to discuss here. We will use base c notion for decimal 

representation and base b for any other base. The following figure shows the algorithm of 

                                                 
26

 In our discussion we have used ALU and ALSU for the same thing. We use ALSU when the shift aspect 

also needs to be emphasized. 



Advanced Computer Architecture   

________________________________________________________________________ 

369 

 

converting from base b to base c: 

 
 

Example 1 

 

Convert the hexadecimal number B316 to base 10. 

 

Solution 

 

According to the above algorithm, 

X=0 

X= x+B (=11) =11 

X=16*11+3= 179 

Hence B316=17910 

 

The following figure shows the algorithm of converting from base c to base b: 

Converting from Base c to Base b 

 
 

 

 

 

 

 

 

Start with base 0 

Integer 

Initialize i = 0 and 

v = x 

Set D1 = v mod b 

and v = [v/b] 

Convert (D1) to (X1)0 

Set i=i+1 

If v! =0, Repeat 
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Example 2 

 

Convert 39010 to base 16. 

Solution 

 

According to the above algorithm 

390/16 =24( rem=6), x0=6 

24/16= 1(rem=8), x1=8, x2=1 

Thus 39010=18616 

 

Fixed Point Numbers 
Suppose we have a number with a radix point. For example, in 16.12, there are two digits 

on the left side and two digits on the right of the decimal point. In this case, the radix 

point is a decimal point because we suppose that given number is a decimal number.  

If we have an integer, then this decimal point will be on the right most position i.e. 

1612.0 and if it is in fraction then decimal will be at the left most position i.e. 0.1612 

There are situations when we shift the position of the radix point. Shifting of the radix 

point towards left or right is called scaling and we could have multiplication with a base 

or division by a base respectively. 

The following figure shows the algorithm of converting a base b fraction to base c: 

Converting from Base c to Base b 

 

 

 

 

 

 

           F-1 f-2……..f-m 

 Xn-1 Xn-2……..X1 X0 X-1 X-2…X-m 

 

 

 

 

 

 

  

Set i=i+1 

If v! =0, Repeat 

Repeat for 

all digits 

until i=0 

Start with base b 

representation  

Initialize f = 0,0  

and Set i = -m 

Convert to base c 

number (Di) by using 

table 
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Example 3 

 

Convert (.4cd) 16 to Base 10. 

  

Solution  

 

F=0 

F=(0+13)/16=0.8125 

F=(0.8125+12)/16=0.80078125 

F=(0.80078125+4)/16=(0.3000488) 10 

 

 

The following figure shows the algorithm of converting fraction from base c to base b: 

 

Converting a fraction from Base c to Base b 

 

 

  

Start with fraction 

f in base c 

Initialize i = 1 and 

v = f 

Set D1 = [bv] 

and v = bv 

Convert (D1) to (f1) 

Set i=i+1 

If v! =0, Repeat 

Until enough 

digits are 

genreated 
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Example 4 

 

Convert 0.2410 to base 2. 

 

Solution  

 

0.24*2=0.48, f-1=0 

0.48*2=0.96, f-2=0 

0.96*2=1.92, f-3=1 

0.92*2=1.84, f-4=1 

0.84*2=1.68, f-5=1,… 

Thus 0.2410 =(0.00111) 2 

 

 

Representation of Numbers  
There are four possibilities to represent integers. 

 

1. Sign magnitude form 

2. Radix complement form 

3. Diminished radix complement form 

4. Biased representation 

 

Sign magnitude form 

• This is the simplest form for representing a signed number 

• A symbol representing the sign of the number is appended to the left of the 

number 

• This representation complicates the arithmetic operations 

 

 

Radix complement form 

• This is the most common representation. 

• Given an m-digit base b number x, the radix complement of x is 

  x
c 
= ( b

m
– x) mod b

m
 

• This representation makes the arithmetic operations much easier.  

 

Diminished radix complement form 

• The diminished radix complement of an m-digit number x is 

            x
c
‟=b

m 
-1- x 

• This complement is easier to compute than the radix complement. 

• The two complement operations are interconvertible, as 

   x
c
= ( x

c
‟+1)mod b

m
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Table 6.1 of the text book shows the complement representation of negative numbers for 

radix complement and diminished radix complement form: 

Table 6.2 of the text book shows the base 2 complement representation for 8-bit 2‟s and 

1‟s complement numbers. 

 

 

Example 5 

The following table shows the decimal values in 2‟s complement, 1‟s complement, sign 

magnitude, 16‟s complement and in unsigned form: 

 

 
 

 

Multiplication and Division using Shift Operation 
Shift left and shift right are two important operations used for various purposes. One 

typical example could be multiplication or division by base b. The following examples 

explain multiplication and division by using shift operation. 

 

Example 6 

• 6x4 

 001102 x 410 =110002=2410 

Overflow would occur if we will use 4 bits instead of 5 bits here. 

• 60/16 

 01111002/1610=00000112=310 

The fractional portion of the result is lost. 

 

Example 7 

• -6x4 

 -6 = (11010) 2 

 -6x4 = (01000) 2=8 which is wrong! 
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 using less no. of bits might change sign 

So, -6 = (111010) 2 

    -6x4 = (101000) 2 = -24 

 

Example 8 

 

Multiplication and division of negative numbers 

 

Solution 

 

 

 
-24x2 

-24= (101000) 2 

-24x2= (010100)2 =   20 

-24x2= (110100)2 = -12 

Changing the size of the number, 

24= 011000 (n=6) to 00011000 (n=8) 

-24= 101000 (n=6) to 11101000 (n=8) 

 

Unsigned Addition Operation 
The following diagram shows the digit wise procedure for adding m-digit base b 

numbers, x and y: 
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Example 9 

 

Unsigned addition in base 2 and base16. 

 

Solution  

 

 

Base 16 addition 

 

Base 2 addition 

                       A B 4 2 16 

                    + 3 1 C 1 16 

           carry    0  1 0  0 

           sum     D D 0 3 16 

                        100011 2 

                     + 011011 2 

             carry   000110 

             sum     111110 2 

 

 

 

The following diagram shows the logic circuit for 1-bit half adder. It takes two 1-bit 

inputs x and y and as a result, we get a 1-bit sum and a 1-bit carry. This circuit is called a 

half adder because it does not take care of input carry. In order to take into account the 

effect of the input carry, a 1-bit full adder is used which is also shown in the figure. We  

 

 
 

can add two m-bit numbers by using a circuit which is made by cascading m 1-bit full 

adders. 

 

The situation, when addition of unsigned m-bit numbers results in an m+1 bit number, is 
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called overflow. Overflow is treated as exception in some processors and the overflow 

flag is used to record the status of the result. 
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Lecture No. 35 
 

Multiplication and Division of Integers 

 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                                   Chapter 6                                

Computer Systems Design and Architecture                                                            6.3, 6.4                          

 

Summary 

 

 Overflow 

 Different Implementations of the adder 

 Unsigned and Signed Multiplication 

 Integer and Fraction Division 

 Branch Architecture 

 

Overflow 

When two m-bit numbers are added and the result exceeds the capacity of an m-bit 

destination, this situation is called an overflow. The following example describes this 

condition: 

Example 1 

Overflow in fixed point addition: 

 

 
In these three cases, the fifth position is not allowed so this results in an overflow. 
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Different Implementations of the Adder 

 

For a binary adder, the sum bit is obtained by following equation: 

           _ _   _   _   _ _ 

                        sj = xjyjcj+xjyjcj+xjyjcj+xjyjcj 

and the equation for carry bit is 

             cj+1=xjyj+xjcj+yjcj 

where x and y are the input bits. 

The sum can be computed by the two methods: 

 

• Ripple Carry Adder 

• Carry Look ahead Adder 

 

Ripple Carry Adder 

In this adder circuit, we feed carry out from the previous stage to the next stage and so 

on. For 64 bit addition, 126 logic levels are required between the input and output bits. 

The logic levels can be reduced by using a higher base (Base 16). This is a relatively slow 

process. 

Complement Adder/Subtractor 

 

We can perform subtraction using an unsigned adder by 

• Complement the second input 

• Supply overflow detection hardware 

 

2‟s Complement Adder/Subtractor 

A combined adder/subtractor can be built using a mux to select the second adder input. In 

this case, the mux also determines the carry-in to the adder. The equation for mux output 

is : 

                            _    _ 

                                                   qj =y j r + yj r 

Carry Look ahead Adder 

The basic idea in carry look ahead is to speed up the ripple carry by determining whether 

the carry is generated at the j position after addition, regardless of the carry-in at that 

stage or the carry is propagated from input to output in the digit. 

This results in faster addition and lesser propagation delay of the carry bits. It divides the 

carry into two logical variables Gj (generate) and Pj (propagate). These variables are 

defined as: 

   G j = x j y j  

   P j = x j +y j  

Hence the carry out will be 

   c j +1= G j +P j c j  

Here the G and P each require one gate, and the sum bit needs two more gates in the full 

adder. This results in a less complexity i.e. log(m) which is much less as compare to 
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ripple carry adder where complexity is m (m is the number of bits of  a digit to be added). 

Ripple carry and look ahead schemes are can be mixed by producing a carry-out at the 

left end of each look ahead module and using ripple carry to connect modules at any level 

of the look ahead tree. 

 

Unsigned Multiplication 

The general schema for unsigned multiplication in base b is shown in Figure 6.5 of the 

text book. 

 

 

 

Parallel Array Multiplier 

 

Figure 6.6 of the text book shows the structure of a fully parallel array multiplier for base 

b integers. All signal lines carry base b digits and each computational block consists of a 

full adder with an AND gate to form the product xiyj. In case of binary, m
2
 full adders are 

required and the signals will have to pass through almost 4m gates. 

 

Series parallel Multiplier 

 

A combination of parallel and sequential hardware is used to build a multiplier. This 

results in a good speed of operation and also saves the hardware.  

