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Lecture#l

Background

Linear y=mx-+cC

Quadratic ax2+bx+c=0

Cubic ax3+bx2+cx+d=0
Systems of Linear equations

ax+by+c=0
Ix+my+n=0

Solution ?
Equation

Differential Operator

dy 1

dx x

Taking anti derivative on both sides
y=In x

From the past

B Algebra
Trigonometry
Calculus
Differentiation
Integration

Differentiation
« Algebraic Functions
» Trigonometric Functions
« Logarithmic Functions
» Exponential Functions
* Inverse Trigonometric Functions

B More Differentiation
* Successive Differentiation
* Higher Order
* Leibnitz Theorem
B Applications
e Maxima and Minima
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» Tangent and Normal
B Partial Derivatives

y=t(x)
f(x,y)=0

z=f(x,y)
Integration
B Reverse of Differentiation
B By parts
B By substitution
B By Partial Fractions
B Reduction Formula
Frequently required
B Standard Differentiation formulae
B Standard Integration Formulae
Differential Equations
B Something New
B Mostly old stuff
* Presented differently
* Analyzed differently
» Applied Differently
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Lecture 2

Higher Order Linear Differential Equations

Preliminary theory
o A differential equation of the form
dn n-1
an () + a1 (0
dx dx

or a0y ™ +a, 10y 4 a0y +ag(0Y = (%)
where ag (X),a;(X),...,a,(X), g(X) are functionso f x and a,(X)#0,is

called a linear differential equation with variable coefficients.
o However, we shall first study the differential equations with constant coefficients
i.e. equations of the type

n n-1
Ay, 4Ty W
dx" dx"~! dx

where dg,dj,...,dp arer eal constants. T his e quation i s no n-homogeneous

+...+al(x)%+ao(x)y= g(x)

a

+agy =9(x)

differential equation and
o If g(x) =0 then the differential equation becomes
n n-1
n d y+an_1 d_y +---+ald—y+aoy:0
dx" dx" ! dx
which is known as the associated homogeneous differential equation.
Initial -Value Problem
For a linear nth-order differential equation, the problem:
n n-1
y

Solve: ap (x)u +ap_1(X)
d n-1

a

x" dx

Subjectto:  y(Xo) =Y, ¥ (X%)=YoY" (%) =Yy
Yos yo/ yeues yg“ being arbitrary constants, is called an initial-value problem (IVP).

+...+al(x)%+ao(X)y = g(x)

The s pecified v alues y(X,)=Y,, y/(xo) = y{),..., yrH(XO) = yon_l are cal led i nitial-

conditions.
For n =2 the initial-value problem reduces to
2

d7y dy
Solve: a(X)——+a;(X)==+a9(X)y = g(x
2( )dx2 1( )dX 0(X)y =9g(x)
Subjectto:  Y(X)) = Yos-es ¥ (%) = Y,
Solution of IVP
A function satisfying the differential equation on | whose graph passes through (X,,Y,)
such that the slope of the curve at the pointis the number y, is called solution of the

initial value problem.
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Theorem: Existence and Uniqueness of Solutions

Let a,(X),ap_1(X),...,a;(X),ap(x) and g(X) bec ontinuousona ni nterval | and
leta,(X)#0, Vxel.If x=X,el, then asolution y(x) of th e in itial-value p roblem
existon | and is unique.

Example 1

Consider the function y = 3e2X 472X —3x
This is a solution to the following initial value problem

y —4y=12x, y(0)=4,y' (0)=1

d? _
Since =) =127 1 4e7
dx
d?y
and d—2—4y = 1262 +4e72¥ 122X —4e7?* +12x = 12X
X
Further y(0)=3+1-0=4 and Yy (0)=6-2-3=1
Hence y= 3e2¥ ye X _3x

is a solution of the initial value problem.
We observe that

The equation is linear differential equation.
The coefficients being constant are continuous.
The function g(x) =12x being polynomial is continuous.

0 The leading coefficient a,(X) =1 0 for all values of x.

[ W

Hence the function y = 3e?* + e X —3x is the unique solution.

Example 2
Consider the initial-value problem

I

3y" +5y" -y +7y =0,

ym=0, y'®=0, y'®=0
Clearly the problem possesses the trivial solution y =0.
Since
a The equation is homogeneous linear differential equation.
o The coefficients of the equation are constants.
o Being constant the coefficient are continuous.
0 The leading coefficienta, =3 #0.

Hence y =0 is the only solution of the initial value problem.
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Note: If a, =07?
If a,(x) =0 in the differential equation

d n n-1
er?/ +anp_1(X)

y

an—l

an (%) +'“+al(X)%+ao(X)Y= 9(%)

for some X | then

o Solution of initial-value problem may not be unique.
a Solution of initial-value problem may not even exist.

Example 4
Consider the function
y= cx? +X+3
and the initial-value problem
x2y" —2xy’ +2y=6
y(0) =3, y' (0)=1
Then y'=2cx+1 and y"=2c
Therefore x*y" —2xy" +2y = x*(2¢) — 2X(2cx + 1) + 2(cx” + X + 3)

= 20x2% —4cx? —2X+20X2 +2X+ 6

=6.
Also y(0)=3 = ¢c(0)+0+3=3
and y' (0)=1 = 2c(0)+1=1

So that for any choice of C, the function'y' satisfies the differential equation and the
initial conditions. Hence the solution of the initial value problem is not unique.

Note that
a The equation is linear differential equation.
o The coefficients being polynomials are continuous everywhere.
o The function g(X) being constant is constant everywhere.
0 The leading coefficient a,(X) = x> =0atx=0e (—0,0).

Hence a,(X) =0 brought non-uniqueness in the solution
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Boundary-value problem (BVP)

For a 2" order linear differential equation, the problem

d2y

dx?
Subject to: y@) =y,, y(b) =y,

is called a boundary-value problem. The specified values y(a)=y,, and y(b) =y, are

called boundary conditions.

Solve: a,(X) +a1(x)%+a0(x)y =g(x)

Solution of BVP

A solution of the boundary value problem is a function satisfying the differential equation
on some interval | , containing a and b, whose graph passes through two points (a,y,)

and (b, ,).

Example 5
Consider the function
y =3x2 —6X+3
We can prove that this function is a solution of the boundary-value problem
2.,/

x’y" —2xy’ +2y =6,
y)=0, y@2)=3

2
Since ﬂ:6x—6,u:6
dx dx?
2 d?%y dy 2 2 2
Therefore XS ———=2X——4+2y =6X" —12X" +12X+6X" —12X+6=6
dx? dx
Also y()=3-6+3=0, y(2)=12-12+3=3

Therefore, t he f unction 'y' satisfies bot h t he di fferential e quation a nd t he bounda ry
conditions. Hence Y is a solution of the boundary value problem.

Possible Boundary Conditions
For a 2" order linear non-homogeneous differential equation

d? d
%005§+amma§+axmy=gu>

all the possible pairs of boundary conditions are

y@) =Y, yb)y=y,
y' (@) =y,, y(b) =y,
y(@) =y, y'(b)=y'1,
y'(a)=y,, y'(b)=yi

where y,,y,,Y, and y, denote the arbitrary constants.
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In General
All the four pairs of conditions mentioned above are just s pecial c ases of the general
boundary conditions

ay@+ Ay (@)=
ary(0)+ Aoy’ (0) =75
where a5, By, By € {01}
Note that
A boundary value problem may have

o Several solutions.
0 A unique solution, or
o No solution at all.

Example 1
Consider the function

Yy =C; cos4X +C, sin 4X
and the boundary value problem

vy 416y =0, y(0)=0, y(z/2)=0

Then
y' = —4c, sin4x +4c, cos 4X
y" =-16(c, cos4x + ¢, sin 4X)
y" =-16y
y' +16y =0

Therefore, the function
y =C, cos4X +C, sin 4X
satisfies the differential equation
y' +16y =0.
Now apply the boundary conditions
Applying y(0)=0
We obtain
0=cjcos0+cCysin0
=C = 0
So that
y =C,sin4X.
But when we apply the 2™ condition y(z/2) =0, we have
0=c,sin2x
Sincesin 27 = 0, the condition is satisfied for any choice of c,, solution of the problem is
the one-parameter family of functions
y =C, sin4X
Hence, there are an infinite number of solutions of the boundary value problem.
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Example 2

Solve the boundary value problem
y" +16y =0

o ")
y(O) - 0, y[ 8) Oa

Solution:

As verified in the previous example that the function
Y =C; cos4X + C, sin4xX

satisfies the differential equation
y/ +16y=0

We now apply the boundary conditions
y(0)=0=0=c;+0

and Y(z/8)=0=0=0+c,
So that c,=0=c,
Hence

y=0

is the only solution of the boundary-value problem.

Example 3

Solve the differential equation
y/ +16y=0
subject to the boundary conditions
y(0)=0, y(r/2)=1
Solution:

As verified in an earlier example that the function
Y = C; cos4X + C, sin4Xx

satisfies the differential equation
y/ +16y=0

We now apply the boundary conditions
y(0)=0=0=c;+0

Therefore ¢, =0

So that y = C, sin 4X
However y(r/2)=1=1c¢,sin2x =1
or 1=¢,.0=1=0

This is a clear contradiction. Therefore, the boundary value problem has no solution.
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Definition: Linear Dependence

A set of functions

{1100, (0., T ()}

is said to be linearly dependent on an interval | if 3 constants C;,C5,...,C, not all zero,
such that

i fi()+c, flh(X)+--.+c, f,(X)=0, Vxel

Definition: Linear Independence

A set of functions
{100, 00,0 £ (0
is said to be linearly independent on an interval | if
cfi(x)+c, fh(X)+---+c,fr,(x)=0, Vxel,

only when

Case of two functions:

If n =2 then the set of functions becomes
100, 20}

If we suppose that
cfi(X)+c, fHL(x)=0

Also t hat t he functions are | inearly d ependent on aninterval | then either ¢; #0 or
c, #0.

Let us assume that ¢, # 0, then

f(X) = —‘;—2 £,

Hence f,(X) is the constant multiple of f,(X) .
Conversely, if we suppose

fi(x)=cy f2(%)
Then -DHf,(x)+c,f,(x)=0, Vxel

So that the functions are linearly dependent becausec, = —1.
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Hence, we conclude that:

0 Any two functions f;(X)and f,(X)are linearly dependent on an interval | if and
only if one is the constant multiple of the other.

0 Any two functions are linearly independent when neither is a constant multiple of
the other on an interval I.

o In general a set of n functions {fl (x), f5(x),..., f, (X)} is linearly dependent if at
least one of them can be expressed as a linear combination of the remaining.

Example 1

The functions
f,(X) =sin2x, VX € (-0, o)

f,(X) =sinxcosX, VX e (-, o)

If we choose ¢, =% and ¢, =—1 then

. . 1., . .
C; sin 2X + C, sin X cos X =5(2s1n X cos X) — sin Xcos X =0

Hence, the two functions f;(x) and f,(x) are linearly dependent.
Example 3
Consider the functions
f(X)=cos’x, fy(X)= sin?x, Vxe (—7/2,7/2),
f.(x) =sec’x, f (X)= tan’ X, VXe (—7/2,7/2)
If we choose ¢ =¢C, =1,¢c3 =—1,¢4 =1, then

¢ fi(X)+cy fL(X)+C5f5(X) +cy F4(X)

2

=C cos? X+C, sin” X+ C3 sec’ X+Cy tan? X

= cos? X +sin? X+ —1—tan? X + tan? X
=1-1+0=0
Therefore, the given functions are linearly dependent.
Note that

The function f5(X) canbe written as a |inear c ombination of ot her t hree f unctions

f1(X), fz(x) and f,(X) because sec? X = cos? X +sin® X+ tan® X.

10
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Example 3

Consider the functions
fi(X)=1+Xx, V Xe (—o0,0)
f,(X)=X%X, VXe (—o,0)

f(x)=x%, Vxe (-o,0)

Then
¢ H)+c, fr(X)+c3f3(x)=0
means that
C1(1+X)+02X+C3X2 :0
or ¢ +(C +Cy)X+Cy3x> =0
Equating coefficients of X and x? constant terms we obtain
Cl = O = C3
C] + C2 = 0
Therefore C;=C=C3=0

Hence, the three functions f;(X), f,(x) and f5(X) are linearly independent.

Definition: Wronskian

Suppose that the function f (x), f,(X),..., f (X) possesses at least n—1 derivatives then
the determinant

fi fy el f
i f/
LTS PP fo!

isc alled W ronskian oft hef unctions f (x), f,(x),..., f,(X) andi sde notedb y
W ( fl (X)n fl (X)n ves f] (X)) :
Theorem: Criterion for Linearly Independent Functions

Suppose t he f unctions f,(X), f,(X),..., f,(X) possessa tl east n-1 derivativesona n
interval | . If

W(TF,(x), f,(x),..., f, (X)) =0

for at least one point in |, then functions f (x), f,(X),..., f (X) are linearly independent
on the interval | .
Note that

This is only a sufficient condition for linear independence of a set of functions.

11
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In other words

If f,(x), f,(X),..., f,(X) possessesatleast n—1 derivatives onan i nterval an d are
linearly dependent on | , then

W(F(X), fy(X),..., f,(X)) =0, Vxel

However, the converse is not true. i.e. a Vanishing Wronskian does not guarantee linear
dependence of functions.

Example 1

The functions
fi(x)= sin? X
f,(x)=1-cos2x
are linearly dependent because
sin? x = %(1 —cos 2X)
We observe that for all X e (—o0,0)

W (f;(x), f(x))=

sin? X 1—cos2x

2sin XcosX  2sin2X

= 2sin? Xsin 2X — 2sin X cos X

+ 2sin X cos X cos 2X
= sin2x[2sin2 X —1+cos2X]
= sin2x[2sin2 X —1+ cos? X —sin? X]
= sin2x[sin2 X + cos? X—1]
=0

Example 2

Consider the functions

f](X):emlx, fz(X)zemzx, m] ¢m2
The functions are linearly independent because

if and Only if Cl =0= C2 as ml * mz

12
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Now forall xe R

m, X m,X
W(emlx emzx)= e e
mlemIX mzemzx
m,+m, )X
=(m2—m1)e( )
#0

Thus f, and f,are linearly independent of any interval on X-axis.

Example 3

If ¢ and S are real numbers, £ # 0, then the functions
y, =e“ cos Xand y, = e sin X

are linearly independent on any interval of the x-axis because

W(e“x cos X, e sin ,BX)

e cos X e sin S

— B sin X +ae® cos X o™ cos X+ ae™ sin X
= fo? (cos2 X +sin? ,BX)= e % 0.

Example 4

The functions
f(x)=e", f,(x)=xe*, and f,(x)=x’e"

are linearly independent on any interval of the X-axis because for all X € R, we have

e* xe* x’e*
W(ex,xex,xzex): X xe*+e” x*e* +2xe*
e*  xe*+2e* xe* +4xe* +2e*
_ 3x
=2 =0
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4.
5.
6.
7.

Exercise

. Given that

y=ce* +c,e”*

is a two-parameter family of solutions of the differential equation
y'-y=0
on (— oo,oo), find a member of the family satisfying the boundary conditions
y(0)=0, y'(1)=1.
Given that
Yy =C; +C, cOs X + C3 sin X
is a three-parameter family of solutions of the differential equation
y"+y' =0
on t he 1 nterval (— oo,oo) ,find a me mber o fth e f amily s atisfying th e in itial
conditions y(z)=0, y'(z)=2,y"(z)=-1.
Given that
Yy =C;X+CyXInX
isa tw o-parameter familyof s olutionsof t hedi fferentiale quation
x2y"—xy'+y=0on (— oo,oo). Find a member of the family satisfying the initial
conditions
y(1)=3, y'(1)=-1.
Determine whether the functions in problems 4-7 are linearly independent or
dependent on (— oo, ).

f(x)=cos2x, f,(x)=1, f,(x)=cos”x

fi(x)=e*, fy(x)=e7*, f3(x)=sinhx

Show by computing the Wronskian that the given functions are linearly independent
on the indicated interval.