 

Signed Multiplication 

 

The sign of a product is easily computed from the sign of the multiplier and the 

multiplicand. The product will be positive if both have same sign and negative if both 

have different sign. Also, when two unsigned digits having m and n bits respectively are 

multiplied, this results in a (m+n) –bit product, and (m+n+1)-bit product in case of sign 

digits. There are three methods for the multiplication of sign digits: 

 

1. 2‟s complement multiplier 

2. Booth recoding 

3. Bit-Pair recoding 

 

2‟s complement Multiplication 

 

If numbers are represented in 2‟s complement form then the following three 

modifications are required: 

 

1. Provision for sign extension 

2. Overflow prevention 

3. Subtraction as well as addition of the partial product 
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 Booth Recoding 

 

The Booth Algorithm makes multiplication simple to implement at hardware level and 

speed up the procedure. This procedure is as follows: 

 

1. Start with LSB and for each 0 of the original number, place a 0 in the recorded 

number until a 1 in indicated. 

2. Place a 1 for 1in the recorded table and skip any succeeding 1‟s until a 0 is 

encountered. 

3. Place a 0 with 1 and repeat the procedure. 

 

Example 2 

 

Recode the integer 485 according to Booth procedure. 

 

Solution 

Original number: 

00111100101=256+128+64+32+4+1=485 

Recoded Number: 

          _    _  _  

01000101111=+512-32+8-4+2-1=485 

           

Bit-Pair Recoding 

 

Booth recoding may increase the number of additions due to the number of isolated 1s. 

To avoid this, bit-pair recoding is used. In bit-pair recoding, bits are encoded in pairs so 

there are only n/2 additions instead of n.   

Division 

 

There are two types of division: 

 

 Integer division 

 Fraction division 

 

Integer division 

 

The following steps are used for integer division: 

 

1. Clear upper half of dividend register and put dividend in lower half. Initialize 

quotient counter bit to 0 

2. Shift dividend register left 1 bit 

3. If difference is +ve, put it into upper half of dividend and shift 1 into quotient. If –

ve, shift 0 into quotient 

4. If quotient bits<m, goto step 2 



Advanced Computer Architecture   

________________________________________________________________________ 

381 

 

5. m-bit quotient is in quotient register and m-bit remainder is in upper half of 

dividend register 

 

Example 3 

 

Divide 4710 by 510. 

 

Solution   

 

D=000000 101111, d=000101 

 

D 000001 011110 

d 000101 

Diff(-)     q 0 

D 000010 111100 

d 000101 

Diff(-)     q 00  

D 000101 111000 

d 000101 

Diff(+)                q 001  

D 000001 110000 

d 000101 

Diff(-)     q 0010  

D 000011 100000 

d 000101 

Diff(-)     q 00100  

D 000111 000000 

d 000101 

Diff(+)000010               q 001001  

  

 Hence remainder = (000010)2 = 210 

               Quotient = (001001)2 = 910 

 

Fraction Division 

 

The following steps are used for fractional division: 

 

1. Clear lower half of dividend register and put dividend in upper half. Initialize 

quotient counter bit to 0 

2. If difference is +ve, report overflow 

3. Shift dividend register left 1 bit 

4. If difference is +ve, put it into upper half of dividend and shift 1 into quotient. If 

negative, shift 0 into quotient 

5. If quotient bits<m, go to step 3 
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6. m-bit quotient has decimal at the left end and remainder is in upper half of 

dividend register 

 

Branch Architecture 

 

The next important function perform by the ALU is branch. Branch architecture of a 

machine is based on  

 

1. condition codes 

2. conditional branches 

 

Condition Codes 

Condition Codes are computed by the ALU and stored in processor status register. The 

„comparison‟ and „branching‟ are treated as two separate operations. This approach is not 

used in the SRC. Table 6.6 of the text book shows the condition codes after subtraction, 

for signed and unsigned x and y. Also see the SRC Approach from text book. 

 

Usually implementation with flags is easier however it requires status registers. In case of 

branch instructions, decision is based on the branch itself. 

 

Note: For more information on this topic, please see chapter 6 of the text book. 
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Lecture No. 36 
 

Floating-Point Arithmetic 

 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                           Chapter 6 

Computer Systems Design and Architecture                                               6.3.2, 6.4, 6.4.1   

                                                                                                                      6.4.2, 6.4.3 

Summary 

 

 NxN Crossbar Design for Barrel Rotator 

 Barrel Shifter with Logarithmic Number of Stages 

 ALU Design 

 Floating-Point Representations 

 IEEE Floating-Point Standard  

 Floating-Point Addition and Subtraction 

 Floating-Point Multiplication 

 Floating-Point Division 

 

NxN Crossbar Design for Barrel Rotator 
 

Figure 6.11 of the text book 

The figure shows an NxN crossbar design for barrel rotator. x indicates the input. So 

x0,x1,…,xn-1 are applied to the rows. The vertical lines are indicated by y1, y2,…yn-1  

where y shows the output. So this forms a cross of x and y and the number of cross points 

are NxN. There is also a connection between each input and output using a tri-state 

buffer. At the input, we have a decoder which is used to select the shift count. Each 

output from the decoder is connected diagonally to the tri-state buffers. This arrangement 

requires N2 gates. 

 

Barrel Shifter with Logarithmic Number of Stages 
Another alternate to an NxN crossbar barrel rotator is a logarithmic barrel shifter. This 

design is time-space trade-off. In this case, the number of shifts required is eight, and 

then there will be three stages for this purpose. Now a word is passed as input to the 

shifter. There are two possibilities. First the input word is passed to the next stage without 

any shift. This process is called bypass and second option is shift. The word is passed to 

the next stage after shift. 
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For the first stage, we have 1-bit right shift, for second stage, 2-bit right shift and so on. 

There is also a shift count unit which controls the number of shifts. For example, if 1-bit 

shift is required then only s0 will be one and other signals from shift count will be zero. If 

we want a 3-bit shift, then s0 and s1 will be 1 and all other signals will be zero. 

The figure also shows one shift/bypass cell which is a combinational logic circuit. A 

shift/bypass signal decides whether the input word should be shifted or bypassed. This 

design requires only O (NlogN) switches but propagation delay has increased i.e. from 

O(1) to O(logN). 

 

Figure 6.12 of the text book  

 

ALU Design 

 
ALU is a combination of arithmetic, logic and shifter unit along with some multiplexers 

and control unit. The idea is that based on the op-code of an instruction, appropriate 

control signals are activated to perform required ALU operation. 

Figure 6.13 of the text book 

The diagram shows two inputs x and y and one output z. All these are of n-bits. The 

inputs x and y are simultaneously provided to arithmetic, logic and shifter unit. There is a 

control unit which accepts op-code as input. Based on the op-code, it provides control 

signals to arithmetic, logic and shifter unit. The control unit also provides control signals 

to the two multiplexers. One mux has three inputs; each from arithmetic, logic and shifter 

unit and its output is z. The second mux provides status output corresponding to 

condition codes. 

  

Floating Point Representations 
Example 

 -0.5 × 10-3 

 Sign = -1 

 Significand= 0.5 

 Exponent= -3 

 Base = 10= fixed for given type of representation 

Significand is also called mantissa. 

In computers, floating-point representation uses binary numbers to encode significant, 

exponent and their sign in a single word. 

The diagram on Page 293 of the text shows an m-bit floating point number where s 

represents the sign of the floating point number. If s = 1 then the floating-point number 

will be a positive number; if s= 0 then it will be a negative number. The e field shows the 

value of exponent. To represent the exponent, a biased representation is used. So we 

represent e^ instead of e to show biased representation. In this technique, a number is 

added to the exponent so that the result is always positive. In general floating point 

numbers are of the form. 

 (-1)s × f × 2e 

Normalization 
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A normalized, non zero floating point number has a significand whose left-most digit is 

non- zero and is a single number. 

Example 

 0.56 × 10-3……….. (Not normalized) 

   5.6 × 10-3……….. (Normalized form) 

Same is the case for binary. 

 

IEEE Floating-Point Standard  
IEEE floating -point standard has the following features. 

 

Single-Precision Binary Floating Point Representation 

 1-bit sign 

 8-bit exponent 

 23-bit fraction 

 A bias of 127 is used. 

Figure 6.15 of the text book  

 

Double precision Binary Floating Point Representation  

 1-bit sign 

 11-bit exponent 

 52-bit fraction 

 Exponent bias is 1023 

Figure 6.16 of the text book. 

 

Overflow 
 In table 6.7 of the text book, e^= 255, denotes numbers with no numeric value including 

+ ∞ and - ∞ and called Not-a-Number or NaN. In computers, a floating-point number  

ranges from 1.2 × 10-38 ≤ x ≤ 3.4 × 1038 can be represented. If a number does not lie in 

this range, then overflow can occur. 

Overflow occurs when the exponent is too large and can not  be represented in the 

exponent field. 

 

Floating –Point Addition and Subtraction 
The following are the steps for floating-point addition and subtraction. 

 Unpack sign , exponent and fraction fields 

 Shift the significand 

 Perform addition 

 Normalize the sum 

 Round off the result 

 Check for overflow 

 

Figure 6.17 of the text book. 
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Example 1 

Perform addition of the following floating-point numbers. 

0.510    ,   -0.437510 

Binary: 

0.510 = 1/210= 0.12= 1.000 x 2-1 

 -0.437510= -7/1610 = -7/24= -0.01112 = - 1.110 x 2-2 

 

Align:   -1.110 x 2-2 → -0.111 x 2-1 

 

Addition: 1.000 x 2-1 + (-0.111 x 2-1) = 0.001 x 2-1 

 

Normalization of Sum:                  

             0.001 2 x 2-1= 0.0102  x 2-2 

                                                  = 1.000 2 x 2-4 

 

Hardware Structure for Floating-Point Add and Subtract 

Figure 6.17 of the text book. 

 

Floating-Point Multiplication 
 

The floating-point multiplication uses the following steps: 

 Unpack sign, exponent and significands 

 Apply exclusive-or operation to signs, add exponents and then multiply 

significands. 

 Normalize, round and shift the result. 

 Check the result for overflow. 

 Pack the result and report exceptions. 

 

Floating-Point Division 
 

The floating-point division uses the following steps: 

 Unpack sign, exponent and significands 

 Apply exclusive-or operation to signs, subtract the exponents and then divide the  

significands. 

 Normalize, round and shift the result. 

 Check the result for overflow. 