8.
9.

tan X, cot X; (- 0, oo)

eX, e e*; (—oo,m)

10. ,xInx, x> Inx; (0,0)

14
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Lecture 3
Solutions of Higher Order Linear Equations

Preliminary Theory

a Inordertosolvean nthor der non -homogeneous | inear d ifferential eq uation

dn dn—l d
a, (X) y +a, (X) y et a (X)d_i+ ao(x)y = g(X)

dx" dx"!
wef irsts olvet hea ssociated hom ogeneousdi fferential equation
d n y d n-1 y dy
a,(X)—+a, (X +-4a,(X)=—+a,(X)y=0
08 a0 v (0D s ()

o Therefore, we first concentrate upon the preliminary theory and the methods of
solving the homogeneous linear differential equation.

o Werecallthataf unction y = f(X) thats atisfies t he a ssociated hom ogeneous

equation
n-1

d’y d”y
a‘n (X) an +an—1 (X) an_1

is called solution of the differential equation.

d
+~--+al(x)d—i+a0(x)y:0

Superposition Principle
Suppose that ¥,,Y,,..., Y, are solutions on aninterval | ofthe hom ogeneous linear
differential equation

n n-1
an(x)d Y +a d™y dy

1Y 2 (08 Y a0 vay (x)y =0

Then
Y=Y, (X)+C, Y, (X)+-+-+ ¢y, (x),
C;,Cy,...,C, being arbitrary constants is also a solution of the differential equation.

Note that

0 A constant multiple y =c,Y, (X) of asolution Yy, (X) of the hom ogeneous | inear
differential equation is also a solution of the equation.

o The homogeneous linear differential equations always possess the trivial solution
y=0.

15
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o The superposition principle is a property of 1linear di fferential e quations and it
does not hold in case of non-linear differential equations.

Example 1

The functions

y, =e*,y, =c™, and y, =e>
all satisfy the homogeneous differential equation
3 2
9y 69V Y gy o

dx’ dx? dx

on (— oo,oo). Thus y,,Y, and y, are all solutions of the differential equation

Now suppose that

X 2X 3x
y=ce* +c,e’* +c,e’™.

Then
d
Y _ce +2c,e2 +3c,e™.
dx
dZ
—2’ =c,e* +4c,e™ +9c,e’*.
dx
d3
—Z =c,e* +8c,e™ +27¢c,e’*.
dx
Therefore
3 2
d—3y—6d—y+11d—y—6y
dx dx X
= cl(ex —6e* +11eX —6ex)+ c, (8e2x —24e%X 4 22e% —6e2x)
+¢5 127 —54e3% 4 336X — 6™
= 81(12—12)ex +¢,(30-30)e2* +c5(60 — 60 )
Thus

X 2x 3x
y=ce* +c,e” +ce™.

is also a solution of the differential equation.

16
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Example 2
The function
y =X
is a solution of the homogeneous linear equation

x?y"=3xy'+4y =0

on (0,00).
Now consider
y =cx’
Then y'=2cx and y"=2c
So that X>y" —3xy’'+4y =2cx” —6cx> +4cx” =0

Hence the function
y =cx’

is also a solution of the given differential equation.

The Wronskian

Suppose that y;, Yy, are 2 solutions, on an interval | , of the second order homogeneous
linear differential equation

d’y  _dy
a,—+a,—+3a,y=0
2 52 Mk oY
Then either W(y,,y,)=0, Vxel
or W(y,y,)#0, Vxel

To verify this we write the equation as

2
M+P_dy+Qy:()

dx?  dx
Yyi Yy , ,
Now W(yLya)=" 2l=ynys - vy,
Yi Y2
Differentiating w.r.to x, we have
dW n "
—— =YY =¥

dx

Since y,and y, are solutions of the differential equation

17
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d’y Pdy
—+—+Qy=0
dx?  dx Qy

Therefore
yr + Py +Qy, =0
ys +Py; +Qy, =0
Multiplying 1% equation by y,and 2" by y, the have
Yi¥2 +PY1y, +Qy;y, =0
Yi¥2 +Pyy; +Qyy, =0

Subtracting the two equations we have:

(VY5 = Yo y0)+ P(y,Ys = Viy,) =0

or w +PW =0
dx
This is a linear 1% order differential equation in W , whose solution is
— [ Pdx

W =ce
Therefore
o Ifc#0 then W(y,,y,)#0, Vxel
o Ifc=0 then W(y,,y,)=0, Vxel
Hence Wronskian of y, and Y, is either identically zero or is never zero on | .
In general

If y,,¥,,...,y,are n solutions, on a ninterval |, of the homogeneous nth order linear
differential equation with constants coefficients

an :l:r?,+an_1 j:nl_i/+---+al%+aoy:0
Then
Either W(Y,,Y,s....Y,)=0, Vxel
or W(Y,,Y,s..., Y, )20, Vxel

18

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

Linear Independence of Solutions:

Suppose that
Yi-Yrs--n Y,

are n solutions, ona n interval | , of t he hom ogeneous | inear nth-order d ifferential
equation

d n d n-1 d
2,008 Y va, (0% Y rera (0 a,(xy =0

Then the set of solutions is linearly independent on | if and only if
W(Y, Ysroen ¥ )% 0
In other words

The solutions
yl: y29"‘v yn
are linearly dependent if and only if
W(yl,yz,...,yn): 0, Vxel
Fundamental Set of Solutions
A set
{ylayza"'a yn}

of n linearly independent solutions, on interval |, of the homogeneous linear nth-order
differential equation

d n d n-1 d
3,005 L+ 2, (05 L2 () +a,(x)y =0

1s said to be a fundamental set of solutions on the interval | .

Existence of a Fundamental Set

There always exists a fundamental set of solutions for a linear nth-order hom ogeneous
differential equation
n-1

2,09 Y 12 ()4 Y

)
dx" dx"!

+o-+a(x &-FaO(X)y:O

on an interval .

19
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General Solution-Homogeneous Equations

Suppose that
{y17 y27"'5 yn}

is a fundamental set of solutions, on an interval |, of the homogeneous linear nth-order
differential equation

d" dan! d
0,09, (09 00 sy -0

Then the general solution of the equation on the interval | is defined to be
y= Clyl(x)+ Czyz(x)"'"""cnyn (X)

Here c,,cC,,...,C, are arbitrary constants.

Example 1

The functions

3X

y,=€e"" and Yy, =X

are solutions of the differential equation

y"_9y:O
3X —3X
Since W(e?’x,e_?’x): e3 € 3 =—6%0, Vxel
3e7% _3e7 X

Therefore y, and y, from a fundamental s et of s olutions on (— oo,oo). Hence general
solution of the differential equation on the (— 00, oo) is

y=ce’* +c,e
Example 2
Consider the function y = 4sinh 3x —5e 3X
Then y' =12cosh3x + 153X y" = 36sinh 3x — 45¢ X
" _ . -3X " _
= y —9(4smh3x—5e ) or y" =9y,
Therefore y"—=9y=0
Hence y =4sinh3X — 573X

is a particular solution of differential equation.

y'=9y=0

20
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The general solution of the differential equation is

y= c1e3x +Ce 3x

Choosing c, =2,c,=-7
We obtain y = 23X _ 773X

y = 4sinh3x— 5~

Hence, the particular solution has been obtained from the general solution.

Example 3
Consider the differential equation
3 2
Y 69 ¥ _gy—o
dx dx dx
and suppose that y, = eX, y, = e2X and Yy, = e3X
2 3
Then %=ex=d )2/1=d—)§1
dx dx dx
3 2
Therefore a7 _cd 4 Y6y —eX geX 1 116X —6eX
dx’ dx dx
ddy, _d?%y, dy, X X
or -6 +11 —-6y; =12¢™ -12e™ =0

dx> dx? dx
Thus the function Y, is a solution of the differential equation. Similarly, we can verify
that the other two functions i.e. y, and Y, also satisfy the differential equation.
Now forall xe R

ex e2x e3x

W(ex,ezx,e3x) _leX 202X 3e3X|_2eX L vxel
eX 42X 93X
Therefore y,,y, andy; forma f undamentals olution of t hedi fferential € quation
on (—o0,00). We conclude that

X 2X 3X
y=ce” +c,e " +c,e
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is the general solution of the differential equation on the interval (— oo,oo).

Non-Homogeneous Equations

A function Yy , that satisfies the non-homogeneous differential equation
n n-1
ay +an_1(x)—OI i/
dx" dx"~
and is free of parameters is called the particular solution of the differential equation

a (x) +ota (x)j—i +a,(x)y = g(x)

Example 1
Suppose that
yp =3
Then yp =0
So that
yr 49y, =0+9(3)
=27
Therefore
Yp =3
is a particular solution of the differential equation
yp +9y, =27
Example 2
Suppose that
Yy, = X3 —x
Then y, =3x* -1, y; =6x
Therefore x? yp +2Xyp —8y, = x2 (6x)+ 2x(3x2 - 1) - 8(X3 - x)
—4x3 + 6X
Therefore
y 0= X3 — x

is a particular solution of the differential equation

X2y" +2xy’ —8y = 4x> +6x
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Complementary Function

The general solution

Yo =C1Y, TGy Yyt HC Y

n’n
of the homogeneous linear differential equation
d n y d n-1 y dy
a, (X +a, (X +--+a,(X)==+a,(x)y=0
0 o (08 Y v ()Y ey

is known as the complementary function for the non-homogeneous linear differential
equation.

d"y d™'y dy
an 008 v (04 Y (0D s, )y = 000

General Solution of Non-Homogeneous Equations

Suppose that
a The particular solution of the non-homogeneous equation
d n y d n-1 y dy
a, (X)dT +an (X)W teet+ (X)& +3, (x)y = Q(X)
is y,.

0 The complementary function of the non-homogeneous differential equation

d" d" d
a, (X)dT?]/ +an (X)dx—”_?/ Tt (X)d_i +a,(x)y =0
is
Ye =CYi +Co¥y +--+ChY,.

0 Then general solution of the non-homogeneous equation on the interval | is
given by
Y=Yct+V¥p
or
Y =0Y1 (%) + €5 (X)+ -+ €0 Y (})+ Y (%) = Ve (%) + y, (%)
Hence

23

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

General Solution = Complementary solution + any particular solution.

Example
Suppose that
__n 1
p 12 2
' 1 "oy gm
Then yp=—5, Yp=0=yp
d’ d? d
y;, -6 y2p +11 Yo -6y, =O—O—E+E+3X=3x
dx dx dx 2 2
Hence
__nn1
p 12 2

is a particular solution of the non-homogeneous equation

3 2
9 697V 1 Y gy 3
x> dx? dx
Now consider

yC = CleX + C262X + C3e3x
Then
d
Ye _ cie” +2c,e%X +3c5e™
g
d
Yo _ cieX +4c,e2 +9cye3
d3x
d
ic =c,e* +8c 02X +27cye
dx
Since,
d? d? d
Yo ¢ );C Pl -6y,
dx? dx dx

= c,e* +8c,e™ +27c,e™ - 6(cleX +4c,e”* + 9c3e3x)
+1 l(cleX +2c,e™ + 3c3e3x)— 6(cleX +C,e7° + c3e3x)
=12c,e* —12c,e* +30c,e** —30c,e** + 60c,e™ — 60c,e™

=0
Thus Yy, is general solution of associated homogeneous differential equation
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3 2
Y 69 W _6y—o
dx>  dx? dx

Hence general solution of the non-homogeneous equation is

= c]ex + czezx +C3e3x —E—lx

=y +
yycyp 12 2

Superposition Principle for Non-homogeneous Equations

Suppose that

yp1 ’yp2 aaypk
denote the particular solutions of the k differential equation

2, (Y +2,, (K" -+ 3, (K 2, (x)y = 9, (),
i=12,...k, onan interval | . Then

= X)+ X)+--+ X

Vp=Yp (X)+yp ()+-+yp (0

is a particular solution of

a (x)y(n) +a

—1

Example
Consider the differential equation

2X

y' =3y +4y = —16X> + 24x — 8+ 2e“% + 2xeX — ¢*

Suppose that
Yp, =—4x", yp, =€, Yp, = xe"

Then Yy =3y, +4y, =-8+24x-16x’

Therefore y =-4X

is a particular solution of the non-homogenous differential equation
Yy =3y +4y =—16X> +24x -8
Similarly, it can be verified that
y. = 62X and y =Xxe
are particular solutions of the equations:
y”—3y ' +4y = 2e**
and y"-3y' +4y = 2xe* —¢e”
respectively.

X

(X)y(n—lj +-+a,(x)y’ +a,(x)y = gl(x)+ g, (X)+ -

+ gk(x)
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Hence y =y +y_ +Yy :—4x2+e2X+xeX
p P, P, P,
is a particular solution of the differential equation
y' =3y +4y = —16X> + 24X -8+ 262X 1 oxeX —e

X
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Exercise

Verify that the given functions form a fundamental set of solutions of the differential
equation on the indicated interval. Form the general solution.

1. yﬂ_y'_lzy:(); eiSX,e4X, (_OO,OO)
2. y'-2y'+5y=0; e*cos2x,eXsin2x, (—o0,00)

3. X2y +xy'+y=0; cos(lnx),sin(Inx), (0,0)

4. 4y"—4y'+y=0; e, xe*?, (—o0,00)
5. xPy"—6xy' +12y =0; x°, x* (0,0)
6. y"—4y=0; cosh2x, sinh2x, (~oo,)

Verify that the given two-parameter family of functions is the general solution of the non-
homogeneous differential equation on the indicated interval.

7. y"+y=secX, Y=C cosX+C,sinX+xsinx+(cosx)n(cosx), (—z/2,7/2).

8. y' -4y +ay=2e"%+4x-12, y=ce>*+cxe®*+x%e?* +x-2

9. y" -7y +10y =24e*, y=ce?* +cre™ +6e%, (~o0,0)

10. X2y"+5xy"+y = x> — X, y=c1x_1/2+02x_1+%x2 —%x, (0,0)
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Lecture 4
Construction of a Second Solution

General Case

Consider the differential equation
d’y dy
a, (X)d? +a, (X)& +a,(X)y =0

We divide by a,(X) to put the above equation in the form
y' + Py +Q(x)y=0
Where P(X) and Q(X) are continuous on some interval | .
Suppose that y,(X) #0, V x €1 is a solution of the differential equation
Then v,/ +Py/ +Qy, =0
We define y=u(x)y, (x) then
y'=uy, +yul, Yy =uy 2yl

y' +Py +Qy=uly,” + Py, +Qy,]+yu’ +(Qy,' +Py)u’ =0

Zero

This implies that we must have
yu' +@y, +Py)u’ =0
If we suppose w =u’, then
yw' +(2y, +Py)w=0
The equation is separable. Separating variables we have from the last equation
/
WY pyax=0
w

1
Integrating

In|w| +21n|y,| = —.[ Pdx +¢

ln‘wylz‘ = —I Pdx+c

2 —| Pdx
Wy~ =C€ I

cle_IPdde
Y12
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/ Cle—dex
Y1

Integrating again, we obtain

o~ | Pdx
u=c¢ 42dx+cz

Y1
o~ | Pdx
Hence y =u9y1(x) = ¢y (%) | ———5—dx+Cay1(x).
Y1

Choosing ¢; =1landc, =0, we obtain a second solution of the differential equation

2

e—j Pdx
Y2 = Y1 (X) [ ———dXx
Yi

The Woolskin

e—dexOI
1 Yi| =5 %X

Y1

, e—dex ’ e—dex
Yi Yy | 5 dx

Y1 Y1 2

W (yl (x), Yo (X)) =

= e_I Pdx = 0,VX

Therefore y,(X) and Yy, (X) are linear independent set of solutions. So that they form a
fundamental set of solutions of the differential equation

y' +P(X)Y +Q(x)y =0

Hence the general solution of the differential equation is

y(x)=c¢, ¥, (x)+c,y,(x)
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Example 1
Given that
Y, =X
is a solution of
x*y" =3xy’ +4y =0
Find general solution of the differential equation on the interval (0, oo) .