 Pack the result and report exceptions. 
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Lecture No. 37 
 

Components of memory Systems 

 
Reading Material 

 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 7                                                          

Computer Systems Design and Architecture                                               7.1, 7.2                                                                                                                                                                                                                                                                                                                          

 

Summary     

 

 CPU to Memory Interface 

 Static RAM cell Organization and Operation 

 One & two Dimensional Memory Cells 

 Matrix and Tree Decoders 

 Dynamic RAM  

 

CPU to Memory Interface 
 The memory address register (MAR) is m-bits wide and contains memory address 

generated by the CPU directly connected to the m-bit wide address bus. The memory 

buffer register (MBR) is w-bit wide and contains a data word, directly connected to the 

data bus which is b-bit wide. The register file is a collection of 32, 32-bit wide registers 

used for data transfer between memory and the CPU.  Memory address ranges from 0 to 

2
m

-1.There also exist three control signals: , REQUEST, and COMPLETE. When 

 signal is high, this would correspond to a read operation equivalent to having an 

input data to the CPU and output from the memory. If this signal is low then it would be a 

write operation and data would come from the CPU as an output and it would be written 

into a portion in the memory. In this case, the REQUEST signal coming from the CPU 

telling the memory that some interaction is required between the CPU and memory.  As a 

result of this request (either read/write), along with the signal on the control and the 

address on the address bus, we might have the corresponding data on the data bus for a 

read operation and after the operation is complete, the memory would issue a control 

signal which corresponds in this case to COMPLETE.  

Figure 7.1 of the text book. 
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Static RAM Cell Organization and Operation 

 
A Typical Memory Cell 

A memory cell provides four functions: Select, DataIn, DataOut, and Read/Write. DataIn 

means input and DataOut means output. The select signal would be enabled to get an 

operation of Read/Write from this cell. 

Figure 7.3 of the text book. 
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1×8 Memory Cell Array (1D) 

In this arrangement, each block is connected through a bi-directional data bus 

implemented with 2 tri-state buffers.  and Select signals are common to all these 

cells. This 1-dimentional memory array could not be very efficient, if we need to have a 

very large memory.  
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4×8 Memory Cell Array (2D) 

In this arrangement, 4×8 memory cell array is arranged in 2-dimensions. At the input, we 

have a 2×4 decoder. Two address bits at the input A0 and A1 would be decoded into 4 

select lines. The decoder selects one of four rows of cells and then  signal specifies 

whether the row will be read or written.  
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A 64k×1 Static RAM Chip 

The cell array is indicated as 256 × 256. So, there would be 256 rows and 256 columns. 

A 64k × 1 cell array requires 16 address lines, a read/write line, , a chip select line, 

CS, and only a single data line. The lower order 8-address lines select one of the 256 

rows using an 8-to-256 line row decoder. Thus the selected row contains 256 bits. The 

higher order 8-address lines select one of those 256 bits. The 256 bits in the row selected 

flow through a 256-to-1 line multiplexer on a read. On a memory write, the incoming bit 

flows through a 1-to-256 line demultiplexer that selects the correct column of the 256 

possible columns.  
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A 16k×4 Static RAM Chip 

In this case, memory is arranged in the form of four 64×256 memory cells. Four bits can 

be read and written at a time. For this, we use one 8-256 row decoder, four 64-1 muxes 

and four 1-64 de muxes. The lower address lines (A0-A7) are decoded into 2
8
 lines, 2

6
 

lines from these 2
8
 are used to select row from one of the four 64×256 cell array and the 

remaining 2
2
 lines are used to select one of the 64×256 cell array. Now the upper address 

lines (A8-A13) are input into the 4 muxes and their output is used to select the required 

column from the four 64×256 cell arrays. Control lines read/write, , chip select, CS, 

are just similar to previous arrangement.  
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Matrix and Tree Decoders 
A typical one level decoder has n inputs and 2

n 
output, using one level of gates, each with 

a fan-in of n. Two level decoders are limited in size because of high gate fan-in. In order 

to reduce the gate fan-in to a value of 8 or 6, tree and matrix decoders are utilized.  

 

Six Transistor SRAM Cell 

In this arrangement, the cross connection is through inverters to make the latch, the basic 

storage cell. This implementation uses six transistor cells. One transistor is used to 

implement each of the two inverters, two transistors are used to control access to the 

inverters for reading and writing, and two are used as active loads.  

 

SRAM Read Operation 

 First of all, the CPU provides the  address on the external address bus. The read/write 

signal becomes active high. After time "tAA", the data becomes available on the data bus.  

The chip retains this data on the data lines until the control signals are de asserted.  
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SRAM Write Operation 
In the case of write cycle, the major difference is that along with the address the CPU has 

also provided the data on the data bus. The chip select, CS, is immediately provided and 

write signal is made low. The  line must be held valid for a minimum time interval 

tw , the write time, until data, address, and control information have been propagated to 

the cell and strobe into it. During this period the data lines must be driven with the data to 

be written.  

 
Dynamic RAM 
As an alternate to the SRAM cell, the data can be stored in the form of a charge on a 

capacitor (a charging/discharging transistor that can become a valid memory element), 

and this type of memory is called dynamic memory. The capacitor has to be refreshed 

and recharged to avoid data loss. 
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Dynamic RAM Cell Operation 
In a DRAM cell, the storage capacitor will discharge in around 4-15ms. Refreshing the 

capacitor by reading or sensing the value on bit line, amplifying it, and placing it back on 

to the bit line is required. The need to refresh the DRAM cell complicates the DRAM 

system design. 

 For details, refer to Chapter 7 of the text book. 
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Lecture No. 38 
 

Memory Modules 

 
Reading Material 

 
Vincent P. Heuring & Harry F. Jordan                                                       Chapter 7                                                          

Computer Systems Design and Architecture                                                7.2.6, 7.3                                                                                                                                                                                                                                                                                                                          

 

Summary    

 

 Memory Modules  

 Read Only Memory (ROM) 

 Cache 

 

Memory Module 
 Static RAM chips can be assembled into systems without changing the timing 

characteristics of a memory access. Dynamic RAM chips, however, have enough timing 

complexity that a memory module built from dynamic RAM chips will have complex 

control. The cause of timing complexity is the time-multiplexed row and column 

addresses, and the refresh operation. 

 
Word Assembly from Narrow Chips 

Chips can be combined to expand the memory word size while keeping the same number 

of words. Address, chip select, and R/W signals are connected in parallel to all the chips. 

Only the data signals are kept separate, with those from each chip supplying different bits 

of the wider word. For high capacity memory chips, narrow words are used. This is 

because adding a data pin to a chip with 2
m 

words of s bits increases the number of bits it 

can store by only a factor of (s+1)/s, while adding an address pin always doubles the 

capacity.  
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Dynamic RAM Module with Refresh Control 
For Dynamic RAM chips the total address is divided into row and column address. Row 

address strobe signal RAS and a column strobe signal CAS are used to differentiate 

between these two signals.  

 

Read Only Memory (ROM) 
ROM is the read-only memory which contains permanent pattern of data that cannot be 

changed. ROM is nonvolatile i.e. it retains the information in it when power is removed 

from it. Different types of ROMs are discussed below. 

  

PROM  

The PROM stands for Programmable Read only Memory. It is also nonvolatile and may 

be written into only once. For PROM, the writing process is performed electrically in the 

field. PROMs provide flexibility and convenience.  

 

EPROM 

Erasable Programmable Read-only Memory or EPROM chips have quartz windows and 

by applying ultraviolet light erase the data can be erased from the EPROM. Data can be 

restored in an EPROM after erasure. EPROMs are more expensive than PROMs and are 

generally used for prototyping or small-quantity, special purpose work. 
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EEPROM 

EEPROM stands for Electrically Erasable Programmable Read-only Memory. This is a 

read-mostly memory that can be written into at any time without erasing prior contents; 

only the byte or bytes addressed are updated. The write operation takes considerably 

longer than the read operation. It is more expensive than EPROM. 

 

Flash Memory 

An entire flash memory can be erased in one or a few seconds, which is much faster than 

EPROM. In addition, it is possible to erase just blocks of memory rather than an entire 

chip.  

 

Cache  

Cache by definition is a place for safe storage and provides the fastest possible storage 

after the registers.  The cache contains a copy of portions of the main memory. When the 

CPU attempts to read a word from memory, a check is made to determine if the word is 

in the cache. If so, the word is delivered to the CPU. If not, a block of the main memory, 

consisting of some fixed number of words, is read into the cache and then the word is 

delivered to the CPU.    

Spatial Locality 

This would mean that in a part of a program, if we have a particular address being 

accessed then it is highly probable that the data available at the next address would be 

highly accessed.  

 

Temporal Correlation 

In this case, we say that at a particular time, if we have utilized a particular part of the 

memory then we might access the adjacent parts very soon. 

  

Cache Hit and Miss 

When the CPU needs some data, it communicates with the cache, and if the data is 

available in the cache, we say that a cache hit has occured. If the data is not available in 

the cache then it interacts with the main memory and fetches an appropriate block of data. 

This is a cache miss.  
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Lecture No. 39 
 

The Cache 
 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                       Chapter 7                                                         

Computer Systems Design and Architecture                                                7.4, 7.5 

Summary 

 Cache Organization and Functions 

 Cache Controller Logic 

 Cache Strategies 

 

Cache Organization and Functions: 

The working of the cache is based on the principle of locality which has two aspects. 

Spatial Locality: refers to the fact when a given address has been referenced, the next 

address is highly probable to be accessed within a short period of time. 

Temporal Locality refers to the fact that once a particular data item is accessed, it is 

likely that it will be referenced again within a short period of time. 

To exploit these two concepts, the data is transferred in blocks between cache and the 

main memory. For a request for data, if the data is available in the cache it results in a 

cache hit. And if the requested data is not present in the cache, it is called a cache miss. In 

the given example program segment, spatial locality is shown by the array ALPHA, in 

which next variable to be accessed is adjacent to the one accessed previously. Temporal 

locality is shown by the reuse of the loop variable 100 times in For loop instruction. 