Solution:

The equation can be written as
4
v -2y s y=0
X X

The 2™ solution y, is given by

3_[dx/x Inx3
2| € 2| €
or Yy = X7 | ——dx=x" | ——dx
X X

y, = xzfidx =x%Inx

Hence the general solution of the differential equation on (0, oo) is given by

y=06Yy +tcYy,
or y=c, x*+c,X Inx
Example 2
Verify that
_ sinX

is a solution of
Xy +xy’ + (X2 =1/4)y=0

on (0, 7). Find a second solution of the equation.
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Solution:
The differential equation can be written as
y' +§y/ +(1- 4)1(2)y=0
The 2™ solution is given by
—j Pdx
Y2=Y1 erX
Y1
(¥
Therefore Yy, = s\i?;x sein; de
(W)
—sin X X
B Jx J Xsin’ de
= —f/igx .[cscz xdx
—sin X cos X
= X (—cotx) = N
Thus the second solution is
COS X
SRV
Hence, general solution of the differential equation is
y= Cl(sin XJJF C{cos Xj
Jx Jx
Order Reduction
Example 3
Given that
y, =x’
is a solution of the differential equation
x*y" -6y =0,
Find second solution of the equation
Solution
We write the given equation as:
31
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So that P(x) = —%
X

Therefore
e
Yo =Y | ——dX
y, =X | ——dx

- 0
_ | &
Y, =X | S5dx

Therefore, using the formula

e
Y2 =Y de
1

We encounter an integral that is difficult or impossible to evaluate.

Hence, we ¢ onclude s ometimes us € of the formulato find asecond solution i s not
suitable. We need to try something else.

Alternatively, we can try the reduction of order to find y, . For this purpose, we again
define
y(x)=u(x)y;(x) or y=u(x).x’
then
y'=3x%u+x3u’
n_ 3, 2./
y'=X"Uu"+6X°U" +6Xu
Substituting the values of y, y”in the given differential equation

Xzy!!_6y :0

we have

X2 (x°u" + 6x2u’ + 6xU) — 6ux’ =
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or X2U"+6x*" =0
6

or u"+—u’'=0,
X

If we take w = U’ then
w’ +§W: 0
X

This is separable as well as linear first order differential e quation in W. F or using the
latter, we find the integrating factor

Jl
6| —dx
IF=e /X —gblnx_y6

Multiplying with the IF = x® , we obtain

xSW' +6x°w =0
d
or —(x’w)=0
dx
Integrating w.r.t. > X’, we have
xSw =,
c
or u' ==
X
Integrating once again, gives
__ G
u=-— Pl c,
3 _—6 3
Therefore y=Ux"=—>+C,X
5x

Thus the second solution is given by

Hence, general solution of the given differential equation is
y=CYy1 +CYs
1.e. y:c1x3+c2(1/x2)

Where ¢, and ¢, are constants.
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Exercise

Find the 2" solution of each of Differential equations by reducing order or by
using the formula.

Loy'-y'=0, =1
2. ¥y 42y +y=0; y =xe”*
3. yY+9y=0; vy, =sinx

5x

4. y'-25y=0; y =e
5.6y"+y —y=0; y =¥

6. X’y +2xy' —6y=0; y, =X
7. 4xy"+y=0; y,=x"Inx
8. (1-x)y’ -2xy' =0; vy, =1

9. Xy’ -3xy’ +5y=0; vy, =x"cos(Inx)

10. A+ X))y +xy' —y=0; y, = X
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Lecture 5
Homogeneous Linear Equations with Constant Coefficients

We know that the linear first order differential equation

dy
—+my=0
dx y

m being a constant, has the exponential solution on (— oo,oo)

—MmX
y =C;€e

The question?

o The question is whether or not the exponential solutions of the higher-order
differential equations

any"™ +an_ 1y 4 ragy” vay +agy =0,
exist on (— o0, 00).
0 In fact all the solutions of this equation are exponential functions or constructed
out of exponential functions.
Recall
That the linear differential of order n is an equation of the form
n n-1

dX: +ap_1(X)

an (%) y+---+a1(x)%+ao(x)y=g(x)

an—l
Method of Solution

Takingn = 2, the nth-order differential equation becomes

d’y . dy
a2W+aI&+aoy =0
This equation can be written as
2
a d 3/ + bﬂ +cy=0
dx dx

We now try a solution of the exponential form

y=¢
Then
y/ — memx and yﬂ — m2emx
Substituting in the differential equation, we have
e™ @am? +bm+c)=0
Since e™ 20, Vxe (— oo,oo)

Therefore am’> +bm+c=0
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This algebraic equation is known as the Auxiliary equation (AE).The solution of the
auxiliary equation determines the solutions of the differential equation.

Case 1: Distinct Real Roots

If the auxiliary equation has distinct real roots m, and m, then we have the following two
solutions of the differential equation.

my X M~ X
yy=e " andy, =e 2
These solutions are linearly independent because

Y1 Y2
/

/

_ (m;+m,)x
=(m~r =m )e
Yi Y2 ( 2 :

Wy, Y2) =

Since m, # m,and ™M) ¢
Therefore W(y;,Y,)# 0 Vx e (—oo,0)

Hence

0 Yy,and Yy, form a fundamental set of solutions of the differential equation.

0 The general solution of the differential equation on (—oco,) is

y =c,eMX ¢ eMX

Case 2. Repeated Roots

If the auxiliary equation has real and equal roots i.e

m=m;,m, with m;=m,

Then we obtain only one exponential solution

mx
y=C¢Ce

To construct a second solution we rewrite the equation in the form
n b ! C
y'+—=y' +—y=0
a a
Comparing with y"+Py'+Qy =0

We make the identification
p_b
a

Thus a second solution is given by
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b
e—I Pdx e— a X
Y2 =y | 5 dx=e | = dx
2 2mx
1 €
Since the auxiliary equation is a quadratic algebraic equation and has equal roots
Therefore, Disc.=b? —4ac=0
We know from the quadratic formula
o —b++/b* —4ac
2a
b
we have 2m=——
a
Therefore
e2mx
Yy = emxj—dx = xe™
e2mx
Hence the general solution is
y=cie™ +coxe™ = (¢ +cyx)e™
Case 3: Complex Roots
If the auxiliary equation has complex roots « +if then, with
m=a+if and m, =a—-if
Where o >0 and £ >0 are real, the general solution of the differential equation is
y = Cle(a—i-iﬂ)x 4 Cze(a—iﬂ)x
First we choose the following two pairs of values of ¢; and ¢,
Ci=C = 1
C = 1,C2 =-1
Then we have
Yy = e(0:+i/3)x +e(oc—iﬂ)x
Yy = e(a+iﬁ)x _e(a—iﬂ)x
We know by the Euler’s Formula that
e'’ =cos@+ising, 6eR
Using this formula, we can simplify the solutions y;and Yy, as
37
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yi =e% (@ 17 = 26% cos px

y, =e® (e —e ) = 2ie® sin px
We can drop constant to write

Y1 = e cos /X, Yo = e sin Ax
The Wronskian

W(e“x cos Bx, e™ sin ﬂx): Be*™ £0 VX

Therefore, e cos(f X), e sin(S X)
form a fundamental set of solutions of the differential equation on (- o0, 00).

Hence general solution of the differential equation is

y =c,e” cos X+ C,e™ sin Sx

or y = e (¢, cos X + C, sin /X)
Example:
Solve
2y"—=5y"'=3y=0
Solution:

The given differential equation is
2y"—5y"'-3y=0

Put y =e™
Then yr:memx’ yn:mzemx
Substituting in the give differential equation, we have

[am? —sm-3)e™ =0
Sincee™ = 0 V x, the auxiliary equation is

2m? -5m-3=0 as e™ %0

2m+1)(m-3)=0=m =—%, 3
Therefore, the auxiliary equation has distinct real roots

1

m, =3 and m, =3

Hence the general solution of the differential equation is

y = Cle(—1/2)x i Cze3x
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Example 2

Solve y"—10y'+25y =0
Solution:

We put y=e™

Then y' =me™,y" = m?e™

Substituting in the given differential equation, we have
(m? —10m+25)e™ =0
Sincee™ 0V x, the auxiliary equation is
m? —10m+25=0
(M-52 =0=>m=5,5
Thus the auxiliary equation has repeated real roots i.e
Hence general solution of the differential equation is
y =ce”* +c,xe
or y = (C +Cyx)e>
Example 3
Solve the initial value problem
y'—4y'+13y =0
y(0)=-1, y'(0)=2
Solution:

Given that the differential equation

y"—4y"+13y =0

Put y=e
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Then y' = memx, y" = m2(_}mx
Substituting in the given differential equation, we have:
(m? —4m+13)e™ =0
Sincee™ # 0Vx , the auxiliary equation is
m? —4m+13=0
By quadratic formula, the solution of the auxiliary equation is
+ .16 —
m _42V16-32 126 52 =24+3i
Thus the auxiliary equation has complex roots
m1:2+3i, m2:2—3|
Hence general solution of the differential equation is
y= ezx(cl cos3X+C, sin3X)
Example 4
Solve the differential equations
(@) y'+k*y=0
" 2.,
(b) y'-k7y=0
Solution
First consider the differential equation
y” + k2 y — O ,
Put y =e™
Then y'=me™ and y"=m?%e™
Substituting in the given differential equation, we have:
(m2 +k2) e™ =0
Sincee™ # 0Vx, the auxiliary equation is
m’> +k>=0
or m = +ki,
Therefore, the auxiliary equation has complex roots
m]:0+ki, m2=0—ki
Hence general solution of the differential equation is
y = C, coskx +C, sin kx
Next consider the differential equation
d’y
— —k’y=0
dx’ y
Substituting values y and y”, we have.
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(mz _ kz)emx -0
Sincee™ = 0, the auxiliary equation is
m’ -k’ =0
= m=zk

Thus the auxiliary equation has distinct real roots
m = +k, m, = -k
Hence the general solution is

y=ce® ¢ e”

kx
Higher Order Equations
If we consider nth order homogeneous linear differential equation

dn dn-1 d
nd ny—f—an_ld—n_i/—F...—f—ald—i—Faoy:O
X X

Then, the auxiliary equation is an nthdegree polynomial equation
n

a

anm" +a,_m" 4+ +am+ay =0
Case 1: Real distinct roots
If the roots m;,m,,...,m,of the auxiliary equation are all real and distinct, then the

general solution of the equation is
y=ce™* +ce™* + . +cpe™*
Case 2: Real & repeated roots
We suppose that m, is a root of multiplicity n of the auxiliary equation, then it can be
shown that
e™X xe™X . x"-lgMX
are n linearly independent solutions of the differential equation. Hence general solution
of the differential equation is
y=cie™X +cyxe™X .. +c,x"leMX
Case 3: Complex roots
Suppose that coefficients of the auxiliary equation are real.
o We fix nat 6, all roots of the auxiliary are complex, namely

o xif, o, %if,, a;tip;
= Then the general solution of the differential equation
y =e“*(c, cos X +C, sin 5, X) +€“*(c, cos f,X +C, sin f3,X)
+e%(C cos B, X +C sin B,X)

a If n=6, two roots of the auxiliary equation are real and equal and the remaining

4 are complex, namely o Tify, ar tif,

Then the general solution is

y =e%%(c; cos By X + Cj sin B X) + 92X (C3 cos By X + C4 sin By X) +Cse ™ + coxeMX
o If m =a+ip isacomplex root of multiplicity k of the auxiliary equation. Then

its conjugate m, = —if is also a root of multiplicity k . Thus from Case 2 , the
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differential equation has 2k solutions
e(a+iﬁ’)x’ Xe(a+i/3)x, Xze(a+iﬁ)x’“"Xk—le(a+iﬂ)x

e(a—iﬂ)x’ Xe(a—iﬁ)x, X2e(a—iﬁ)x’m’Xk—le(a—iﬁ)x

0 By using the Euler’s formula, we conclude that the general solution of the
differential equation is a linear combination of the linearly independent solutions

e® cos Bx, xe® cos A, x2e® cos fX,...,x< 1e® cos fx
e sin A, xe™ sin /X, x2e® sin ,[)’x,...,xk_leax sin X
o Thus if k =3 then

y = e"‘x[(cl +czx+c3x2)cos,ﬁx+(d1 +d2x+d3x2)sinﬂx]

Solving the Auxiliary Equation

Recall that the auxiliary equation of nthdegree differential equation is nthdegree
polynomial equation

o Solving the auxiliary equation could be difficult
P,(m=0, n>2

0 One way to solve this polynomial equation is to guess a root m;. Thenm—-m; is a
factor of the polynomial P, (m).

o Dividing with m —m; synthetically or otherwise, we find the factorization
Pn(m) = (m—m;) Q(m)
o We then try to find roots of the quotient i.e. roots of the polynomial equation

Q(m)=0
P

0 Note that if m; == is a rational real root of the equation

P.(m=0, n>2
then p is a factor of apgand g ofap.

o By using this fact we can construct a list of all possible rational roots of the
auxiliary equation and test each of them by synthetic division.

Example 1

Solve the differential equation

y

"

+3y"—-4y=0
Solution:
Given the differential equation

ym+3yﬂ_4y — 0
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Put y=e

Then y/ _ memx,y// _ mZemx and y/// _ m3emx

Substituting this in the given differential equation, we have
(m> +3m? —4)e™ =0
Since e™ %0

Therefore m3 + 3m2 —-4=0

So that the auxiliary equation is

m> +3m2 —4=0
Solution of the AE

If we take m =1 then we see that

m? +3m? —4=14+3-4=0
Therefore m =1 satisfies the auxiliary equations so that m-1 is a factor of the polynomial

m3 +3m? —4

By synthetic division, we can write
m? +3m? —4= (m—l)(m2 +4m+4)

or m3 +3m? —4=(m-1)(m+2)>
Therefore m> +3m? —4=0

= Mm-1)(M+2)> =0
or m=1,-2,-2
Hence solution of the differential equation is

y =cieX +cre X +cyxe
Example 2
Solve

3y” +5y" +10y' =4y =0
Solution:

Given the differential equation
1"

3y" +5y" +10y =4y =0
Put y =e™
Then y/ _ memx’y// _ mZemx and y/// _ m3emx

Therefore the auxiliary equation is
3m* +5m? +10m-4=0
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Solution of the auxiliary equation:

a) a, =—4and all its factors are:

p: +1,+2,+4

b) a, =3and all its factors are:
q: +1, £3

c) List of possible rational roots of the auxiliary equation is
Ly 11,-2,2,-4,4 01722744
q 333 3 33

d) Testing each of these successively by synthetic division we find
1] 35 10 -4
3 1 2 4
36 12 |0

Consequently a root of the auxiliary equation is

m=1/3
The coefficients of the quotient are

3 6 12

Thus we can write the auxiliary equation as:

(m —1/3)(3m2 +6m +12)= 0

m-t-0 or 3m2ié6ma12=0

3
Therefore m=1/3 or m=—1+i3

Hence solution of the given differential equation is

y=cm0/ax+e_X@2amv§x+c3$nV§ﬂ
Example 3
Solve the differential equation

4
dy+291+y:0

dx? dx 2

Solution:

Given the differential equation

4
d_i'+2ﬂ+

y=0
dx dx 2

Put y=¢
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Then yrzmemX’ ynzmzemx
Substituting in the differential equation, we obtain

(m4 +2m? +1) e™ =0
Sincee™ # 0, the auxiliary equation is

m4+2m2+1:0

m?+1)? =0
= m=di, *i
m1:m3:i and m2:m4:—i

Thus iis a root of the auxiliary equation of multiplicity 2 and so is—1.

Now a=0and g =1
Hence the general solution of the differential equation is
Ox[

y =e"X[(c; +CcyX)cos X+ (d; +d,X)sin X]

or Yy =CjcosX+d;sin X+ CyXcos X + dyXsin X

Exercise

Find the general solution of the given differential equations.
1. y'-8y=0
2. vy =3y +2y=0
3. y/+4y' —y=0
4. 2y" -3y +4y=0
5. 4y" +4y"+y =0
6. y"+5y"=0
7. y" +3y" —4y' —12y=0

Solve the given differential equations subject to the indicated initial conditions.

8. y"+2y"—=5y'—6y=0, y(0)=y' (0)=0,y"(0)=1

dly

9. o =0, y(0)=2,y'(0)=3,y"(0) =4,y"(0) =5
X
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4

10. =L =y =0, yo)=y 0=y ©=0,y" ©)=1

dx?
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Lecture 6

Method of Undetermined Coefficients-Superposition Approach

Recall

1. That a non-homogeneous linear differential equation of order n is an equation of the

form
d" d" d
a, dxgl +a,, dx“‘Y +ee d_§+ a,Y =09(x)
The co efficients a,,a,,...,a, canbe functions o f X . H owever, w e w ill di scuss

equations with constant coefficients.

2. That to obtain the general solution of a non-homogeneous linear differential equation
we must find:

a The c omplementary f unction Yoo W hich i s general s olution of t he a ssociated

homogeneous differential equation.
Q Any particular solution Yy 0 of the non-homogeneous differential equation.

3. That the general solution of the non-homogeneous linear differential equation is given
by

General solution = Complementary function + Particular Integral

Finding

Complementary function has be en di scussed in the previous lecture. In the next three
lectures w e w ill d iscuss me thods f or f indinga p articular in tegral f ort he non -
homogeneous equation, namely

0 The method of undetermined coefficients-superposition approach
o The method undetermined coefficients-annihilator operator approach.
0 The method of variation of parameters.

The Method of Undetermined Coefficient

The method of undetermined coefficients developed here is limited to non-homogeneous
linear differential equations

o That have constant coefficients, and
0 Where the function g(X) has a specific form.
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The form of g(x)

The input function g(x) can have one of the following forms:
0 A constant function K.
0 A polynomial function
o An exponential function €
0 The trigonometric functions sin(f X), cos(f X)

o Finite sums and products of these functions.
Otherwise, we cannot apply the method of undetermined coefficients.

The method
Consist of performing the following steps.
Step 1 Determine the form of the input function g(x) .

Step 2 Assume the general form of y 0 according to the form of g(X)

Step 3 Substitute in the given non-homogeneous differential equation.
Step 4 Simplify and equate coefficients of like terms from both sides.
Step 5 Solve the resulting equations to find the unknown coefficients.
Step 6 Substitute the calculated values of coefficients in assumed Yy

Restriction ong ?

The input function g is restricted to have one of the above stated forms because of the
reason:

o The derivatives of sums and products of polynomials, exponentials etc are again
sums and products of similar kind of functions.

o The e xpression ayp// + by p/ + Cyp hast o be 1 denticallye qualt ot hei nput

function g(X).
Therefore, to make an educated guess, Yy, is assured to have the same formas g .

Caution!

o In addition to the form of the input function g(X), the educated guess for y 0 must
take into consideration the functions that make up the complementary function Yo
o No function in the assumed Yy 0 must be a solution of the associated homogeneous

differential equation. This means that the assumed Yy, should not contain terms

that duplicate terms in Yo
Taking for granted that no function in the assumed y, is duplicated by a function in Yo

some forms of g and the corresponding forms of y , are given in the following table.
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Trial particular solutions

Number | The input function g(x) The assumed particular solution y 0
1 Any constant e.g. 1 A

2 SX+7 Ax+B

3 3x2—2 Ax2+Bx+c

4 X3 —x+1 A 4+ Bx2 +Cx+ D

5 sin 4x Acos 4X + B sin 4x

6 cos 4X Acos 4x+ B sin 4x

7 eSx AedX

8 (9x — 2)e>X (Ax + B)e X

9 x2e>X (Ax2 1 Bx + C)e>X

10 e3X sin 4X Ae3x cos4x+ B e3X sin 4X

11 5%2 sin 4x (sz+le+C1)cos4x+(Azx2+Bzx+C2)sin4x
12 xeX cos 4x (AX + B)e X cos4x + (Cx + D)e>X sin4x

If g(x)equals a sum?
Suppose that

0 The input function g(x) consists of a sum of m terms of the kind listed in the
above table i.e.

9(x)= g1 (x)+ g2 (X)+ -+ g (x).
0 The trial forms corresponding to gl(x), gz(x),..., gm(x) beyp . Yp, s Yp,

Then the particular solution of the given non-homogeneous differential equation is
Yp=Yp, t¥p, tHV¥p,

In other words, the form of Yp is a linear combination of all the linearly independent

functions generated by repeated differentiation of the input function g(x).
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Example 1
Solve y' +4y’ —2y=2x>-3x+6
Solution:
Complementary function
To find Yoo we first solve the associated homogeneous equation
y' +4y’ —2y=0
We put y=eM v/ = meM y”:mzemx
Then the associated homogeneous equation gives
(m> +4m-2)e™ =0
Therefore, the auxiliary equation is
m?+4m-2=0 as e™ %0, Vx
Using the quadratic formula, roots of the auxiliary equation are
m=-2+6
Thus we have real and distinct roots of the auxiliary equation
m, =—2-4/6 and m, =2+46
Hence the complementary function is
y —ce O+ Jo)x cel2+ J6)x
C
Next we find a particular solution of the non-homogeneous differential equation.
Particular Integral
Since the input function
g(x) = 2x2 —3X+6
is a quadratic polynomial. Therefore, we assume that
yp = Ax* +Bx+C
Then y, =2Ax+B and y," =2A
Therefore  y," +4y, -2y, =2A+8Ax+4B-2Ax> —2Bx-2C
Substituting in the given equation, we have
2A+8AX+4B-2Ax* —2Bx—2C =2x*> -3x+6
or —2AX* +(8A-2B)x+(2A+4B-2C) =2x> -3x+6
Equating the coefficients of the like powers of X, we have
-2A=2, 8A-2B=-3, 2A+4B-2C=6
50
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Solving this system of equations leads to the values
A=-1, B=-5/2, C=-9.
Thus a particular solution of the given equation is

5
=—Xx"-=x-9.
Yo )

Hence, the general solution of the given non-homogeneous differential equation is given
by

Y=Yt Yp
(-2 ++/6)x

2 —(2+/6)x

5
or y=-X _EX_9+C19 +Cye

Example 2

Solve the differential equation

y" —y' +y=2sin3x
Solution:

Complementary function
To find Yoo we solve the associated homogeneous differential equation

y// _ y/ +y=0
Put y:emx, y'=me™¥ y":m2emx
Substitute in the given differential equation to obtain the auxiliary equation
o _1£i3

2
Hence, the auxiliary equation has complex roots. Hence the complementary function is

:e(1/2)x( 3 NE] J

mx

m>—-m+1=0 or

y C, COS— X+ C, Sin—— X
. 2702

c

Particular Integral
Since successive differentiation of

g(X) =sin 3x
produce sin3Xx and cos3Xx
Therefore, we include both of these terms in the assumed particular solution, see table

yp = Acos3x + Bsin3x.
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Then y'p =—-3Asin3x +3Bcos3Xx.
y”p =—-9Acos3x—9Bsin3x.
Therefore y," =y, +y, =(-8A-3B)cos3x+(3A—8B)sin3x.

Substituting in the given differential equation
(—8A—-3B)cos3x+(3A—-8B)sin3x = 0cos3X + 2sin 3X.

From the resulting equations
-8A-3B=0,3A-8B=2

Solving these equations, we obtain
A=6/73,B=-16/73

A particular solution of the equation is

y = icos3X —Esin3x
p 73 73

Hence the general solution of the given non-homogeneous differential equation is
y= o1/ o cosﬁx +C, sinﬁx + 02 cos3x—LOin3x
2 2 73 73

Example 3

Solve y' =2y’ =3y =4x-5+6xe™
Solution:

Complementary function

To find Yoo we solve the associated homogeneous equation

y// _Zy/ _3y:0

Put y=e™  y'—meMX yﬂzmzemx

Substitute in the given differential equation to obtain the auxiliary equation
m?-2m-3=0
=>mM+1)(M-3)=0
m=-1,3

Therefore, the auxiliary equation has real distinct root

m; =-1,m, =3

Thus the complementary function is
- X 3X
Yo =ce T Hcyen.

m

C
Particular integral
Since g(x) =(4x—5)+6xe2X =0,(X)+9,(X)
Corresponding to g, (X) yIO = Ax+B

1

Corresponding to g, (X) yp =(Cx+ D)ezx
2
The superposition principle suggests that we assume a particular solution
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Yp=Yp, *¥p,
. _ 2X
ie. Yo =AXx+B+(Cx+D)e
Then y'p =A+2(Cx+ D)e2X+Ce2X

y" = 4(Cx+D)e?X +4ce

Substituting in the given
yp// —2yp/ -3yp = 4Cxe%* + 4De?* +4Ce?* —2A—4Cxe?*

—4De?* —2Ce?* —3Ax—3B - 3Cxe** —3De?*
Simplifying and grouping like terms

yp! ~2yy =3y, =-3Ax—2A-3B-3Cxe** +(2C -3D)e”* = 4x -5+ 6xe**.
Substituting in the non-homogeneous differential equation, we have
~3Ax—2A-3B-3Cxe?* +(2C —3D)e?* = 4x -5+ 6xe* + 062X
Now equating constant terms and coefficients of X, xe?*and e2* , we obtain
~2A-3B=-5, —3A =4
-3C =0, 2C-3D=0

Solving these algebraic equations, we find
A=-4/3, B=23/9

C=-2, D=-4/3
Thus, a particular solution of the non-homogeneous equation is

y p = _(4/3))( + (23/9) — 2 Xe2x — (4/3)e2X

The general solution of the equation is
_ _ - X 3x 2x 2X
Yy=Yc+Yp=Ce " +Ce”" —(4/3)Xx+(23/9)-2xe”" -(4/3)e

Duplication between y, and y.?
0 If afunctionintheassumed y, isalsopresentin Y then this functionis a

solution of t he a ssociated hom ogeneous di fferential e quation. In this c ase t he
obvious assumption for the form of y, is not correct.

0 In this case we suppose that the input function is made up of terms of nkinds i.e.
9() = g1(X¥) +g2(X) +---+gn(X)
and c orresponding t o t his i nput function t he a ssumed pa rticular s olution y  is

Yp =Yp, *¥p, -+ ¥p,

o Ifa yp contain terms that duplicate terms in Y, then that y, must be multiplied
1 |

with x", n being the least positive integer that eliminates the duplication.
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Example 4
Find a particular solution of the following non-homogeneous differential equation

y" —5y +4y =ge*
Solution:

To find y, we solve the associated homogeneous differential equation
y =5y +4y=0
We puty = e™ in the given equation, so that the auxiliary equation is

m?-5m+4=0= m=14

Thus ye =ce” + ce
Since g(x) = 8e”*
Therefore, y, = Ae*

Substituting in the given non-homogeneous differential equation, we obtain
Ae® —5AeX +4Ae% =g
So 0=_8e"
Clearly we have made a wrong assumption for y 5, as we did not remove the duplication.

Since Ae” is present in Y Therefore, it is a solution of the associated homogeneous
differential equation

y' =5y +4y=0
To avoid this we find a particular solution of the form

yp = Axe”
We notice that there is no duplication between Yy, and this new assumption for y
Now yp = Axe* +Ae%, v, = Axe* +2Ae"
Substituting in the given differential equation, we obtain

Axe* +2Ae* —5Axe* —5Ae* +4Axe* =8eX.

or ~3Ae* =8¢ = A=-8/3.
So that a particular solution of the given equation is given by
yp = _(8/3)ex

Hence, the general solution of the given equation is

y=ce*+c,e” —(8/3)x e’

Example 5
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Determine the form of the particular solution

(a) y/ 8y

(b) y’ +4y = xcosx.

/ 3

+ 25y =5x e X _7¢7X

Solution:

(a) To find y¢ we solve the associated homogeneous differential equation
y’ -8y’ +25y=0

Put y= eMX

Then the auxiliary equation is

m? —8M+25=0=>m =4 3i
Roots of the auxiliary equation are complex

Yo = e4X(c1 cos3X + €9 sin3X)

The input function is

g(x) =536 X 767X = (5x3 —7)e X

Therefore, we assume a particular solution of the form
Yp = (Ax3 +Bx? +Cx+ D)e_x
Notice th at th ere is no duplication betweenthetermsin y D and thete rmsin Y.

Therefore, while proceeding further we can easily calculate the value A,B,C andD.

(b) Consider the associated homogeneous differential equation
y' +4y=0

Since g(X) = Xcos X

Therefore, we assume a particular solution of the form
Y, = (AX+B)cosx+(Cx+ D)sinx

Again observe that there is no duplication of terms between Yy and y P
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Example 6
Determine the form of a particular solution of

y' —y +y=3x>—5sin2x+7xe*

Solution:

To find y¢, we solve the associated homogeneous differential equation
y// _ y/ +y=0

Put y= eMX

Then the auxiliary equation is

2 lii\/g

m<-m+1=0=>m=

2
Therefore Yo = e(1/2)x[cl cos?x +C) sin?x]
Since g(X) =3x> =5sin2x+7xe™ = g,(X) + g, (X) + g (X)
Corresponding to g (X) = 3x2: Yp, = Ax? +Bx+C
Corresponding to g,(X) = —5sin 2X: Yp, = D cos2x + Esin 2X
Corresponding to g,(X)=7xe** : Yp, = (Fx+ G)e™

Hence, the assumption for the particular solution is
Yp=Yp TYp *¥py
or Yp = AX* +Bx+C + Dcos2x+ Esin 2x + (Fx+ G)e™
No term in this assumption duplicate any term in the complementary function

ye =ce?* +cre’

Example 7
Find a particular solution of
y// _2y/ +y =g
Solution:
Consider the associated homogeneous equation
y// _ 2y/ + y — O
Put y=e™

Then the auxiliary equation is
m? —2m+1=(m-1)% =0
=m =11
Roots of the auxiliary equation are real and equal. Therefore,

Yo =ce” +cyxe”
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Since g(x) =e*
Therefore, we assume that
y, = Ae*

This assumption fails because of duplication between Y. and y,. We multiply with X
Therefore, we now assume
yp = Axe”
However, the duplication is still there. Therefore, we again multiply with X and assume
Yp = AxZeX

Since there is no duplication, this is acceptable form of the trial y,,

Example 8
Solve the initial value problem

y// +y=4Xx+10sinX,
y(m) =0,y (7)=2

Solution

Consider the associated homogeneous differential equation
y' +y=0

Put y=e™

Then the auxiliary equation is

m?>+1=0=>m=xi
The roots of the auxiliary equation are complex. Therefore, the complementary function
is

Y¢ = Cj COS X+ Cy sin X
Since g(x) =4x+10sin X = gy (X) + g, (X)
Therefore, we assume that
Yp, = Ax+ B, Yp, =CcosX+ DsinXx
So that Yp = Ax+B+Ccosx+ Dsin x

Clearly, there is duplication of the functions cos Xandsin X . To remove this duplication
we multiply yp 5 with X . Therefore, we assume that

Yp = AX+ B + C xcos X + Dxsin X.

Yy, =—2Csin x—Cxcos X+ 2D cos X — Dxsin X

So that yp//+yp:AX+B—2CsinX+2DxcosX

Substituting into the given non-homogeneous differential equation, we have
Ax+ B —2Csin X+ 2Dx cos X = 4X +10sin X

Equating constant terms and coefficients of X, sin X, Xcos X, we obtain
B=0, A=4, —-2C =10, 2D =0
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So that A=4B=0,C=-5 D=0

Thus y, =4X—5Xxcos X

Hence the general solution of the differential equation is
Yy=Yc+Yp =C1cosX+CysinX+4x-5XcosX

We now apply the initial conditions to find ¢; andc,.
Y(r)=0=cCjcosm+Cysinm+4xr—5rcosz =0

Since sinz =0,cosz =-1

Therefore C, =97

Now y/ =-97sin X+ Cy cos X+ 4+ 5Xsin X —5cos X

Therefore y/(n) =2= -9zsinzr+Cycosmr+4+5wsinr—5cosz =2
) cy=T7.

Hence the solution of the initial value problem is
Yy =97 cos X+ 7sin X+ 4X —5Xcos X.