Int ALPHA [100], SUM; 

SUM=0; 

For (i=0; i<100; i++) 

{SUM= SUM+ALPHA[i];} 

 

Cache Management 

To manage the working of the cache, cache control unit is implemented in hardware, 

which performs all the logic operations on the cache. As data is exchanged in blocks 

between main memory and cache, four important cache functions need to be defined. 

 Block Placement Strategy 

 Block Identification 
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 Block Replacement  

 Write Strategy 

 

Block Diagram of a Cache System 

 

In the figure, the block diagram of a system using cache is shown. It consists of two 

components. 

 Fast Memory 

 Control Logic Unit 

 

 

Control logic is further divided into two parts. 

Determine and Comparison Unit:  For determining and comparisons of the different 

parts of the address and to 

evaluate hit or miss. 

Tag RAM: Second part 

consists of tag memory which 

stores the part of the memory 

address (called tag) of the 

information (block) placed in 

the data cache. It also contains 

additional bits used by the 

cache management logic. 

Data Cache: is a block of fast 

memory which stores the 

copies of data and instructions 

frequently accessed by the 

CPU. 

  

 

 

Cache Strategies 
In the next section we will discuss various cache functions, and strategies used to 

implement these functions. 

 

Block Placement 

Block placement strategy needs to be defined to specify where blocks from main memory 

will be placed in the cache and how to place the blocks. Now various methods can be 

used to map main memory blocks onto the cache .One of these methods is the associative 

mapping explained below. 

 

Associative Mapping: 

In this technique, block of data from main memory can be placed at any location in the 

cache memory.  A given block in cache is identified uniquely by its main memory block 
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number, referred to as a tag, which is stored inside a separate tag memory in the cache. 

To check the validity of the cache blocks, a valid bit is stored for each cache entry, to 

verify whether the information in the corresponding block is valid or not. 

Main memory address references have two fields. 

• The word field becomes a “cache address” which specifies where to find the word 

in the cache. 

• The tag field which must be compared against every tag in the tag memory.  

 

Associative Mapping Example 

Refer to Book Ch.7 Section (7.5) Figure 7.31(page 350-351) for detailed explanation. 

 
Mechanism of the Associative Cache Operation 

For details refer to book Ch.7, Section 7.5, Figure 7.32 (Page 351-352). 
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Direct Mapping  

In this technique, a particular block of data from main memory can be placed in only one 

location into the cache memory. It relies on principle of locality. 

Cache address is composed of two fields: 

• Group field 

• Word field 

Valid bit specifies that the information in the selected block is valid. 

For a direct mapping example, refer to the book Ch.7, Section 7.5, Figure 7.33 (page 352 

– 353). 
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Logic Implementation of the Controller for Direct Mapping 

Logic design for the direct mapping is simpler as compared to the associative mapping. 

Only one tag entry needs to be compared with the part of the address called group field.  
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Tasks Required For Direct Mapping Cache: 

For details refer to the book Ch. 7, Section 7.5, Figure 7.34 (Page 353-354). 

 
 

 

Cache Design: Direct Mapped Cache  

To understand the principles of cache design, we will discuss an example of a direct 

mapped cache. 

The size of the main memory is 1 MB. Therefore 20 address bits needs to be specified. 

Assume that the block size is 8 bytes. Cache memory is assumed to be 8 KB organized as 

1 K lines of cache memory. Cache memory addresses will range from 0 up to 1023. Now 

we have to specify the number of bits required for the tag memory. The least significant 

three bits will define the block. The next 10 bits will define the number of bits required 

for the cache. The remaining 7 bits will be the width of the tag memory.  

Main memory is organized in rectangular form in rows and columns. Number of rows 

would be from 0 up to 1023 defined by 10 bits. Number of rows in the main memory will 

be the same as number of lines in the cache. Number of columns will correspond to 7 bits 

address of the tag memory. Total number of columns will be 128 starting from 0 up to 

127. With direct mapping, out of any particular row only one block could be mapped into 

the cache. Total number of cache entries will be 1024 each of 8 bytes. 

 

Advantage: 
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           Simplicity 

 Disadvantage: 
            Only a single block from a given group is present in cache at any time. Direct 

map Cache imposes a considerable amount of rigidity on cache organization. 

 

Set Associative Mapping 

In this mapping scheme, a set consisting of more than one block can be placed in the 

cache memory. 

The main memory address is divided into two fields. The Set field is decoded to select 

the correct group. After that the tags in the selected groups are searched. Two possible 

places in which a block can reside must be searched associatively. Cache group address is 

the same as that of the direct-mapped cache. 

For details of the Set associative mapping example, refer to the book Ch.7, Section 7.5, 

Figure 7.35 (Page 354-355). 

 

 
 

Replacement Strategy 

For a cache miss, we have to replace a cache block with the data coming from main 
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memory.  Different methods can be used to select a cache block for replacement. 

Always Replacement: For Direct Mapping on a miss, there is only one block which 

needs replacement called always replacement. 

For associative mapping, there are no unique blocks which need replacement .In this case 

there are two options to decide which block is to be replaced. 

 Random Replacement: To randomly select the block to be replaced 

 LFU: Based on the statistical results, the block which has been least used in the 

recent past, is replaced with a new block. 

 

Write Strategy 

When a CPU command to write to a memory data will come into cache, the writing into 

the cache requires writing into the main memory also.  

Write Through: As the data is written into the cache, it is also written into the main 

memory called Write Through. The advantages are: 

 Read misses never result in writes to the lower level. 

 Easy to implement than write back 

 

Write Back: Date resides in the cache, till we need to replace a particular block then the 

data of that particular block will be written into the memory if that needs a write, called 

write back. The advantages are: 

 Write occurs at the speed of the cache 

 Multiple writes with in the same block requires only one write to the lower 

memory. 

 This strategy uses less memory bandwidth, since some writes do not go to the 

lower level; useful when using multi processors. 

 

Cache Coherence 

Multiple copies of the same data can exist in memory hierarchy simultaneously. The 

Cache needs updating mechanism to prevent old data values from being used. This is the 

problem of cache coherence. Write policy is the method used by the cache to deal with 

and keep the main memory updated. 

Dirty bit is a status bit which indicates whether the block in cache is dirty (it has been 

modified) or clean (not modified). If a block is clean, it is not written on a miss, since 

lower level contains the same information as the cache. This reduces the frequency of 

writing back the blocks on replacement. 

Writing the cache is not as easy as reading from it e.g., modifying a block can not begin 

until the tag has been checked, to see if the address is a hit. Since tag checking can not 

occur in parallel with the write as is the case in read, therefore write takes longer time. 

Write Stalls: For write to complete in Write through, the CPU has to wait. This wait state 

is called write stall. 

Write Buffer: reduces the write stall by permitting the processor to continue as soon as 

the data has been written into the buffer, thus allowing overlapping of the instruction 

execution with the memory update. 

Write Strategy on a Cache Miss 
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On a cache miss, there are two options for writing. 

Write Allocate: The block is loaded followed by the write. This action is similar to the 

read miss. It is used in write back caches, since subsequent writes to that particular block 

will be captured by the cache. 

No Write Allocate: The block is modified in the lower level and not loaded into the 

cache. This method is generally used in write through caches, because subsequent writes 

to that block still have to go to the lower level. 
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Lecture No. 40 

 

Virtual Memory 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                       Chapter 7                                                          

Computer Systems Design and Architecture                                                    7.6      

Summary 

 Virtual Memory  

 Virtual Memory Organization  

 

Virtual Memory 

 
Introduction 

Virtual memory acts as a cache between main memory and secondary memory. Data is 

fetched in advance from the secondary memory (hard disk) into the main memory so that 

data is already available in the main memory when needed. The benefit is that the large 

access delays in reading data from hard disk are avoided. 

Pages are formulated in the secondary memory and brought into the main memory. This 

process is managed both in hardware (Memory Management Unit) and the software (The 

operating systems is responsible for managing the memory resources). 

The block diagram shown (Book Ch.7, Section 7.6, and figure 7.37) specifies how the 

data interchange takes place between cache, main memory and the disk. The Memory 

Management unit (MMU) is located between the CPU and the physical memory. Each 

memory reference issued by the CPU is translated from the logical address space to the 

physical address space, guided by operating system controlled mapping tables. As 

address translation is done for each memory reference, it must be performed by the 

hardware to speed up the process. The operating system is invoked to update the 

associated mapping tables. 

 

Memory Management and Address Translation 

The CPU generates the logical address.  During program execution, effective address is 

generated which is an input to the MMU, which generates the virtual address.  The virtual 

address is divided into two fields. First field represents the page number and the second 

field is the word field. In the next step, the MMU translates the virtual address into the 

physical address which indicates the location in the physical memory. 
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Advantages of Virtual Memory 

 Simplified addressing scheme: the programmer does not need to bother 

about the exact locations of variables/instructions in the physical memory. 

It is taken care of by the operating system. 

 For a programmer, a large virtual memory will be available, even for a 

limited physical memory. 

 Simplified access control. 

 

Virtual Memory Organization  
Virtual memory can be organized in different ways. This first scheme is segmentation. 

Segmentation: 

In segmentation, memory is divided into segments of variable sizes depending upon the 

requirements. Main memory segments identified by segments numbers, start at virtual 

address 0, regardless of where they are located in physical memory. 

 In pure segmented systems, segments are brought into the main memory from the 

secondary memory when needed. If segments are modified and not required any more, 

they are sent back to secondary memory. This invariably results in gap between 

segments, called external fragmentation i.e. less efficient use of memory. Also refer to 

Book Ch.7 , Section 7.6, Figure 7.38. 

 
Addressing of Segmented Memory 

The physical address is formed by adding each virtual address issued by the CPU to the 

contents of the segment base register in the MMU. Virtual address may also be compared 

with the segment limit register to keep track and avoiding the references beyond the 

specified limit. By maintaining table of segment base and limit registers, operating 

system can switch processes by switching the contents of the segment base and limit 

register. This concept is used in multiprogramming. Refer to book Ch.7, Section 7.6, and 
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Figure 7.39 

 
Paging: 

In this scheme, we have pages of fixed size. In demand paging, pages are available in 

secondary memory and are brought into the main memory when needed.  