Example 9
Solve the differential equation

y/ —6y’ +9y =6x2 +2-12e3

Solution:
The associated homogeneous differential equation is

y” —6y’ +9y =0
Put y=e™
Then the auxiliary equation is
m? —6m+9=0=m=3,3
Thus the complementary function is
y, =c,e™ +c,xe**
Since g(0) = (x> +2) 126%™ = g (x) + g5 (%)
We assume that

Corresponding to gy (X) = X2 +2: Yp, = Ax? +Bx+C

Corresponding to g, (X) = —12e3%: Yp, = De3*
Thus the assumed form of the particular solution is
Yp = Ax? + Bx +C + De>*

3

The function e”*in vy D, is duplicated between Yy andy,. Multiplication with x does not

remove t his dupl ication. H owever, i f w e m ultiply y, 5 with x? , t his dupl ication 1 s

removed.
Thus the operative from of a particular solution is

Yp = Ax? + Bx +C + Dx2e>*
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Then yp =2Ax+B +2Dxe* +3Dx%e

and yh =2A+2De™ +6Dxe’™ +9Dx’e>
Substituting into the given differential equation and collecting like term, we obtain
yp! =6yy +yp =9Ax? +(~12A+9B)x + 2A— 6B +9C + 2De** = 6x* +2 - 12¢*¥

Equating constant terms and coefficients of X, x? and e3X yields
2A-6B+9C=2, -12A+9B=0
9A =6, 2D =-12

Solving these equations, we have the values of the unknown coefficients
A=2/3,B=8/9,C=2/3 and D=-6

Thus yp:%x2+§x+2—6x2e3x
3 9 3
Hence the general solution

29

3 4 Zx

y:yc+yp:qex+cy@3

+§x+z—6%%”.
9 3

Higher —Order Equation
The method of undetermined coefficients can also be used for higher order equations of
the form

dny dn—ly dy
+a +...+a —+a,Yy=0(X
n an n-1 dX n-1 1 dX Oy g( )

with constant coefficients. The only requirement is that g(X) consists of the proper kinds
of functions as discussed earlier.

a

Example 10

Solve y" +y" =e*cosx

Solution:

To find the complementary function we solve the associated homogeneous differential
equation

y/// + y// — 0
Put y=e™ y' =me™, y" = m2e™
Then the auxiliary equation is
m?+m? =0
or mZ(m+1)=0=m=0,0,-1

The auxiliary equation has equal and distinct real roots. Therefore, the complementary
function is

Yo =C| +CyX+Cqe "
Since g(x) =e* cosx
Therefore, we assume that

Yy, = Ae” cos X + Be” sin X
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Clearly, there is no duplication of terms between y¢ andy .
Substituting the derivatives of y, in the given differential equation and grouping the like

terms, we have
yp/// + yp” =(—2A+4B)e* cosx +(—4A—-2B)e* sinx =e* cos X.

Equating the coefficients, of €* cosx and e sin x, yields
-2A+4B=1-4A-2B=0
Solving these equations, we obtain
A=-1/10,B=1/5
So that a particular solution is

Yp =C1 +CoX+C3e = (1/10)e” cos x+(1/5)e” sin x
Hence the general solution of the given differential equation is
Yp =Cp +CyX+C3e % —(1/10)e™ cos X+ (1/5)e” sin X

Example 12
Determine the form of a particular solution of the equation

e m —X

y'"+y'=1-e
Solution:
Consider the associated homogeneous differential equation
y'"'+y"=0
The auxiliary equation is
m*+m?>=0=m=0,0,0,-1
Therefore, the complementary function is

Yo =€ +CyX+C3X> +Cge ¥

Since g(x)=1-e* =g;(X)+gy(x)
Corresponding to g;(X) =1: Yp,=A
Corresponding to g, (X) = —e % Yp, = Be *

Therefore, the normal assumption for the particular solution is
X

yp =A+Be

Clearly there is duplication of
(1) The constant function between Yy, andy x

(i1) The exponential function e™* between Ye andy, 5"
To remove this duplication, we multiply y 1With x> and Yp, with X. This duplication

can’t be removed by multiplying with X and x2. Hence, the correct assumption for the
particular solution y s
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Yp = AX +Bxe ™

Exercise

Solve the following differential equations using the undetermined coefficients.

1. %y”+y/+y:x2+2x

2.y’ =8y’ +20y =100x? - 26xe*
3.y +3y = -48x%e
4. 4y" -4y’ -3y =cos2x
5.y +4y=(x* -3)sin2x
6. y' =5y =2x —4x> —x+6
7. y" =2y’ +2y =e*(cos X —3sin X)
Solve the following initial value problems.
8. v/ +4y +4y=0C+xe, y(0)=2y'(0)=5

d?x

t2

9.

+@’x = F, cost, X(0)=0,x'(0)=0

10. vy +8y=2x-5+872, y(0)=-5, y/'(0)=3,y"(0)=—4
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Lecture 7

Undetermined Coefficient:
Annihilator Operator Approach

Recall

1.

That a non-homogeneous linear differential equation of order n is an equation of the
form

n n-1
an y +an-| 4y +---+alﬂ+a0y =9(X)
dx" dx"! dx
The following differential equation is called the associated homogeneous equation
n n-1
an d’y +an_1 d_y +---+a1d—y+aoy:0
dx" dx"~! dx
The co efficients a,,a,,...,a, canbe functionso f X . H owever, w e w ill di scuss

equations with constant coefficients.

That to obtain the general solution of a non-homogeneous linear differential equation
we must find:
a The c omplementary f unction Yoo W hich i s general s olution of t he a ssociated

homogeneous differential equation.
Q Any particular solution Yy 0 of the non-homogeneous differential equation.

That the general solution of the non-homogeneous linear differential equation is given
by

General Solution = Complementary Function + Particular Integral

o Finding t he ¢ omplementary f unction ha s be en ¢ ompletely d iscussed i n an
earlier lecture

o In the previous lecture, we studied a method for finding particular integral of the
non-homogeneous e quations. T his was the method of undetermined coefficients
developed from the viewpoint of superposition principle.

0 Inthepresentlecture, wew illle arnto find particular in tegral o fth e n on-
homogeneous equations by the same method utilizing the concept of differential
annihilator operators.
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Differential Operators

o In calculus, t he d ifferential co efficient d /dx is of ten de noted b y t he capital
letter D . So that

QX.:|Dy

The symbol D is known as differential operator.

a This operator transforms a differentiable function into another function, e.g.
De*) =46, D(5x - 6x?) =15x2 — 12X, D(cos2X) = —2sin 2X

o The differential operator D possesses the property of linearity. This means that if
f, g are two differentiable functions, then
D{af (x) + bg(x)} = aDf (x) + bDg(x)
Where a and b are constants. Because of this property, we say that D is a linear
differential operator.

o Higher order derivatives can be expressed in terms of the operator D in a natural

manner.:
d?y d dyj >
— Y _ 21 _pmy)=D
N dx(dx (Dy) = D?y
Similarly
d’y 3. d"y
~Y-ply,....—L=D"y
dx3 d"x

a The f ollowing pol ynomial e xpression of de gree n involving t he ope rator D
a,D"+a, (D" '+...+aD+a,

is also a linear differential operator.
For example, the following expressions are all linear differential operators

D+3, D> +3D—4, 5D -6D? +4D
Differential Equation in Terms of D

Any linear differential equation can be expressed in terms of the notation D. Consider a
2" order equation with constant coefficients

ay” +by’ +cy = g(x)
2
Since L7 = Dy,d—y
dx d)(2
Therefore the equation can be written as

aD2y+bDy+cy =g(Xx)
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or (aD* +bD +c)y = g(x)

Now, we define another differential operator L as

L=aD?+bD+c
Then the equation can be compactly written as

L(Y) =9(x)

The operator L is a second-order linear differential operator with constant coefficients.

Example 1
Consider the differential equation

y' +y +2y=5x-3
2
Y py LY p2y

dx dx?
Therefore, the equation can be written as
(D% +D+2)y =5x-3
Now, we define the operator L as
L=D?*+D+2
Then the given differential can be compactly written as
L(y)=5x-3

Since

Factorization of a differential operator

o An nth-order linear differential operator
L=a,D" +a, ;D" '+ +aD+ag
with co nstant co efficients can b e f actorized, w henevert he characteristics

polynomial equation

L=a,m" +a, ;m" ' +--+am+a

can be factorized.

o The factors of a linear differential operator with constant coefficients commute.

Example 2

(a) Consider the following 2" order linear differential operator

D’ +5D+6
If we treat D as an algebraic quantity, then the operator can be factorized as

D2 +5D+6=(D+2)(D+3)
(b) To illu strate th e c ommutative p roperty o fth e factors, w e co nsider a t wice-
differentiable function y = f (X). Then we can write

(D2 +5D+6)y=(D+2)(D+3)y=(D+3)(D+2)y

64

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701)

VU

To verify this we let
w=(D+3)y=y'+3y

Then
(D+2)w =Dw+2w
or (D +2)w :(y// +3y/)+(2y/ +6Yy)
or (D+2w=y" +5y'+6y
or (D+2)D+3)y =y +5y'+6y

Similarly if we let
w=(D+2)y=(y +2y)

Then (D+3)w=Dw+3w=(y" +2y")+ 3y’ +6y)
or (D+3)w= y// +5y/+6y
or (D+3)(D+2)y=y" +5y'+6y

Therefore, we can write from the two expressions that
(D+3)(D+2)y=(D+2)(D+3)y

Hence (D +3)(D+2)y =(D+2)(D+3)y

Example 3
(a) The operator D2 —1 can be factorized as
DZ-1= (D+1)(D-1).
or D2-1 = (D-1)(D+1)

(b) The operator D2 + D +2 does not factor with real numbers.

Example 4
The differential equation
y'+4y'+4y =0
can be written as
(D> +4D+4)y=0
or (D+2)D+2)y=0
or (D + 2)2 y=0.
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Annihilator Operator

Suppose that
o L is alinear differential operator with constant coefficients.
o Yy = f(x) defines a sufficiently differentiable function.
o The function f is such that L(y)=0
Then the differential operator L is said to be an annihilator operator of the function f.

Example 5
Since
Dx=0, D’x=0, D’x>=0, D*x®> =0, ...
Therefore, the differential operators
D, D?, D3, D%, ...
are annihilator operators of the following functions

k(a constant), X, X2, X3,

In general, the differential operator D" annihilates each of the functions

1Lx,x%,... x"1

Hence, we conclude that the polynomial function
Co +C X+ +Cpy X!

can be annihilated by finding an operator that annihilates the highest power of X.

Example 6
Find a differential operator that annihilates the polynomial function

y:1—5x2 +8x3.

Solution
Since D*x* =0,
Therefore D4y = D4(1 —5x% + 8X3)= 0.

Hence, D* is the differential operator that annihilates the function y.

Note that the functions that are annihilated by an nth-order linear differential operator L
are s imply t hose f unctions t hat c an b e obt ained f rom t he general s olution of t he
homogeneous differential equation

L(y) = 0.
Example 7
Consider the homogeneous linear differential equation of order n
(D-a)"y=0

The auxiliary equation of the differential equation is
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(m-a)" =0
= m=a,q,...,a (N times)

Therefore, t he auxiliary eq uationh asar ealr oot & of mu ltiplicity n . S ot hatt he
differential equation has the following linearly independent solutions:

e X xe®X x2e@X  yN-lgax

Therefore, the general solution of the differential equation is

y=ce® +c,xe® +cyx2e® 4o x" e

So that the differential operator

a X

(D-a)"
annihilates each of the functions
eax’ xea x’ xze‘”,..., Xn—leax

Hence, as a consequence o fthe fact that the differentiation can be p erformed term by
term, the differential operator

(D-a)"
annihilates the function

y=ce® +c,xe® +cyx2e® 4+t o X" le®
Example 8
Find an annihilator operator for the functions
(a) f(x) =™
(b) g(x) = 46> — 6xe>*
Solution
(a) Since

(D-5)> =5 —5e%* =0
Therefore, the annihilator operator of function f is given by
L=D-5
We notice that in this casea =5, n=1.

(b) Similarly
(D-2)? (4e2X = 6xe2x)= (D? —4D + 4)(4e?*) - (D? — 4D + 4)(6xe*¥)
or  (D-2)(4e2* —6xe? )= 3267 3267 + 4sxe™ — 48xe? + 2462 — 246>
or (D—2)2(4e2X —6xezx):0
Therefore, the annihilator operator of the function gis given by
L=(D-2)>
We notice that in this case @ =2 =n.
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Example 9
Consider the differential equation

(D2 —2aD+(a2 +ﬂ2))ny=0

The auxiliary equation is
n
(m2 —205m+(052 +,82)) =0

= m2—2ofm+(a2+/32 —0

Therefore, when «, [ are real numbers, we have from the quadratic formula

_ 20 ++/4a> —4(a2 +ﬂ2)
2

m

=aztif

Therefore, the auxiliary equation has the following two complex roots of multiplicity n.
my :(Z+iﬂ, m, :(Z—iﬂ

Thus, t he ge neral s olution of t he di fferential e quation is a 1inear c ombination of t he
following linearly independent solutions

e%X cos B, xe?X cos BX, X2e?X cos BX, ;- X" e cos Bx
e?Xsin X, xe®*sin B, x>e**sin Bx, ;-- X" 1e?Xsin Bx
Hence, the differential operator
(D2 - 20D +[a? + g2
is the annihilator operator of the functions
e%X cos B, xe®X cos BX, X2e®X cos BX, ;-- X" e cos Bx
e?Xsin BX, xe®*sin Bx, x2*Xsin Bx, ;-- X" 1e?*sin Bx
Example 10
If we take

a=-1, f=2,n=1
Then the differential operator
(D2 ~2aD +(a2 +ﬂ2)) 4

becomes D2+2D+5.

Also, it can be verified that
(D2 +2D+5)e ™ cos2x =0
(D2 +2D+5)e X sin2x =0
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Therefore, the linear differential operator
D2 +2D+5
annihilates the functions
y1(x)=e"* cos2x
y2(x)=e" " sin2x
Now, consider the differential equation
b2+2D+ﬂy=0
The auxiliary equation is
m?+2m+5=0
>m=-1£2i
Therefore, the functions
y1(x)=e7 cos2x
y2(x)=e" " sin2x
are the two linearly independent solutions of the differential equation
(D2 +2D+5)y=o,
Therefore, the operator also annihilates a linear combination of y; and y,, e.g.
5y1 -9y, =56 % cos 2x—9e ¥ sin 2X.
Example 11
If we take
a=0, f=1,n=2
Then the differential operator
&ﬂ-zao+@2+ﬂ2»”
becomes
(D? +1)2 =D* +2D? +1
Also, it can be verified that
D*+2D? +1)cosx =0
D* +2D? +1)sinx =0
and
(D4+2D2+lxamX:0
(D% +2D2 +1)ksinx =0
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Therefore, the linear differential operator
D*+2D? +1
annihilates the functions
COS X, sin X

XCOS X, XsinX

Example 12
Takinger =0, n =1, the operator

(D2 — 20D +(a2 +ﬂ2)) n
becomes

D2 + g2

Since (D2 +ﬂ2)cos,6‘x:—,82 cos,BX+,82 cosfx=0
(D2+ﬂ2)sin,8x=—ﬁzsinﬂx+ﬂzsinﬁx=0

Therefore, the differential operator annihilates the functions
f(X)=cos X, Qg(x)=sin/f X

Note that
a Ifa linear differential operator with constant coefficients is such that

L(y;)=0, L(y)=0
1.e. t he o perator L annihilates t he functions y; and Yy, . T hent he ope rator L
annihilates their linear combination.

Lle1yi(x)+cay2(x)]=0.
This result follows from the linearity property of the differential operator L .

0 Suppose that Ljand L, are linear o perators with constant co efficients such that
Li(y1)=0, Ly(y2)=0

and L] (yz);ﬁ 0, Lz(y])i 0

then the product of these differential operators L;L, annihilates the linear sum
y1(%)+ 2 (x)

So that LiLa[y1 (%) + y2 (x)]=0

To demonstrate this fact we use the linearity property for writing
LiLo(y1 +y2) = LiLa(y)+ LiLa(y2)

Sil’lCC Ll L2 = L2 Ll
therefore LiLy(y; +Y2)=LoLy(y1)+ LiLay(y2)
or LiLy (yy + Y2 )= Lol (yD]+ Li[La (Y2)]
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But we know that  L;(y;)=0, Ly(y,)=0
Therefore LiLy (y; +y2)=Ly[0]+L[0]=0

Example 13
Find a differential operator that annihilates the function
f(X)=7—Xx+6sin3x

Solution
Suppose that
y1(X) =7-X, ys(x) = 6sin3x
Then
D2y, (x) =D?*(7-x) =0
(D2 +9)y,(x) = (D2 +9)sin3x =0
Therefore, D?(D? +9) annihilates the function f (x).
Example 14

Find a differential operator that annihilates the function
f(x)=e73X + xeX

Solution
Suppose that

Y0 =e7%, ,(9)=xe*
Then
(D+3)y, = (D+3)e™>* =0,
(D-17y, = (D-17xe* =o0.
Therefore, the product of two operators
(D+3)\D-1)
3x X

annihilates the given function f(x)=e ~" +xe

Note that
o The differential operator that annihilates a function is not unique. For example,

(D-5)e>* =0,
(D-5)(D+1)e>* =0,

(D-5)D%e* =0
Therefore, there are 3 annihilator operators of the functions, namely
(D-5), (D-5)(D +1), (D-5)D?

o When we seek a differential annihilator for a function, we want the operator of
lowest possible order that does the job.
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Exercises

Write th e given differential e quation in the form L(y)= g(x), where Lis a differential
operator with constant coefficients.

I. d—y+5y=9sinx
dx

2. 49X+8y:x+3
dx

3 2
30 9,47y sy,
dx3 dx?  dx
d3y _d?y _dy
4. LY L8 9 6y 1 ginx

dx’ dx?  dx

Factor the given differentiable operator, if possible.

5. 9D% -4

6. D>-5

7. D’+2D?-13D+10
8. D*-8D?+16

Verify that the given differential operator annihilates the indicated functions
9. 2D-1; y=4e¥?

10. D* + 64; y =2cos8x-5sin8x
Find a differential operator that annihilates the given function.

11. x+3xe%*
12. 1+sin X
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Lecture 8
Undetermined Coefficients:
Annihilator Operator Approach

The method of undetermined coefficients that utilizes the concept of annihilator operator
approach is also limited to non-homogeneous linear differential equations

o That have constant coefficients, and

0 Where the function g(X) has a specific form.

The form of g(x) :The input function g(x) has to have one of the following forms:

O A constant functionk .
o A polynomial function

o An exponential function eX
0 The trigonometric functions sin(f x), cos(f X)

o Finite sums and products of these functions.
Otherwise, we cannot apply the method of undetermined coefficients.

The Method

Consider t he f ollowing non -homogeneous | inear di fferential e quation w ith ¢ onstant
coefficients of order n

n n-1
d y+a d y+---+al%+aoy:g(x)
X

"dx" " dx™!
If L denotes the following differential operator

a

L=a,D"+a, (D" ' +---+aD+a,
Then the non-homogeneous linear differential equation of order n can be written as
L(Y)=9(¥)
The function g(x) should c onsist of finite s ums a nd pr oducts of t he pr oper ki nd of
functions as already explained.

The method of undetermined c oefficients, a nnihilator ope rator a pproach, for finding a
particular integral of the non-homogeneous equation consists of the following steps:

Step 1 Write the given non-homogeneous linear differential equation in the form
L(y) =9(X)
Step 2 Find t he ¢ omplementary s olution Y, by f inding t he general s olution of t he
associated homogeneous differential equation:
L(y)=0
Step 3 Operate on bot h s ides of t he non -homogeneous e quation w ith a di fferential
operator L; that annihilates the function g(x).
Step 4 Find the general solution of the higher-order homogeneous differential equation
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LiL(y)=0
Step 5 Delete al 1 t hose t erms from t he s olutionin step 4 that are duplicatedinthe
complementary solutiony,, found in step 2.

Step 6 Form a linear c ombination Y, of the terms that remain. This is the formofa
particular solution of the non-homogeneous differential equation
L(y)=9(x)
Step 7 Substitute yp found in step 6 into the given non-homogeneous linear differential
equation
L(y) = 9(x)
Match coefficients of various functions on each side of the equality and solve the
resulting system of equations for the unknown coefficients iny, .

Step 8 With the particular integral found in step 7, form the general solution of the given
differential equation as:

Y=Y +Y,
Example 1
2
Solve d Z+3d—y+2y:4x2.
dx dx
Solution:
2
Step 1 Since dy = Dy, ay = D2y
dx dX2

Therefore, the given differential equation can be written as
(D2+3D+2 Jy=4¢
Step 2 To find the complementary function Yy, we consider the associated homogeneous
differential equation
(D2+3D+2)y=0
The auxiliary equation is
m’+3m+2=(mM+1)(m+2)=0
= m =-1,-2
Therefore, the auxiliary equation has two distinct real roots.
m=-1,m,=-2,
Thus, the complementary function is given by

Yo =Cie X 4cye” 2
Step 3 In this case the input function is

g(x) = 4%
Further D3g(x)=4D3x% =0
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Therefore, t he d ifferential o perator D3 annihilates t he f unction g . O perating on bot h
sides of the equation in step 1, we have

D3(D? +3D+2)y =4D>x?
D3(D? +3D +2)y=0

This is the homogeneous equation of order 5. Next we solve this higher order equation.

Step 4 The auxiliary equation of the differential equation in step 3 is
m’(m* +3m+2)=0

m3m+1)m+2)=0
m=0,0,0,-1,-2
Thus its general solution of the differential equation must be
2X

Y =Cy +CyX+C3x2 +Cqe X +Cse”
Step 5 The following terms constitute Y,

cie +cge X

Therefore, we remove these terms and the remaining terms are
C; +CrX+C3 X2

Step 6 This means that the basic structure of the particular solution y, is

Yp =A+ Bx+Cx2,

Where the constantsc,,C, and ¢, have been replaced, with A, B, and C, respectively.

Step 7 Since Yp =A+ BX + Cx>
y, = B+2Cx,
y, =2C
Therefore Yh +3Y} +2yp = 2C +3B +6Cx + 2A+2Bx + 2Cx>
or Y +3Y} +2yp = (2C)x* + (2B +6C)x+ (2A+3B +2C)

Substituting into the given differential equation, we have
(2C)X? + (2B + 6C)X + (2A+3B +2C) = 4x2 + 0x + 0

Equating the coefficients of x> ,X and the constant terms, we have

2C = 4
2B + 6C =0
2A+3B+2C =0

Solving these equations, we obtain
A=7, B=-6, C=2
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Hence Yp =7 —6X+2x>
Step 8 The general solution of the given non-homogeneous differential equation is
Y=Yct+Yp

y=cie X +cre X +7—6x+2x°

Example 2
2

Solve M— d—y:8e3x+4sinx

d)(2 dx
Solution:

2

Step1 Since Y _py IV _p2y

dx d)(2

Therefore, the given differential equation can be written as
(D2 —3D)y = 863X + 4sin x

Step 2 We first consider the associated homogeneous differential equation to find y,
The auxiliary equation is

mm-3)=0=>m=0,3
Thus the auxiliary equation has real and distinct roots. So that we have
Ye=C1 + coe”
Step 3 In this case the input function is given by
g(x) = 8e>* + 4sin x
Since (D-3)8e**) =0, (D? +1)(4sin x) =0
Therefore, the o perators D —3 and D* +1 annihilate 8eX and 4sin x , respectively. S o
the operator (D — 3)(D2 + 1) annihilates the input function g(x). This means that
(D -3)(D? +1)g(x) = (D -3)(D? +1)(8e>* +sinx) =0
We apply (D —3)(D? +1) to both sides of the differential equation in step 1 to obtain
(D-3)(D? +1)(D? -3D)y =0.
This is homogeneous differential equation of order 5.

Step 4 The auxiliary equation of the higher order equation found in step 3 is
(m=3)(m?> +1)(m* =3m) =0
m(m-3)’(m*+1)=0
=>m=0, 3, 3, £i

Thus, the general solution of the differential equation

y =Cy +Cre>% +cyxe X + ¢y cos X + Cs sin X
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Step 5 First two terms in this solution are already present in Y,

ci +cyeX

Therefore, we eliminate these terms. The remaining terms are

c3Xe>X + ¢y cos X+ Cs sin X

Step 6 Therefore, the basic structure of the particular solution y , must be

Yp = Axe** + Bcos x + Csin X

The ¢ onstants €3 C4 and Cs have be enr eplaced w ith t he ¢ onstants A,B and C ,

respectively.
Step 7 Since Yp = Axe** + Bcos X + Csin X
Therefore Y =3y} =3Ae* +(-B-3C)cos x+(3B—C)sin X

Substituting into the given differential equation, we have
3Ae3X + (=B -3C)cos X+ (3B —C)sin x = 83X + 4sin X.
Equating coefficients of X ,cos X andsin X, we obtain
3A=8, -B-3C=0,3B-C=4
Solving these equations we obtain
A=8/3, B=6/5 C=-2/5
3x

) 6 2
yp—gxe +§COSX—§SIHX.

Step 8 The general solution of the differential equation is then

3X 8 3X 6 2 .
Cl+Cye”" +=Xe " +—-cos X——sin X.

y=4 3 5 5
Example 3

2
Solve d y+8y S5x+2e7% .

dx?2
Solution:

Step 1 The given differential equation can be written as
(D? +8)y = 5x+26 %

Step 2 The associated homogeneous differential equation is
(D2 +8)y=0
Roots of the auxiliary equation are complex

m:izﬁi

Therefore, the complementary function is
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Yo =C; cos2\/EX+C2 sin 2+/2 X

Step 3 Since D?x=0, (D+1)e X =0

Therefore the o perators D? and D +lannihilate the functions 5x and2e™*. W e apply
D?*(D +1) to the non-homogeneous differential equation

D*(D+1)(D*+8)y=0.
This is a homogeneous differential equation of order 5.

Step 4 The auxiliary equation of this differential equation is
m2(m+1)(m? +8)=0
=m=0,0,-1,£2+21i
Therefore, the general solution of this equation must be
Y = C; €08 242X +C) 8in 242X+ C3 +C4 X +C5€

Step 5 Since the following terms are already present in Y
C, cos 242x+ C, sin 24/2x
Thus we remove these terms. The remaining ones are

C3 +CqX+Cse ™~

Step 6 The basic form of the particular solution of the equation is
yp = A+Bx+Ce™™

The constants €3,C4and Cshave been replaced with A, BandC.

Step 7 Since yp = A+Bx+Ce™™

Therefore yp +8yp =8A+ 8Bx +9Ce™*
Substituting in the given differential equation, we have
8A+8Bx+9Ce ™ =5x+2e7%

Equating coefficients of x, e *and the constant terms, we have
A=0,B=5/8,C=2/9

Thus Yp :§x+§e_x

Step 8 Hence, the general solution of the given differential equation is
Y=Yc+¥p

or y:CIcosZ\/§X+C2sin2\/§x+§x+§e_x.
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Example 4
2
Solve d—2y+y=XcosX—cosX
dx
Solution:

Step 1 The given differential equation can be written as

(D2 +1)y = Xcos X —cos X

Step 2 Consider the associated differential equation
(D2 +1)y=0

The auxiliary equation is
m>+1=0 =>m=x+i

Therefore Y. =C, cosX+C, sin X
Step 3 Since (D* +1)*(XxcosX) =0
(D’ +1)’cosx=0; x#0

Therefore, the operator (D? +1)*annihilates the input function
X CcOs X — COS X
Thus operating on both sides of the non-homogeneous equation with (D* +1)*, we have

(D> +D)*(D*+1)y=0
or (D> +1)’y=0
This is a homogeneous equation of order 6.

Step 4 The auxiliary equation of this higher order differential equation is

Mm% +1)3 =0=>m=i,i,i,—i,—i,—i
Therefore, the auxiliary equation has complex roots i, and — I both of multiplicity 3. We
conclude that

Yy = C, COS X+ C, Sin X + C,XCOS X + C,Xsin X + C,X* cos X + C X" sin X

Step 5 Since first two terms in the above solution are already present in Y,

C, cOs X +C, sin X
Therefore, we remove these terms.

Step 6 The basic form of the particular solution is

Yp = Axcos X+ Bxsin X + Cx2 cos X + EX? sin X

Step 7 Since Yp = Axcos X+ Bxsin X + Cx? cos X + Ex? sin X

Therefore
Yp +¥p =4Excosx—4Cxsin X+ (2B +2C)cos X + (-2A+ 2E)sin X
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Substituting in the given differential equation, we obtain

4EXxcos X —4Cxsin X+ (2B + 2C)cos X+ (—2A+ 2E)sin X = Xcos X — cos X

Equating coefficients of Xcos X, Xsin X,cos X and sin X, we obtain
4E = 1, —4C =0
2B+2C=-1, -2A+2E=0

Solving these equations we obtain
A=1/4,B=-1/2,C=0, E=1/4

1 1. 1 )
Thus yp=—XcosX—§Xsmx+szsz

4

Step 8 Hence the general solution of the differential equation is

2

. 1 I . 1 .
Yy =CjcosX+Cy sz+ZXcosX—5Xsz+ZX sin X.

Example 5
Determine the form of a particular solution for
2
u—2ﬂ+ y= 1062 cos X
dX2 dx
Solution

Step 1 The given differential equation can be written as
(D% - 2D +1)y = 10e ¥ cos X

Step 2 To find the complementary function, we consider
y'=2y'+y=0

The auxiliary equation is
m?>-2m+1=0= M- =0=>m=11

The complementary function for the given equation is

Yo =cie* +coxe”

Step 3 Since (D2 +4D + S)e_zx cosX=0

Applying the operator (D*> +4D +5) to both sides of the equation, we have
(D> +4D +5)(D* -2D+1)y=0

This is homogeneous differential equation of order 4.

Step 4 The auxiliary equation is
(M? +4m+5)(M? —2m+1) =0
=> m=-2+i,1,1
Therefore, general solution of the 4™ order homogeneous equation is

y =ceX +cyxeX +c3e7 2% cos X+ 462X sin X

80

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

Step 5 Since the terms ¢, +C,Xxe”* are already present in Y., therefore, we remove these

and the remaining terms are C3e_2 Xcos X+ C4e_2 Xsin x

Step 6 Therefore, the form of the particular solution of the non-homogeneous equation is
Yp = Ae X cos X + Be X sin x

Note that thesteps 7 and 8 a re not ne eded, as we don’ th aveto solvethe given
differential equation.

Example 6
Determine the form of a particular solution for

3 2
Y 497 4B 502 6xp ax2e2X 4 365K,
x>  dx? X
Solution:

Step 1 The given differential can be rewritten as
(D3 —4D? +4D)y=5x2 —6x+4x%2e2X +3e>X

Step 2 To find the complementary function, we consider the equation
(D3 —4D% + 4D)y =0

The auxiliary equation is
m? —4m? +4m=0
m(m* —4m+4)=0

mm-2)2=0=>m=0,2,2

Thus the complementary function is

Yo =Cp +Cpe2% +cyxe?”

Step 3 Since g(x) = 5% — 6x + 4x2e?X + 36>
Further D’(5x> -6x)=0

(D-2)’x** =0

(D-5)e™ =0

Therefore the following operator must annihilate the input function g(X) . Therefore,
applying the operator D*(D —2)*(D —5) to both sides of the non-homogeneous equation,
we have

D’(D-2)’(D-5)(D’-D*+4D)y=0
or D*(D-2)’(D-5)y=0
This is homogeneous differential equation of order 10.
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Step 4 The auxiliary equation for the 10™ order differential equation is
m*(m-2)°’(m-5)=0
=m=0,0,0,0,2,2,2,2,2,5

Hence the general solution of the 10™ order equation is

2 2X 2.2 3,2

Y =Cp +CyX+C3x% +CyX° +Cse X +coxeX +cox2e? +cgxe? +coxte?

X + Cloesx

Step 5 Since the following terms constitute the complementary function y;, we remove

these ¢ +cse2X +cgxe

Thus the remaining terms are

2 3,2

CrX+C3X2 + x> +Cox%e X +cgx’e?X +coxte?

X + Cloesx

Hence, the form of the particular solution of the given equation is
yp =AX+ Bx2 +Cx> + Ex2e2X + Fx3e2X + Gx%e?X + He X

82

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

Exercise
Solve the given differential equation by the undetermined coefficients.