Virtual addresses are formed by concatenating the page number with the word number. 

The MMU maps these pages to the pages in the physical memory and if not present in the 

physical memory, to the secondary memory. (Refer to Book Ch.7, Section 7.6, and 

Figure 7.41)  
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Page Size: A very large page size results in increased access time. If page size is small, it 

may result in a large number of accesses.  

The main memory address is divided into 2 parts.  

 Page number: For virtual address, it is called virtual page number. 

 Word Field 

 

Virtual Address Translation in a Paged MMU: 

Virtual address composed of a page number and a word number, is applied to the MMU. 

The virtual page number is limit checked to verify its availability within the limits given 

in the table. If it is available, it is added to the page table base address which results in a 

page table entry. If there is a limit check fault, a bound exception is raised as an interrupt 

to the processor.  

Page Table  

The page table entry for each page has two fields. 

 Page field 

 Control Field: This includes the following bits. 

 Access control bits: These bits are used to specify read/write, and execute 

permissions. 

 Presence bits: Indicates the availability of page in the main memory. 

 Used bits: These bits are set upon a read/ write. 
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If the presence bit indicates a hit, then the page field of the page table entry contains the 

physical page number. It is concatenated with the word field of the virtual address to 

form a physical address. 

Page fault occurs when a miss is indicated by the presence bit. In this case, the page field 

of the page table entry would contain the address of the page in the secondary memory. 

Page miss results in an interrupt to the processor. The requesting process is suspended 

until the page is brought in the main memory by the interrupt service routine.  

Dirty bit is set on a write hit CPU operation. And a write miss CPU operation causes the 

MMU to begin a write allocate (previously discussed) process. (Refer to book Ch.7, 

Section 7.6, and Figure 7.42) 

 
Fragmentation: 

Paging scheme results in unavoidable internal fragmentations i.e. some pages (mostly last 

pages of each process) may not be fully used. This results in wastage of memory. 

 

Processor Dispatch -Multiprogramming 

Consider the case, when a number of tasks are waiting for the CPU attention in a 

multiprogramming, shared memory environment. And a page fault occurs. Servicing the 

page fault involves these steps. 

1. Save the state of suspended process 
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2. Handle page fault 

3. Resume normal execution 

 

Scheduling: If there are a number of memory interactions between main memory and 

secondary memory, a lot of CPU time is wasted in controlling these transfers and number 

of interrupts may occur.  

To avoid this situation, Direct Memory Access (DMA) is a frequently used technique. 

The Direct memory access scheme results in direct link between main memory and 

secondary memory, and direct data transfer without attention of the CPU. But use of 

DMA in virtual memory may cause coherence problem. Multiple copies of the same page 

may reside in main memory and secondary memory. The operating system has to ensure 

that multiple copies are consistent.  

Page Replacement 

On a page miss (page fault), the needed page must be brought in the main memory from 

the secondary memory. If all the pages in the main memory are being used, we need to 

replace one of them to bring in the needed page. Two methods can be used for page 

replacement. 

Random Replacement: Randomly replacing any older page to bring in the desired page. 

Least Frequently Used: Maintain a log to see which particular page is least frequently 

used and to replace that page. 

Translation Lookaside buffer 

Identifying a particular page in the virtual memory requires page tables (might be very 

large) resulting in large memory space to implement these page tables. To speed up the 

process of virtual address translation, translation Lookaside buffer (TLB) is implemented 

as a small cache inside the CPU, which stores the most recent page table entry reference 

made in the MMU. It contents include 

 A mapping from virtual to physical address  

 Status bits i.e. valid bit, dirty bit, protection bit 

It may be implemented using a fully associative organization 

Operation of TLB 

For each virtual address reference, the TLB is searched associatively to find a match 

between the virtual page number of the memory reference and the virtual page number in 

the TLB. If a match is found (TLB hit) and if the corresponding valid bit and access 

control bits are set, then the physical page mapped to the virtual page is concatenated. 

(Refer to Book Ch.7, Section 7.6, and Figure 7.43) 
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Working of Memory Sub System 

When a virtual address is issued by the CPU, all components of the memory subsystem 

interact with each other. If the memory reference is a TLB hit, then the physical address 

is applied to the cache. On a cache hit, the data is accessed from the cache. Cache miss is 

processed as described previously. On a TLB miss (no match found) the page table is 

searched. On a page table hit, the physical address is generated, and TLB is updated and 

cache is searched. On a page table miss, desired page is accessed in the secondary 

memory, and main memory, cache and page table are updated. TLB is updated on the 

next access (cache access) to this virtual address. (Refer to Book Ch.7, Section 7.6, and 

Figure 7.44). 
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To reduce the work load on the CPU and to efficiently use the memory sub system, 

different methods can be used. One method is separate cache for data and instructions. 

Instruction Cache: It can be implemented as a Translation Lookaside buffer. 

Data Cache: In data cache, to access a particular table entry, it can be implemented as a 

TLB either in the main memory, cache or the CPU.  
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Numerical Examples of DRAM and Cache 

 
Reading Material 

 

Vincent P. Heuring & Harry F. Jordan                                                            

Computer Systems Design and Architecture                                                        

 

Summary 

 

Numerical Examples related to 

 

• DRAM 

• Pipelining, Pre-charging and Parallelism 

• Cache 

• Hit Rate and Miss Rate 

• Access Time 

 

Example 1 

 

If a DRAM has 512 rows and its refresh time is 9ms, what should be the frequency of 

row refresh operation on the average? 

 

Solution 

Refresh time= 9ms 

Number of rows=512 

Therefore we have to do 512 row refresh operations in a 9 ms interval, in other words  

one row refresh operation every  (9x10
-3

)/512 =1.76x10
-5

seconds.   

  

Example 2 

 

Consider a DRAM with 1024 rows and a refresh time of 10ms.  

a. Find the frequency of row refresh operations. 

b. What fraction of the DRAM‟s time is spent on refreshing if each refresh takes 100ns.   

 

Solution 

 

Total number of rows = 1024 
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Refresh period = 10ms 

One row refresh takes place after every  

10ms/1024=9.7micro seconds 

Each row refresh takes 100ns, so fraction of the DRAM‟s time taken by row refreshes is,  

100ns/9.7 micro sec= 1.03%  

Example 3 

Consider a memory system having the following specifications. Find its total cost and 

cost per byte of memory.  

 

Memory type Total bytes Cost per byte 

SRAM 256 KB 30$ per MB 

DRAM 128 MB 1$ per MB 

Disk 1 GB 10$ per GB 

 

Solution 

Total cost of system 

256 KB( ¼ MB) of SRAM costs = 30 x ¼ = $7.5 

128 MB of DRAM costs= 1 x 128= $128 

1 GB of disk space costs= 10 x 1=$10 

Total cost of the memory system 

= 7.5+128+10=$145.5 

Cost per byte 

Total storage= 256 KB + 128 MB + 1 GB 

= 256 KB + 128x1024KB + 1x1024x1024KB 

=1,179,904 KB 

Total cost = $145.5  

Cost per byte=145.5/(1,179,904x1024) 

= $1.2x10
-7

$/B  

 

Example 4 

 

Find the average access time of a level of memory hierarchy if the hit rate is 80%. The 

memory access takes 12ns on a hit and 100ns on a miss.  

Solution 

 

Hit rate =80% 
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Miss rate=20% 

Thit=12 ns 

Tmiss=100ns 

Average Taccess=(hit rate*Thit)+(miss rate*Tmiss) 

                        =(0.8*12ns)+(0.2*100ns) 

                        = 29.6ns 

 

Example 5 

 

Consider a memory system with a cache, a main memory and a virtual memory. The 

access times and hit rates are as shown in table. Find the average access time for the 

hierarchy.  

 

 Main memory cache virtual memory 

Hit rate 99% 80% 100% 

Access time 100ns 5ns 8ms 

 

Solution  

 

Average access time for requests that reach the main memory 

= (100ns*0.99)+(8ms*0.01) 

= 80,099 ns 

Average access time for requests that reach the cache             

 =(5ns*0.8)+(80,099ns*0.2) 

 =16,023.8ns  

 

Example 6 

 

Given the following memory hierarchy, find the average memory access time of the 

complete system  

 

Memory type Average access time Hit rate 

SRAM 5ns 80 % 
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DRAM 60ns 80% 

Disk 10ms 100% 

 

 

Solution  

 

For each level, average access time=( hit rate x access time for that level) + ((1-hit rate) x  

average access time for next level) 

Average access time for the complete system 

= (0.8x5ns) + 0.2 x((0.8x60ns) + (0.2)(1x10ms)) 

= 4 + 0.2(48+2000000) 

=4 + 400009.6 

= 400013.6 ns  

 

Example 7 

 

Find the bandwidth of a memory system that has a latency of 25ns, a pre charge time of 

5ns and transfers 2 bytes of data per access.  

 

Solution  

 

Time between two memory references  

=latency + pre charge time 

= 25 ns+ 5ns 

= 30ns 

Throughput = 1/30ns 

=3.33x10
7
 operations/second 

Bandwidth   = 2x 3.33x10
7
  

= 6.66x10
7
  bytes/s  

 

Example 8 

 

Consider a cache with 128 byte cache line or cache block size. How many cycles does it 

take to fetch a block from main memory if it takes 20 cycles to transfer two bytes of data?  

 

Solution  

The number of cycles required for the complete transfer of the block 

=20 x 128/2  

= 1280 cycles 

  

 Using large cache lines decreases the miss rate but it increases the amount of time a 



Advanced Computer Architecture   

________________________________________________________________________ 

420 

 

program takes to execute as obvious from the number of clock cycles required to transfer 

a block of data into the cache.  

 

Example 9 

 

Find the number of cycles required to transfer the same 128 byte cache line if page-mode 

DRAM with a CAS-data delay of 8 cycles is used for main memory. Assume that the 

cache lines always lie within a single row of the DRAM, and each line lies in a different 

row than the last line fetched.  

 

Solution 

 

Memory requests to fetch each cache line=128/2= 64 

Only the first fetch require the complete 20 cycles, and the other 63 will take only 8 clock 

cycles. Hence the no. of cycles required to fetch a cache line 

=20 + 8 x 63  

= 524 

 

Example 10 

 

Consider a 64KB direct-mapped cache with a line length of 32 bytes.  