1. 2y"-7y"+5y=-29

2. y"+3y'=4x-5

3. y'+2y +2y =5

4. y"+4y=4cosXx+3sinx—8

5. y'+2y' +y=x’e”

6. y"+y=4cosx—sinX

7. y'—y"+y' —y=xe*—-e " +7

8. y'+y=8cos2x—4sinx, y(z/2)=-1, y'(x/2)=0

9. y"-2y"+y'=xe"+5, y(0)=2, y'(0)=2, y"(0)=-1
10. y@ —y" =x+¢€*, y(0)=0, y'(0)=0, y"(0)=0, y"(0)=0
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Lecture 9

Variation of Parameters
Recall

o That a non-homogeneous linear differential equation with constant coefficients is
an equation of the form

d n d n-1
n J +anp-1 J
dx" dx" !

o The general solution of such an equation is given by

a

+"'+al%+aoy: 9(x)
X

General Solution = Complementary Function + Particular Integral
o Finding the complementary function has already been completely discussed.

o Inthe lasttwo lectures, we learnt how to find the particular integral of the non-
homogeneous e quationsb yus ingt heunde terminedc oefficients.

o That the general solution of a linear first order differential equation of the form
dy
+P(x)y = f(x
dx (x)y = f(x)

is given by y= eI PUX. .[ej Pdx ¢ (x)dx+ cle_j Pdx

Note that

o In this last equation, the 2" term

Ye =Ci€
is solution of the associated homogeneous equation:

dy
4 P(x)y =0
v (x)y

— [ Pdx

o Similarly, the I* term
Yp = e_“:’dx.jeI de.f(x)dx

is a particular solution of the first order non-homogeneous linear  differential
equation.

o Therefore, the solution of the first order linear differential equation can be written
in the form

y=Ye+Yp
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In this lecture, we will use the variation of parameters to find the particular integral of the
non-homogeneous equation.

The Variation of Parameters

First order equation
The particular solution y P of the first order linear differential equation is given by

yp = e de.jeJ de.f(x)dx

This f ormula c an a Iso be de rived b y another m ethod, know n ast he va riation of
parameters. The basic procedure is same as discussed in the lecture on c onstruction of a
second solution

. —| Pd
Since y;=e -[ X

is the solution of the homogeneous differential equation
dy
—+P(x)y =0,
o POy

and the equation is linear. Therefore, the general solution of the equation is
y=cy,(x)

The variation of parameters consists of finding a function u, (x) such that
Yp=ui(x) y1(x)

is a particular solution of the non-homogeneous differential equation

Vip(y=f(x)

Notice that the parameter ¢; has been replaced by the variable U,. We substitute y P in

the given equation to obtain
dYI dUl
u| =+ P(x +y;— = f(x
l{dx ( )yl} Y1 X (x)

Since Y, is a solution of the non-homogeneous differential equation. Therefore we must
have

dy,
—+P(x)y, =0
o TPy,
So that we obtain
du,
—=1f(x
yl dx ( )
This is a variable separable equation. By separating the variables, we have
f(x
du, = L dx

Y ()

Integrating the last expression w.r.to X, we obtain
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f(x Pd
u,(X)= Jﬁdx = _[eI L (x)dx
Yi
Therefore, the particular solution y, of the given first-order differential equation is .

y =u(X)y,
or Yp :e_IPdX.IeIPdX.f(x)dx

u, :J%dx

Second Order Equation

Consider the 2" order linear non-homogeneous differential equation
a,(x)y" +a, (x)y’+a,(x)y = g(x)

By dividing with a, (X), we can write this equation in the standard form
y"+P(x)y"+Q(x)y = f(x)

The f unctions P(X), Q(X) and f (X) are continuous on s ome interval | . Fort he

complementary function we consider the associated homogeneous differential equation
y"+P(x)y’ +Q(x)y = 0

Complementary function

Suppose t hat y, and y, are t wo | inearly i ndependent s olutions of t he hom ogeneous

equation. T hen Y, andY, form a f undamental s et of s olutions of t he hom ogeneous
equation on the interval | . Thus the complementary function is

Ve =C1Y1(X)+cy5(x)

Since Yy, and Y, are solutions of the homogeneous equation. Therefore, we have
yi +P(x)yi +Q(x)y; =0
Y3 +P(x)ys +Q(x)y, =0

Particular Integral

For f inding a pa rticular s olution yp ,wer eplace t he p arameters ¢, and C, int he

complementary function w ith t he unknow n v ariables u;(X) and u,(X) .S ot hatt he
assumed particular integral is

Yo =U (X) ¥ (X)+Uy (X)y,(x)

Since we seek to determine t wo unknown functions U;andu,, we need two equations
involving t hese unkno wns. O ne of t hese t wo e quations r esults f rom s ubstituting t he
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assumed Y, in the given differential equation. We impose the other equation to simplify

the first derivative and thereby the 2™ derivative of y b

Yp = Uy +YiUi +UpYs +UsYy =Upyp +Usyy +UpY; +U3Y,
To avoid 2™ derivatives of U, and U, , we impose the condition

uiy; +usy, =0

Then Yp =Uryp +Uzys
So that

Yp =Uryi +Uiy] +Usy3 +UsY5
Therefore

Yo tPYp+Qyp = Uy +uiyi  + Uy + Uy

+Puy; + Puyy; + Quyy; + Quyy,

Substituting in the given non-homogeneous differential equation yields

Upyi +Upyp +Uy Yy +U3Y5 + Pupyp + Puyys +Quyy; +Qu,y, = F(X)

!

or ULy +Py +Qy 1+u,[ys + Py, +Qy, ]+ ujy; +ujy; = f(X)

Now making use of the relations
Y +P(x)y; +Q(x)y, =0
Y3 +P(x)ys +Q(x)y, =0
we obtain
uiyj +usys = f(x)
Hence u;and u, must be functions that satisfy the equations
ury; +uzy, =0
uy;  + uby; = f(x)
By using the Cramer’s rule, the solution of this set of equations is given by

w
u=—, u,=—=

w
WhereW , W, and W, denote the following determinants

i ©
yi f(x)

0 vy
f(x) v5

i 2
Yi Y3

W = . W, =

Wy =
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The determinant W can be identified as the Wronskian of the solutions Yy, and y, . Since
the solutions Yy, and y, are linearly independent on | . Therefore

W (y,(x),y,(x))=0, V xel.

Now integrating the expressions for u; andu’, we obtain the values of u,andu,, hence
the particular solution of the non-homogeneous linear differential equation.

Summary of the Method

To solve the 2™ order non-homogeneous linear differential equation

a,y"+ay +a,y=g(x)

using the variation of parameters, we need to perform the following steps:

Step 1 We find t he c omplementary function by solving t he a ssociated hom ogeneous
differential equation

ay'+a1y’ +agy=0
Step 2 If the complementary function of the equation is given by

Yo =C1Y1 +C2Y2
then y, and Yy, are two linearly independent s olutions of the hom ogeneous di fferential
equation. Then compute the Wronskian of these solutions.

Yi Y2
yi Y3

W =

Step 3 By dividing witha,, we transform the given non-homogeneous equation into the
standard form

y"+P(x)y’ +Q(x)y = f(x)
and we identify the function f(x).

Step 4 We now construct the determinants W; and W, given by

0 vy, i 0
FOO ys i (0
Step 5 Next we determine the derivatives of the unknown variables u; and u, through
the relations

1= ,Wz

' W1 ' W2
Ul = ) U2 -
W W
Step 6 Integrate the derivativesu; and uj to find the unknown variables u, andu,. So

that
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UI:J%dx, uzzj%dx

Step 7 Write a particular solution of the given non-homogeneous equation as
Yp =u1yr +uzys

Step 8 The general solution of the differential equation is then given by
Y=Yet¥p =Gy +CY2 + Uy +UsYs.

Constants of Integration

We don’t need to introduce the constants of integration, when computing the indefinite
integrals in step 6 to find the unknown functions of U, and U, . For, if we do introduce

these constants, then
Yo = (ul + al)yl + (U2 + bl)y2

So that the general solution of the given non-homogeneous differential equation is
Y=Y, +Y, =CY, +C, Y, +(u, +a,)y, +(u, +b,)y,

or y=(ci+a)y+(Co+by)ys +upy +upy;

If we replace ¢; +a;with Cjand ¢, +b; withC,, we obtain

y=Cyy; +Coys +Ury; +Uzy>

This does not provide anything new and is similar to the general solution found in step 8,
namely

Yy=CY, +GY, Uy +u,Y,
Example 1
Solve y' -4y +4y=(x+1)e™

Solution:

Step 1 To find the complementary function

y'—4y'+4y =0
Put y:emx,yr:memx’yn:mZemX
Then the auxiliary equation is

m’> —4m+4=0

(m-2) =0=>m=2,2
Repeated real roots of the auxiliary equation

2X 2X
y.=ce" + C,Xe
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Step 2 By the inspection of the complementary function y., we make the identification

y; =e** and y, = xe>*
Therefore W(y,,y ):W(e2X Xezx)z e” xe =e™ #0,Vx
o ’ 2e  2xe™ +e* ’
Step 3 The given differential equation is
y" -4y +4y =(x+1)e
Since this equation is already in the standard form
y"+P(x)y"+Q(x)y = f(x)
Therefore, we identify the function f (X) as
f(x)=(x+1)e2X
Step 4 We now construct the determinants
0 xe*
Wl: 2x 2Xx 2x :_(X+1)Xe4x
(x+1)e* 2xe* +e
2x
e 0
W. = =(x+1)e¥
2 2e2x ( X + 1)e2x ( )

Step 5 We determine the derivatives of the functions U; and U, in this step

4x
U;=V\i=—%=—x2—x
w e
4x
u; :%:%:xﬂ
w e

Step 6 Integrating the last two expressions, we obtain

3 X2

X
u, :J.(—xz — X)dx =3

X2
u, :I(x+l)dx =7+x.

Remember! We don’t have to add the constants of integration.
Step 7 Therefore, a particular solution of then given differential equation is

3 2 2
y . = A S 0 S (R Vs
Y 3 2 2
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3 2
o Z —{XTX?}“

Step 8 Hence, the general solution of the given differential equation is

3 2
X X
y=y +y =ce+cxeX | L2 |g2X
c °p 6 2
Example 2
Solve 4y" +36Yy = csc3X.
Solution:

Step 1 To find t he c omplementary function w e s olve t he a ssociated hom ogeneous
differential equation

4y"+36y=0=y"+9y =0
The auxiliary equation is
m?+9=0=m==3i
Roots of the auxiliary equation are complex. Therefore, the complementary function is
Ye = Cj €o83X +Cy sin3X
Step 2 From the complementary function, we identify
y; = cos3X, Y, =sin3X
as two linearly independent solutions of the associated homogeneous equation. Therefore

cos3x sin 3X

W(cosSX, sin 3X) = 3sin3x  3cos3x

Step 3 By dividing with 4, we put the given equation in the following standard form
1
y"+9y =—csc3x.
4
So that we identify the function f(x)as

f(x)= %csc3x

Step 4 We now construct the determinants W, and W,
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0 sin3X

W, =1 :——csc3x-sin3X:—l
—csc3X 3cos3x 4

3x 0
B oS _lcos3x

~ |=3sin3x %csc?)x 4 sin3x

2

Step 5 Therefore, the derivatives ujand uj are given by

, W 1 , W, 1 cos3x
W 12 sin3x

Step 6 Integrating the last two equations W.r.to X, we obtain

U =—LX and Uy =Lln|sin3x|
12 36

Note that no constants of integration have been added.

Step 7 The particular solution of the non-homogeneous equation is
1 1
=——Xcos3X+—(sin3X)In|sin3x

T 3653 in3x|

Step 8 Hence, the general solution of the given differential equation is
Y=Y+ Yp =C1cos3X+Cysin3x— L Xcos3X + L(sin 3X)ln|sin 3X|
P 12 36

Example 3

Solve y'—y= l
X

Solution:

Step 1 For the complementary function consider the associated homogeneous equation
y'-y=0

To solve this equation we put
y = emx’ y, -m emx, y!r _ mzemx

Then the auxiliary equation is:

m2—1:0:>m:i1

The roots of the auxiliary equation are real and distinct. T herefore, the complementary
function is
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Yo = ceX +ce X

Step 2 From the complementary function we find

X —
yi=¢e", y,=¢€
The functions y; and y, are t wo | inearly i ndependent s olutions of t he hom ogeneous
equation. The Wronskian of these solutions is

Vv(ex,e_x):

X

eX X

eX —e7X

Step 3 The given equation is already in the standard form
Y+ p(x)y+Q(x)y=f(x)
Here f(x)= l
X

Step 4 We now form the determinants

—-X
w=| 0 ® =X W)
I/x —-e"
X
w,=| & O loexar
eX 1/x

Step 6 We integrate these two equations to find the unknown functions u; and u,.

uI:lJ'e—dx, uzz—lje—dx
2) X 2) X
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The integrals defining u, and u, cannot be expressed in terms of the elementary functions
and it is customary to write such integral as:

X -t X .t
ulzl e—dt, u, = -lJ © dt
2]t 2),t

Step 7 A particular solution of the non-homogeneous equations is

X
1 | et 1 (* €
yp=EEJ Tdt—ae j Tdt
Xo

XO

Step 8 Hence, the general solution of the given differential equation is

1 X et 1 X el
Y=Y¢+Yp =ceX +ce7 % +§eXJ Tdt_Ee_xj Tdt

XO XO

94

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

Lecture 10
Variation of Parameters Method for Higher-Order Equations

The method of the variation of parameters just examined for second-order differential
equations can be generalized for an nth-order equation of the type.

n n-1
d y+an_1d—y+---+ald—y+a0y: g(x)
dx" dx"! dx
The application of the method to n™ order differential equations consists of performing
the following steps.

ap

Step 1 To find the complementary function we solve the associated homogeneous
equation

d ny d nfly dy
+a +e-ta—+a,y=0
"dx" " dx™! ax o)
Step 2 Suppose that the complementary function for the equation is
Yy=Cy1 +Ca¥a +---+Cnh¥n

Then yy,Ys,...,yqare n linearly independent solutions of the homogeneous equation.
Therefore, we compute Wronskian of these solutions.

a

Y, 2RO A
Yy Y, Y
W (Y, Yo, Vaseees Yo ) =
yl(n—l) yz(n—l) . y (n-1)

Step 4 We write the differential equation in the form

Yy 4P ()Y e P(X) Y+ P () y = (%)

and compute the determinants W, ; kK =1,2,...,n; by replacing the kth column of W by
0

0
the column

0
F00
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Step 5 Next we find the derivatives uj,u5,...,u,of the unknown functions uy,u,,...,u,
through the relations

w
U :—k, k=12,...,n
W

Note that these derivatives can be found by solving the nequations

yiuj +  YoUy  + - 4 Yplp = 0
yiuj + yaUs 4 -+ Ypup = 0
v 0D+ v,y ey g = £ (x)

Step 6 Integrate the derivative functions computed in the step 5 to find the functions uy

Uy =jw—kdx, k=12,...,n
W
Step 7 We write a particular solution of the given non-homogeneous equation as
Yo =W (X) ¥ (%) U, (%) ¥ (%) +--+ U, (X) , (X)
Step 8 Having found the complementary function y. and the particular integral y,, we

write the general solution by substitution in the expression

Y=Yct+VYp

Note that
o The first n—1equations in step 5 are assumptions made to simplify the first
n —1derivatives ofyp. The last equation in the system results from substituting

the particular integral y, and its derivatives into the given nth order linear
differential equation and then simplifying.

o Depending upon how the integrals of the derivatives uj of the unknown functions
are found, the answer for y, may be different for different attempts to find y,,
for the same equation.

o When asked to solve an initial value problem, we need to be sure to apply the

initial conditions to the general solution and not to the complementary function
alone, thinking that it is only y. that involves the arbitrary constants.
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Example 1
Solve the differential equation by variation of parameters.