 

a. Determine the number of bits in the address that refer to the byte within a cache 

line. 

b. Determine the number of bits in the address required to select the cache line.  

Solution 

Address breakdown 

        

                        n=log2 of number of bytes in line 

  m=log2 of number of lines in cache 

 

a.    For the given cache, the number of bits in the address to determine the byte 

within the line= n = log232 = 5 

 

b.   There are 64K/32= 2048 lines in the given cache.  The number of bits required to 

select the required line = m =log22048 = 11 

   

      Hence n=5 and m=11 for this example. 

 

Example 11 

 

Consider a 2-way set-associative cache with 64KB capacity and 16 byte lines. 

  

a.  How many sets are there in the cache? 
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b.  How many bits of address are required to select a set in the cache? 

c.  Repeat the above two calculations for a 4-way set-associative cache with 

same size.    

 

Solution 

 

a. A 64KB cache with 16 byte lines contains  4096 lines of data. In a 2-way set 

associative cache, each set contains 2 lines, so there are 2048 sets in the cache.  

  

b. Log2(2048)=11. Hence 11 bits of the address are required to select the set.  

 

c. The cache with 64KB capacity and 16 byte line has 4096 lines of data. For a 4-

way set associative cache, each set contains 4 lines, so the number of sets in the 

cache would be 1024 and Log 2 (1024) =10. Therefore 10 bits of the address are 

required to select a set in the cache.   

 

Example 12 

Consider a processor with clock cycle per instruction (CPI) = 1.0 when all memory 

accesses hit in the cache. The only data accesses are loads and stores, and these constitute 

60% of all the instructions. If the miss penalty is 30 clock cycles and the miss rate is 

1.5%, how much faster would the processor be if all instructions were cache hits?  

 

Solution 

 

Without any misses, the computer performance is 

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle  

=(IC x CPI+ 0)x Clock cycle = IC x 1.0 x Clock cycle  

Now for the computer with the real cache, first we compute the number of memory stall 

cycles: 

Memory accesses      = IC x   Instruction x Miss Rate x Miss Penalty 

Memory stall cycles 

 

= IC x (l + 0.6) x 0.015 x 30  

= IC x 0.72 

 

where the middle term (1 + 0.6) represents one instruction access and 0.6 data accesses 

per instruction. The total performance is thus 

  

CPU execution time cache = (IC x 1.0 + IC x 0.72) x Clock cycle  

=  1.72  x  IC x Clock cycles  

 

The performance ratio is the inverse of the execution times 
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CPU execution time cache  =  1.72 x IC x clock cycle 

   CPU execution time                 1.0 x IC x clock cycle 

 

The computer with no cache misses is 1.72 times faster 

 

 

 

Example 13 

 

Consider the above example but this time assume a miss rate of 20 per 1000 instructions. 

What is memory stall time in terms of instruction count? 

 

Solution 

 

Re computing the memory stall cycles: 

Memory stall cycles=Number of misses x Miss penalty 

=IC *   Misses     * Miss penalty 

           Instruction 

  

=IC / 1000 *  Misses  * Miss penalty 

                         Instruction * 1000 

=IC / 1000 * 20 * 30 

= IC /1000 * 600= IC * 0.6  

 

Example 14 

 

What happens on a write miss? 

 

 Solution 

 

The two options to handle a write miss are as follows: 

Write Allocate 

The block is allocated on a write miss, followed by the write hit actions. This is just like 

read miss. 

No-Write Allocate 

Here write misses do not affect the cache. The block is modified only in the lower level 

memory. 

  

Example 15 

 

Assume a fully associative write-back cache with many cache entries that starts empty.  

Below is a sequence of five memory operations (the address is in square brackets): 

  

Write Mem[300]; 
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Write Mem[300]; 

Read  Mem[400]; 

Write Mem[400]; 

WriteMem[300]; 

 

What is the number of hits and misses when using no-write allocate versus write allocate? 

 

Solution 

 

For no-write allocate, the address 300 is not in the cache, and there is no allocation on 

write, so the first two writes will result in misses. Address 400 is also not in the cache, so 

the read is also a miss. The subsequent write to address 400 is a hit. The last write to 300 

is still a miss. The result for no-write allocate is four misses and one hit.  

 For write allocate, the first accesses to 300 and 400 are misses, and the rest are hits since 

300 and 400 are both found in the cache. Thus, the result for write allocate is two misses  

and three hits.   

 

Example 16 

 

Which has the lower miss rate?  

a 32 KB instruction cache with a 32 KB data cache or a 64 KB unified cache?  

Use the following Miss per 1000 instructions.  

 

 
 

Assumptions 

 

•  The percentage of instruction references is about 75%.  

•  Assume 40% of the instructions are data transfer instructions.  

• Assume a hit takes 1 clock cycle. 

• The miss penalty is 100 clock cycles.  

• A load or store hit takes 1 extra clock cycle on a unified cache if there is only one 

cache port to satisfy two simultaneous requests.  

• Also the unified cache might lead to a structural hazard. 

• Assume write-through caches with a write buffer and ignore stalls due to the   write 

buffer.   

 

size 

 
Instruction 
cache 
 

Data cache 

 
Unified 
cache 

 32 KB 
 

1.5 
 

40 
 

42.2 
 

64 KB 
 

0.7 
 

38.5 
 

41.2 
 



Advanced Computer Architecture   

________________________________________________________________________ 

424 

 

 

 

 

 

 

 

 

What is the average memory access time in each case? 

Solution 

 

First let's convert misses per 1000 instructions into  

miss rates. 

                               

                                 Misses                     

Miss rate =  1000 Instructions  

                         Memory accesses 

                             Instruction   

  

Since every instruction access has exactly one memory access to fetch the instruction, the 

instruction miss rate is 

 

Miss rate32 KB instruction = 1.5/1000 = 0.0015 

                                                  1.00 

  

Since 40% of the instructions are data transfers, the data miss rate is 

Miss Rate 32 kb data =   40 /1000        =  0.1 

                                           0.4 

  

The unified miss rate needs to account for instruction and data accesses: 

Miss Rate 64 kb unified =   42.2 /1000      =  0.031 

                                               1.00+ 0.4 

   

As stated above, about 75% of the memory accesses are instruction references. Thus, the 

overall miss rate for the split caches is 

(75% x 0.0015) + (25% x 0.1) = 0.026125 

Thus, a 64 KB unified cache has a slightly lower effective miss rate than two 16 KB 

caches. The average memory access time formula can be divided into instruction and data 

accesses:  

Average memory access time 

= % instructions x (Hit time + Instruction miss rate x Miss Penalty) + % data x (Hit time 

+ Data miss rate x Miss Penalty)  

 

Therefore, the time for each organization is:  
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 Average memory access time split 

= 75%x(l +0.0015x 100) + 25%x(l +0.1x100)  

= (75% x 1.15) + (25% x 11)  

= 0.8625+2.75= 3.61 

Average memory access time unified 

= 75% x (1+0.031 x 100) +25% x (1 + 1+0.031 x 100)  

= (75% x 4.1) + (25% x 5.1) = 3.075+1.275  

= 4.35  

Hence split caches have a better average memory access time despite having a worse 

effective miss rate. Split cache also avoids the problem of structural hazard present in a 

unified cache.  
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Lecture No. 42 

 

Performance of I/O Subsystems 
 

Reading Material 

 

Patterson, D.A. and Hennessy, J.L.                                                                        Chapter 8 

Computer Architecture -A Quantitative Approach 

Summary 

 Introduction 

 Performance of I/O Subsystems 

 Loss System 

 Single Server Model 

 Little‟s Law 

 Server Utilization 

 Poisson distribution 

 Benchmarks programs 

 Asynchronous I/O and operating system 

 

Introduction 

Consider a producer-server model. A buffer (or queue) is present between them. Tasks 

are being received and when one task is finished (i.e. served) then the second task is 

taken up by the server. Now latency and the response time depend upon how many tasks 

are present in the queue and how quickly they are served. If there is no task, ahead in the 

queue the latency would be low and response time would be shorter.   

Through put depends upon the average number of calls and the service time taken by a 

particular server. 

 

Performance of I/O Subsystems 

There are three methods to measure I/O subsystem performance: 

 Straight away calculations using execution time 

 Simulation 

 Queuing Theory 

 

 

Loss System 

 

Loss system is a simple system having no buffer so it does not have any provision for the 
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queuing. In a loss system, provision is time in term of how many switches we do need, 

then provide some redundancy how many individuals I/O controllers we do need, then 

how many CPUs are there. It is also called dimension of a loss system. 

Delay System  

 

This system provides additional facilities. If we find some call party busy, we can have 

provision of call waiting. If we have more than one call waiting, then once we finish the 

first call, we may receive the second call.  

 

Single Server Model 

 

Consider a black box. Suppose it represents an I/O controller. At the input, we have 

arrival of different tasks. As one task is done, we have a departure at the output. So in the 

black box, we have a server. Now if we expand and open-up the black box, we could see 

that incoming calls are coming into the buffer and the output of the buffer is connected to 

the server. This is an example of “single server model”. 

 

Little‟s Law 

 

For a system with multiple independent requests for I/O service and input rate equal to 

output rate, we use Little‟s law to find the mean number of tasks in the system and Time 

sys such that 

 

Mean number of tasks = Arrival Rate x Mean Response time 

and 

Timesys = Timeq + Times 

where 

Times   = Average time to serve task 

Timeq   = Average time per task in the queue 

Timesys = Aver time /task 

Arrival Rate = λ = Average number of arriving tasks 

Lengths = Average number of task in service 

Lengthq = Average length of queue 

 and 

Lengthsys= Lengthq +Lengths 

 

Server Utilization 

 

Server Utilization   =  Arrival Rate x Timeq 

                                  

Server utilization is also called traffic intensity and its value must be between 0 and 1. 

Server utilization depends upon two parameters: 

1. Arrival Rate 

2. Average time required to serve each task 
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So, we can say that it depends on the I/O bandwidth and arrival rate of calls into the 

system. 

 

Example 1 

 

Suppose an I/O system with a single disk gets (on average) 100 I/O requests/second. 

Assume that average time for a disk to service an I/O request is 5ms. What is the 

utilization of the I/O system? 

Solution 

Time for an I/O request = 5ms 

                                       =0.005sec 

Server utilization = 100 x 0.005 

                            = 0.5   

Poisson distribution 

 

In order to calculate the response time of an I/O system, we make the following 

assumptions: 

1. Arrival is random 

2. System is memory less. It means that incoming calls are not correlated. 

For characterize random events, according to above two assumptions, we use Poisson 

distribution: 

Probability (k)= (e
-k

 x a
k
 ) /k! 

 

 a= Rate of events x Elapsed time 

   = Arrival rate x t 

 

also 

 

                              Variance 

   C
2
   =   ----------------------------------- 

                    (Arithmetic mean time)
 2

  

and 

Average Residual Service Time  = ½  x weighted mean time x (1+C
2
 ) 

Example 2 

 

For the system of previous example having server utilization of 0.5, what is the mean 

number of I/O requests in the queue? 

Solution 

                    (Server utilization)
 2

   

Lengthq = --------------------------- 

                  (1- Server utilization) 

                       

Lengthq = (0.5) 
2
  / (1-0.5)= 0.5 
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Assumptions about Queuing Model 

 

1. Poisson distribution is assumed 

2. The system is in equilibrium 

3. The length of the queue is infinity 

4. The system has only one server 

5. The server will start the next task after finishing the previous one. 

 

Example 3 

 

Suppose a processor sends 10 disks I/O per second, these requests are exponentially 

distributed, and the average service time of an older disk is 10ms. Answer the following 

questions: 

 

 What is the number of requests in the queue? 

 What is the average time a spent in the queue? 

 What is the average response time for a disk request? 

 

Solution 

 

Average number of arriving tasks/second = 20 

Average disk time = 10ms = 0.01sec 

Sever utilization = 20 x 0.01=0.2 

Timeq = 10ms x 0.2/(1-0.2) = 2.5ms 

Average response time = 2.5+10=22.5ms 

 

M/M/m model of queuing theory 

A system which has multiple servers is called M/M/m model. 

The following formulas are used for M/M/m model: 

                         Arrival Rate x Times  

Utilization = ----------------------------- 

                             Ns 

 

   Lengths = Arrival Rate x Timeq 

 

                      

                        (Times  x (Ptasks>= Ns)) 

   Timeq  =  ---------------------------------- 

                          Ns x (1- utilization) 

 

                                   Ns x utilization  

Probtasks>= Ns =  --------------------------  x Prob0tasks  

                                Ns! x (1-utilization) 
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Example#4 

 

Suppose instead of a new, faster disk, we add a second slow disk, and duplicate the data 

so that read can be serviced by either disk. Let‟s assume that the requests are all reads. 

Recalculate the answers to the earlier questions, this time using an M/M/m queue. 

Solution 

 

The average utilization of the two disks is given as; 

 

                                  Arrival rate x Times 

 Server utilization = ---------------------------- 

                                              Ns 

                              = (20 x 0.01) / 2 

                              = 0.1 

 

                                              (2 x utilization)
 2
              (2 x utilization )

 n
  

Prob0tasks            =  [  1 +    -------------------------  +   --------------------------] 
-1

 

                                            2! x (1- utilization)                     n! 

 

                                 (2x 0.1) 
2
 

 Prob0tasks  =  [ 1 + ----------------   + (2 x 0.1)] 
-1

 

                               2! x (1- 0.1) 

 

                 = (1 + .022 + 0.2 ) 
-1

 

 

                = 1.222
-1

 

 

                                  (2 x utilization)
 2

  

Probtasks>= Ns  =  -------------------------  x  Prob0tasks 

                                2! x (1- utilization) 

 

                                    (2x 0.1)
 2

   

                      =        ----------------   x 1.222
-1

 

                                2! x (1- 0.1) 

 

                      =  0.018 

 

                                    Probtasks>= Ns   

Timeq = Times  x  ---------------------------- 

                       Ns x (1- utilization) 

 

              = 0.01 x 0.018 / ( 2 x 0.9) 

              = 0.1msec 
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Average response time = 10msec + 0.1msec 

                                     =  10.01msec 

               

Benchmarks programs 

In order to measure the performance of real systems and to collect the values of 

parameters needed for prediction, Benchmark programs are used. 

Types of Benchmark programs 

Two types of benchmark programs are used: 

TPC-C 

SPEC 

Asynchronous I/O and operating system 

In order to improve the I/O performance, parallelism is used. 

For this, two approaches are available: 

 Synchronous I/O  

 Asynchronous I/O 

Synchronous I/O 

In this approach, operating system requests data and switches to another process. Until 

the desire data arrived. Then the operating system switches back to the requesting 

process. 

Asynchronous I/O 

This model is of the process to continue after making a request and it is not blocked until 

it tries to read requested data. 

Bus versus switches 

Consider a LAN, using bus topology. If we replace the bus with a switch, the speed of the 

data transfer will be improved to a great extent. 
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Computer Architecture - A Quantitative Approach                                                                                            

 
Summary 

 

 Introduction to computer network 

 Difference between distributed computing and computer networks 

 Classification of networks 

 Interconnectivity in WAN 

 Performance Issues 

 Effective bandwidth versus Message size 

 Physical Media 

 

Introduction to Computer Networks 

A computer architect should know about computer networks because of the two main 

reasons: 

1. Connectivity 

Connection of components with in a single computer follows the same principles used for 

the connection of different computers. It is important for the computer architect to know 

about connectivity for better sharing of bandwidth 

Sharing of resources 

Consider a lab with 50 computers and 2 printers using a network, all these 50 computers 

can share these 2 printers.  

 Protocol 

A set of rules followed by different components in a network. These rules may be defined 

for hardware and software. 

Host  

It is a computer with a modem, LAN card and other network interfaces. Hosts are also 
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called nodes or end points. Each node is a combination of hardware and software and all 

nodes are interconnected by means of some physical media. 

 

Difference between Distributed Computing and Computer Networks 

 

In distributed computing, all elements which are interconnected operate under one 

operating system. To a user, it appears as a virtual uni-processor system. 

In a computer network, the user has to specify and log in on a specific machine. Each 

machine on the network has a specific address. Different machines communicate by 

using the network which exists among them. 

 

Classification of Networks 

We can classify a network based on the following two parameters: 

 The number and type of machines to be interconnected  

 The distance between these machines 

Based on these two parameters, we have the following type of networks: 

SAN (System/Storage Area Network) 

It refers to a cluster of machines where large disk arrays are present. Typical distances 

could be tens of meters. 

LAN (Local Area Network) 

It refers to the interconnection of machines in a building or a campus. Distances could be 

in Kilometers. 

WAN (Wide Area Network) 

It refers to the interconnection between LANs. 

 

Interconnectivity in WAN 

 

Two methods are used to interconnect WANs: 

1. Circuit switching  

      It is normally used in a telephone exchange. It is not an efficient way. 

2. Packet switching 

A block (an appropriate number of bits) of data is called a packet. Transfer of data in 

the form packets through different paths in a network is called packet switching. 

Additional bits are usually associated with each packet. These bits contain 

information about the packet. These additional bits are of two types: header and 

trailer. As an example, a packet may have the form shown below: 

 

 
If we use a 1- bit  header, we may have the following protocol:  

Header = 0, it means it is a request 
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Header = 0, Reply 

By reading these header bits, a machine becomes able to receive data or supply data. 

To transfer data by using packets through hardware is very difficult. So all the transfer is 

done by using software. By using more number of bits, in a header, we can send more 

messages. For example if n bits are used as header then 2
n
 is the number of messages that 

can be transmitted over a network by using a single header. 

For a 2 bit header: we may have 4 types of messages: 

                           00= Request 

                           01= Reply 

                           10= Acknowledge request 

                           11= Acknowledge reply 

 

Error detection 

 

The trailer can be used for error detection. In the above example, a 4 bit checksum can be 

used to detect any error in the packet. The errors in the message could be due to the long 

distance transmission. If the error is found in some message, then this message will be 

repeated. For a reliable data transmission, bit error rate should be minimum. 

 

Software steps for sending a message: 

 

• Copy data to the operating system buffer. 

• Calculate the checksum, include in trailer and star timer. 

• Send data to the hardware for transmission. 

 

Software steps for message reception: 

 

• Copy data to the operating system buffer. 

• Calculate the checksum; if same, send acknowledge and copy data to the user area 

otherwise discard the message. 

 

Response of the sender to acknowledgment:  

 

• If acknowledgment arrives, release copy of message from the system buffer. 

• When timer expires, resend data and restart the time. 

 

Performance Issues 

 

1. Bandwidth 

It is the maximum rate at which data could be transmitted through networks. It is   

measured in bits/sec. 

2. Latency 

In a LAN, latency (or delay) is very low, but in a WAN, it is significant and this is 

due to the switches, routers and other components in the network 
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3. Time of flight 

      It is the time for first bit of the message to arrive at the receiver including delays. 

Time of the flight increases as the distance between the two machines increases. 

4. Transmission time 

      The time for the message to pass through the network, not including the time of 

flight. 

5. Transport latency 

      Transport latency= time of flight + transmission time 

6. Sender overhead 

      It is the time for the processor to inject message in to the network. 

7. Receiver overhead 

      It is the time for the processor to pull the message from the network. 

8. Total latency 

Total latency = Sender overhead + Time of flight + Message size/Bandwidth + 

Receiver  overhead 

9. Effective bandwidth 

      Effective bandwidth = Message size/Actual Bandwidth 

      Actual bandwidth may be larger than the effective bandwidth. 

 

 

Example#1 

 

Assume a network with a bandwidth of 1500Mbits/sec. It has a sending overhead of 

100μsec and a receiving overhead of 120μsec. Assume two machines connected together. 

It is required to send a 15,000 byte message from one machine to the other (including 

header), and the message format allows 15, 00 bytes in a single message. Calculate the 

total latency to send the message from one machine to another assuming they are 20m 

apart (as in a SAN). Next, perform the same calculation but assume the machines are 

700m apart (as in a LAN). Finally, assume they are 1000Km apart (as in a WAN).  

 Assume that signals propagate at 66% of the speed of light in a conductor, and that the 

speed of light is 300,000Km/sec. 

 

 

 

Solution 

 

By using the assumption, we get: 

 

                           Distance between two machines in Km 

Time of flight = -------------------------------------------------- 

                            2/3 x 300,000Km/sec 

 

Total Latency = Sender overhead + Time of flight + Message size/bandwidth 

                          + Receiver overhead 
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For SAN: 

 

Total latency = 100μsec  

                     + (0.020Km/(2/3 x 300,000Km/sec)) 

                     + 15,000bytes/ 1500Mbits/sec 

                     + 120μsec 

                     = 100μsec + 0.1μsec + 80μsec + 120μsec 

                     = 300.1μsec 

For LAN 

 

Total latency = 100μsec  

                     + (0.7Km/(2/3 x 300,000Km/sec)) 

                     + 15,000bytes/ 1500Mbits/sec + 120μsec 

                     = 100μsec + 3.5μsec + 80μsec + 120μsec                        

                    = 303.1μsec 

 

For WAN 

 

Total latency = 100μsec  

                     + (1000Km/(2/3 x 300,000Km/sec)) 

                     + 15,000bytes/ 1500Mbits/sec 

                     + 120μsec 

                     = 100μsec + 5000μsec + 80μsec   + 120μsec   

                     = 5300μsec 

 

Effective bandwidth versus Message size 

Effective bandwidth is always less than the raw bandwidth. If the effective bandwidth is 

closer to the raw bandwidth, the size of the message will be larger. If the message size is 

larger then network will be more effective. 

If large number of the messages are present then a queue will be formed, and the user has 

to face delay. To minimize the delay, it is better to use packets of small size. 

 

Physical Media 
                                                             

 

 

 

 

 

Twisted pair does not provide good quality of transmission and has less bandwidth. To 

get high performance and larger bandwidth, we use co-axial cable. For increased 

performance, better performance, we use fiber optic cables, which are usually made of 

glass. Data transmits through the fiber in the form of light pulses. Photo diodes and 

sensors are used to produce and receive electronic pulses. 
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Lecture No. 44 
 

Communication Medium and Network Topologies 
 

Reading Material 
Patterson, D.A. and Hennessy, J.L.                                                                       Chapter 8 

Computer Architecture- A Quantitative Approach 

Summary 
 Physical Media (Continued) 

 Shared Medium 

 Switched Medium 

 Connection Oriented vs. Connectionless Communication 

 Network Topologies 

 Seven-layer OSI Model 

 Internet and Packet Switching 

 Fragmentation 

 Routing 

 

Modem 

To interconnect different computers by using twisted pair copper wire, an interface is 

used which is called modem. Modem stands for modulation/demodulation. Modems are 

very useful to utilize the telephone network (i.e. 4 KHz bandwidth) for data and voice 

transmission.  

Quality of Telephone Line 

Data transfer rate depends upon the quality of telephone line. If telephone line is of fine 

quality, then data transfer rate will be sufficiently high. If the phone line is noisy then 

data transfer rate will be decreased. 

 

Classification of Fiber Optic Cables 

Fiber optic cables can be classified into the following types. 

 

Multimode fiber 

This fiber has large diameter. When light is injected, it disperses, so the effective data 

rate decreases. 

 

Mono mode Fiber 

Its diameter is very small. So dispersion is small and data rate is very high. 
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Wavelength –Division Multiplexing (WDM)  

Waves of different wavelengths are simultaneously sent through fiber. So as a result, 

throughput increases. 

 

 

Wireless Transmission 
This is another effective medium for data transfer. Data is transferred in the form of 

electromagnetic waves. It has the following features: 

 

 Data rate is in Mbits/Sec. 

 Very effective because of flexibility. 

 Band width is much less than fiber. 

 

Example 1 

 

Suppose we have 20 magnetic tapes, each containing 40GB. Assume that there are 

enough tape readers to keep any network busy. How long will it take to transmit the data 

over a distance of 5Km? The choices are category 5 twisted-pair wires at 100Mbits/sec, 

multimode fiber at 1500Mbits/sec and single-mode fiber at 3000Mbits/sec. (Adapted 

from CA3: H&P) 

 

Solution 

 

The total amount of data  

= total no. of mag. tapes x capacity of each tape 

= 20 x 40GB= 800GB 

 

The time for each medium: 

Twisted pair = 800GB/100Mbits/sec 

                     = 65536 sec = 18.2 hr 

Multimode Fiber = 800GB/1500Mbits/sec 

                            = 4369.06sec = 1.213 hr 

 

Single mode Fiber = 800GB/3000Mbits/sec 

                              = 2184.55sec 

                              = 0.66hr 

 

Car = time to load car + transport time + time to unload car 

      = 250sec + 5Km/30Kph   + 250sec 

      = 500.16 sec = 0.13hr 

 

Shared/Switched Medium 
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Shared Medium 

If a number of computers are connected with a single physical medium (i.e. coaxial or 

fiber), this situation is called shared medium. Because of many computers, collision takes 

place and affects the data transfer rate. As the number of machines on a physical medium 

increases, the data transfer rate decreases. 

 

Switched Medium 

To increase the throughput, a switched medium is used.  

Example 2 

 

Compare 20 nodes connected in three different ways: a single 100Mbits/sec shared 

medium; a switch connected via cat5, each segment running at 100Mbits/sec; and a 

switch connected via optical fiber, each segment running at 1500Mbits/sec. The shared 

medium is 700m long, and the average length of each segment to a switch is 55m. Both 

switches can support full bandwidth. Assume each switch adds 6μsec to the latency, and 

the average message size is 200bytes. Ignore the overhead of sending or receiving a 

message and contention for the network. 

 

Solution   

 

First we will calculate the aggregate bandwidth: 

For shared medium 

   

Aggregate bandwidth = 100Mbits/sec 

For switched twisted pair 

 

Aggregate bandwidth = 20 x 100Mbits/sec 

                                   = 2000Mbits/sec 

For switched optical fiber 

 

Aggregate bandwidth = 20 x 1500Mbit/sec 

                                   = 30,000Mbits/sec 

 

Transport time = Time of flight + (message size/BW) 

 

                                           (700/1000)Km 

Transport time shared = ---------------------- x 10
6
μsec 

                                       (2/3 x 300,000)Km 

                                  + (200 x 8bits / 100Mbits/sec) 

 

                                = 3.5μsec + 16μsec = 19.5μsec 

For the switches, the distance is twice the average segment. We must also add latency for 

the switch.  
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                                              (55/1000)Km 

Transport time switch = 2x ---------------------- x 10
6
μs 

                                             (2/3 x 300,000)Km 

                                       + 6μsec  

                                       + (200 x 8bits / 100Mbits/sec) 

 

                                     = 0.55μsec + 6μsec +16μsec  

                                     = 22.55μsec 

 

                                                        

                                                     (55/1000)Km 

Transport time fiber         = 2x ---------------------- x 10
6
μs 

                                                     (2/3 x 300,000)Km 

                                       + 6μsec  

                                       + (200 x 8bits / 1500Mbits/sec) 

 

                                     = 0.55μsec + 6μsec +1.06μsec  

                                     = 7.61μsec 

 

Although the bandwidth of the switch is many times that of the shared medium, the 

latency for unloaded networks is comparable. 

 

Connection Oriented vs. Connection less Communication 
 

Connection Oriented Communication 

 In this method, same path is always taken for the transfer of messages. 

 It reserves the bandwidth until the transfer is complete. So no other server could 

use that path until it becomes free. 

 Telephone exchange and circuit switching is the example of connection oriented 

communication. 

 

Connection less Communication 

 Here message is divided into packets with each packet having destination address. 

 Each packet can take different path and reach the destination from any route by 

looking at its address. 

 Postal system and packet switching are examples of connection less 

communication. 

 

Network Topologies 
Computers in a network can be connected together in different ways. The following three 

topologies are commonly used: 

 Bus topology 

 Star topology 
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 Ring topology 

 

Bus Topology 

In this arrangement, computers are connected via a single shared physical medium. 

 

Star topology 

Computers are connected through a hub. All messages are broad cast because the hub is 

not an intelligent device. 

 

Ring Topology 

 All computers are connected through a ring. Only one computer can transmit data at one 

time, having a pass called “Token”. 

 

Seven Layer OSI Model 
There are seven layers in this model. 

1. Physical Layer 

2. Data Layer 

3. Network Layer 

4. Transport Layer 

5. Session Layer 

6. Presentation Layer 

7. Application Layer 

 

OSI Model Characteristics 

 An interface is present between any two layers.  

 A layer may use the data present in another layer.  

 Each layer is abstracted from other layers. 

 The service provided by one layer can be used by the other layer. 

 Two layers can provide same service e.g. Check Sum calculated at different 

layers. 

 On two machines, six layers are logically connected except the physical layer. 

The physical layers of two machines are physically connected. 

 

Internet and Packet Switching 
Internet works on the concept of packet switching. Application layer passes data to the 

lower layer and that lower layer passes data to the next lower layer and on so on. In this 

data passing process through different layers, different headers are attached with the data 

which shows the source and destination addresses, number of data bytes in packet, type 

of message etc. At physical layer, this packet is transmitted into the network. At 

reception, reverse procedure is adopted.  

 

Fragmentation 
When a packet is lost in the network, it is re-transmitted. If the size of the packet is large 
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then retransmission of packet is wastage of resources and it also increases the delay in the 

network. To minimize this delay, a large packet is divided into small fragments. Each 

fragment contains a separate header having destination address and fragment number. 

This fragmentation effectively reduces the queuing delay. At destination, these fragments 

are re-assembled and data is sent to the application layer. 

 

Routing 
Routing works on store-and-forward policy. There are three methods used for routing: 

 Source-based routing 

 Virtual Circuit 

 Destination-based routing 

 

TCP/IP 
Internet uses TCP/IP protocol. In the TCP/IP model, session and presentation layers are 

not present, so Store-Forward routing is used. 
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