3
a7y +ﬂ =cscX
dx3 dx

Solution
Step 1: The associated homogeneous equation is

d’y d
d72/+d_i =0
Aucxiliary equation
m*+m=0 :>m(m2 +1):0
m=0, m=+i
Therefore the complementary function is
Y. =G +C, cosX+C;sinX
Step 2: Since

Ye =C,+C,Cc08X+CysinX

Therefore y,=1, y,=cosX, Yy;=sinX

So that the Wronskian of the solutions y;, Yy, and Yy,

1 cosx sin X
W (y,,Y,,¥;)=|0 —sinx cosx
0 —cosX -—sinX

By the elementary row operation R; + R3, we have

1 0 0
=0 —sin X Cos X
0 —CoS X —sin X

= (sin2 X + cos> X): 120

Step 3: The given differential equation is already in the required standard form
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y"+0y"+ y+0y= scX

Step 4: Next we find the determinants W,,W, and W, by respectively, replacing 1%, 2
0

and 3" column of W by the column 0

cscX
0 cos X sin X
W;=| 0 —sinX cosX

cSCX —CcosX —sinX
) 2
=cscx€ in“ X+cos X)=CSCX

1 0 sin X
W,=10 0 COS X

0 cscX —sinX

0 CcOs X
=| co

. =— sXcscX=-cotX
cscX —sinX

1 cosx 0
and W;=0 -sinx 0 |=

0 —cosX cscX

—sin X 0 .
=—sinXcscX=-—1

—COSX cscX

Step 5: We compute the derivatives of the functionsu;, u, and us as:

W

uj =— =cscx
W
W

ub =—2 =—cotX
W
W

uj =—=-1
W

Step 6: Integrate these derivatives to find u;,u, and U,

W
u, = JWldX = J.csc Xdx = 1n|cscx—cotx
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W — .
uzzJ'_zdx:J‘_cotxdx:J' (':Osxdx:—ln|s1nx|
W sin X

U; = f\%dx = f—ldx =-X

Step 7: A particular solution of the non-homogeneous equation is

y

:1n|cscx—cotx —cosxln|sinx|—Xsinx

p
Step 8: The general solution of the given differential equation is:

yzcl+02cosx+c3sinx+ln|cscx—cotx —COoS X ln|sinX|—XsinX

Example 2
Solve the differential equation by variation of parameters.
y"+y'=tanX
Solution
Step 1: We find the complementary function by solving the associated homogeneous
equation
y!ﬂ + y! — 0
Corresponding auxiliary equation is
m*+m=0 :>m(m2 +1):0
m=0, m=+i
Therefore the complementary function is
Yo =Cy +Cp cosX+C38inX
Step 2: Since

Yo =Cj +Cp COSX + C38in X
Therefore Y=L Yy,=cosX, Y;=sinX
Now we compute the Wronskian of y;, y, and yj

1 cosXx sin X
W (Y,Y,,Y;)=|0 —sinx cosx
0 —cosX -—sinX

By the elementary row operation R; + R3, we have
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1 0 0
=0 —sin X Cos X
0 —CoS X —sin X

= (sin2 X + cos’ X): 1#0
Step 3: The given differential equation is already in the required standard form
y"+0-y"+y' +0-y=tan X

Step 4: The determinants W,,W, andW, are found by replacing the 1%, 2" and 3"
column of W by the column

0
0
tan X
Therefore
0 cos X sin X
W,=| 0 —sinX cosX
tanX —cosX -—sinX
=tanX ¢o s2X+sin2X):tanX
1 0 sin X
W,=0 0 cosX | =1(0—cosxtanx)=—sin x
0 tanX -—sinX
1 Cos X 0
and W3 =10 —sin X 0 | =1(-sinxtanx)—0 = —sin X tan X
0 —Ccos X tan X

Step 5: We compute the derivatives of the functionsu;, u, and us.

' Wl
Uy =——=tanX
W
W :
Uy =—2=—sinX
W
’ W3 :
U; = —=—sinXtan X
W

Step 6: We integrate these derivatives to find u,,u, and U,
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W :
u, :JWldX:J.tanx HX:—J— SIX gy = — n|cosX|
cos X

(W .
U, = —ZdXZI—szdGI: $ X
J W
(W .
Uy = —3dX=J.—sztanXdX
JW
(. _sinX .
= | —sin X dX:I—sszsecdx

cosX

:J.(cos2 X—l)secxdx :J‘(cos2 Xsecx—secx)dx

:I(cosx—sec X)dx:Icos de—jsecxdx
:sinx—1n|secx+tanx|

Step 7: Thus, a particular solution of the non-homogeneous equation

y, =—In|cosx|+cosx cosx+(sinx—1n|secx+tanx|) (sinx)

P

:—1n|cos X|+cos2 X +sin? X—sinXln|secX+tan X|

:—1n|cos X|+1—sin xln|secx+tan x|

Step 8: Hence, the general solution of the given differential equation is:

y=C; +CyCcosX+C3 sinx—1n|c0s X| +1-sin X1n|secx+ tan X|
or y :(Cl + l)+ Cy COS X + C3 sin X —ln|cos X| —sin Xln|secX + tan X|
or y=d,+C,cosX+C, sinX—1n|cos X|—sin Xln|secx+tan X|

where d, represents ¢, +1.

Example 3

Solve the differential equation by variation of parameters.
ym _2y/r N yi + 2y — e3X

Solution

Step 1: The associated homogeneous equation is
y"l_2yll_ yr+2y — 0

The auxiliary equation of the homogeneous differential equation is
m’—-2m? -m+2=0
= (Mm-2) (mz— )=o

—m=12,-1
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The roots of the auxiliary equation are real and distinct. Therefore y, is given by

yo =cie¥ + 62 +c3e %

Step 2: From y. we find that three linearly independent solutions of the homogeneous

differential equation.

2X X

yp=¢e%, yp=eX, y3=¢”
Thus the Wronskian of the solutions Y,, Y, and Yy, is given by
X 2X —X

eX e e L1
W =leX 202X _eX|—eX.e2X.e Xl 2
X 4ezx o= X 1 4 1

By applying the row operations Ry —R;, Rz —R;, we obtain

11 1
W=e2Xl0 1 —2|=6e2X 20
03 0

Step 3: The given differential equation is already in the required standard form

ym_zy”_ yr+2y — e3X

Step 4: Next we find the determinants W, ,W, and W, by, respectively, replacing the 1%,
2" and 3™ column of W by the column

0
0
e3x
Thus
0 e2x e—x
5 - Q2% oX 3
Wi=| 0 2e7% —e7X|=(-1) e X
3 5 2e2X  _g7X
X ge?X X
_e3x( X 2ex)_ 3e4%
eX 0 e %
328 e7¥ 3
Wo=eX 0 -e7¥=(-1) e X
X —X
_ et —e
eX e3x o= X
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X e2X )
X X
e e
Wy =leX 262X 0 |=e** o
and e 2e
eX 4e2x e3x

_e3X (2e3x _e3x) _ o0X

Step 5: Therefore, the derivatives of the unknown functionsuy, u, and us are given by.

W, -3 ]

w 62X 2
W _ 263X _Lx

2 W 6 ezx _g
u’ _%_ e6X le4X
STW O ge2X 6

Step 6: Integrate these derivatives to find u,,u, and U,

up = JWI dx = J Le2xgy - — %J‘ezxdx:—%ezx
Uy = J' =2 dx = Jl eXdx = LeX
W 3 3

W
Uz = J—3dx = fle“xdx _ L
w 6 24

Step 7: A particular solution of the non-homogeneous equation is

1 1 1
Yp _ 13X 13X L a3X
4 3 24
Step 8: The general solution of the given differential equation is:
—x 1 1 1
y=ceX +cpe?X +ege X - o e 4 e +£e3x
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Exercise
Solve the differential equations by variations of parameters.
1. y"+y=tanXx
2. y"+y=secxtanX
3. y'+ yzsec2 X
4. y"—y=9x/e¥
5. y"—2y’+y=ex/(1+x2)
6. 4y"—4y' +y=e"2y1-x>

7. y"+4y" =sec2x

8. 2yﬂ! _ 6y" — X2
Solve the initial value problems.
9. 2y"+y' —y=x+1

10. y"—4y' +4y = (12x2 —6x)ezx
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Lecture 11
Applications of Second Order Differential Equation

o A single differential equation can serve as mathematical model for many different
phenomena in science and engineering.
o Differentfo rmso ft he2 ™

d’y ,dy

0 +b i +cy = f (x)
appear in the analysis of problems in physics, chemistry and biology.

o In the present and next lecture we shall focus on one application; the motion of a
mass attached to a spring.

order] ineardi fferentiale quation

a

2
d’y bﬂ, cy andf (x) meansin

0 Weshall see, what the individual terms a—;-,
dx dx

the context of vibrational system.
o Exceptf ort het erminology andph ysicali nterpretation of t het erms
d’y dy
a—-, b==, cy, f(x)
dx dx
the mathematics of a series circuit is identical to that of a vibrating spring-mass
system. Therefore we will discuss an LRC circuit in lecture.

Simple Harmonic Motion

When t he N ewton’s 2 ™ law i s ¢ ombined w ith t he H ook’s Law, w e c an de rive a
differential equation governingt he m otion of a m ass a ttached t o s pring—the s imple
harmonic motion.
Hook’s Law
Suppose that

O A mass is attached to a flexible spring suspended from a rigid support, then

O The spring stretches by an amount °S’.

O The spring exerts a restoring F opposite to the direction of elongation or stretch.
The Hook’s law states that the force F is proportional to the elongation S. i.e

F =ks

Where K is constant of proportionality, and is called spring constant.

Note That
O Different ma sses s tretcha s pring b y different a mounti. e s is di fferent fo r
differentm.
O The spring is characterized by the spring constant Kk .

O Forexampleif W =10 lbsand s = %ft
Then F =ks

or 10 = [l)k
2
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or k =20 Ibs/ft
If W =8 Ibs then 8=20(s)=>s=2/5 ft

Newton’s Second Law

When a force F acts upon a b ody, the accel eration a is produced in the direction of the
force whose magnitude is proportional to the magnitude of force. i.e

F=ma
Where m is constant of proportionality and it represents mass of the body.
Weight

O The gravitational force exerted by the earth on a body of mass m is called weight
of the body, denoted by W

O In the absence of air resistance, the only force acting on a freely falling body is its
weight. Thus from Newton’s 2" law of motion
W =mg

Where m is measured in slugs, kilograms or grams and g = 32ft/s*, 9.8m/s? or
980 cm/s”.
Differential Equation
O When a body of mass m is attached to a spring
O The spring stretches by an amount S and attains an equilibrium position.

O At the equilibrium position, the weight is balanced by the restoring force ks .
Thus, the condition of equilibrium is
mg=ks = mg-ks=0

QO If the mass is displaced by an amount X from its equilibrium position and then
released. The restoring force becomes K(s + X). So that the resultant of weight and
the restoring force acting on the body is given by

Resultant=—k(s + x)+ mg.
By Newton’s 2" Law of motion, we can written

d2x
—=-k(s+x)+mg
7 = kls+x)
2

or md—zxz—kx—ks+mg
dt

Since mg—ks=0
2

Therefore d—2X = —kx
dt

O The negative indicates that the restoring force of the spring acts opposite to the
direction of motion.

O The di splacements m easured be low t he e quilibrium pos ition a re pos itive.
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O By dividing withm, the last equation can be written as:

2
d 2X+£x:0
dt
2
or d—2+a)2X=0
dt

K : . . . .
Where @> =—. This e quation i s know n a s t he e quation of s imple ha rmonic
m

motion or as the free un-damped motion.
Initial Conditions

Associated with the differential equation
% +0’x=0
are the obvious initial conditions
X(0)=a, x(0)=4
These initial ¢ onditions represent th e in itial d isplacement and th e in itial v elocity. F or
example

a If a>0, p<O0thenthebody starts from a point below the equilibrium position
with an imparted upward velocity.
O If a<0, p=0thenthebodystarts fromr est |0c| units a bove t he e quilibrium
position.
Solution and Equation of Motion

Consider the equation of simple harmonic motion

Put x=e™, ——=m-e

Then the auxiliary equation is
m+0°=0 = m=zxiw
Thus the auxiliary equation has complex roots.
m, =i, m, =-ei
Hence, the general solution of the equation of simple harmonic motion is

x(t) =c, cos ot +c, sin wt
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Alternative form of Solution

It is often convenient to write the above solution in a alternative simpler form. Consider
X(t)=c, coswt +c, sin wt

and suppose that A, ¢ € R such that
¢, = Asin ¢, Cy = Acos¢

[ 2 2 ¢
Then A=4c,” +¢c,” , tang =1
C

2
So that

x(t)= Asinwt cosg+Bcos ot sing
or x(t) = Asin(wt+¢ )
The number ¢ is called the phase angle;
Note that

This form of the s olution of t he e quation of s imple ha rmonic m otion i s ve ry useful
because

o Amplitude of free vibrations becomes very obvious
o Thet imesw hent hebod y crossese quilibrium pos ition areg ivenb y
x=0=sin(wt+¢ )=0
or ot+g=nrx

Where nis a non-negative integer.

The Nature of Simple Harmonic Motion
Amplitude

O We know that the solution of the equation of simple harmonic motion canbe
written as

x(t) = Asin(wt+¢ )

O Clearly, the maximum distance that the suspended body can travel on either side
of the equilibrium position is A.

O This ma ximum d istance ¢ alled th e a mplitude o fmo tiona ndis givenb y

Amplitude = A = /¢, +c,”

In travelling from X = A to X = - A and then back to A, the vibrating body completes one
vibration or one cycle.

A Vibration or a Cycle
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Period of Vibration

The simple harmonic motion of the suspended body is periodic and it repeats its position
after a specific time periodT . We know that the distance ofthe mass at any time t is
given by

x = Asin(wt +¢)

Since Asin{a)(t +2—7[)+¢}
®

= Asinl:(a)t + @+ 272')]

= Asin [(a)t +¢ ):'
Therefore, t he di stances of t he s uspended bod y f rom t he e quilibrium p osition at the

. 27
timest and t + — are same
w

Further, velocity of the body at any time t is given by
dx
dt

Aa)cos(a)(u%jﬂbj

= Awcos[wt+¢ +27]

= Awcos(ot+¢ )

= Awcos(ot+¢ )

Therefore the velocity of the body remains unaltered if t is increased by27z /@ . Hence

the time period of free vibrations described by the 2" order differential equation
2

—+ @’x=0
dt
is given by
T-%%
0]
Frequency

The number of vibration /cycle completed in a unit of time is known as frequency of the
free vibrations, denoted by f . Since the cycles completed in time T is 1. T herefore, the

number of cycles completed in a unit of time is 1/T

Hence
fol
T 2«7
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Example 1
Solve and interpret the initial value problem
d_2x +16x=0
dt’
x(0)=10, x'(0)=0.
Interpretation
Comparing the initial conditions
x(0)=10, x'(0)=0.
With
x(0)=a, x'(0)=p
We see that
a=10,=0
Thus the problem is equivalent to
O Pulling the mass on a spring 10 units below the equilibrium position.
O Holding it there until timet = 0 and then releasing the mass from rest.
Solution
Consider the differential equation
d—2X +16x=0
dt”
Put x=em™, d—zxzmzem‘
dt’
Then, the auxiliary equation is
m>+16=0
= m=0=x4i
Therefore, the general solution is:
X(t) = c, cos 4t + c, sin 4t
Now we apply the initial conditions.
x(0)=10=¢,.1+¢,.0=10
Thus c, =10
So that X(t)=10cos 4t +c, sin 4t
% =—40sin 4t + 4c, cos 4t
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Therefore x'(0)=0 = —40(0)+4c,.1=0
Thus c,=0
Hence, the solution of the initial value problem is
x(t) = 10cos 4t
Note that

o Clearly, the solution shows that once the system is set into motion, it stays in
motion with mass bouncing back and forth with amplitude being10 units.

o Since® =4. Therefore, the period of oscillation is

T =2—7Z -z seconds
4 2

Example 2
A mass weighing 21bs stretches a spring 6 inches. At t = 0 the mass is released from a

point 8 1 nches b elow t he e quilibrium pos ition w ith a n up ward ve locity of g ft/s.

Determine the function X (t) that describes the subsequent free motion.
Solution

For consistency of units with the engineering system, we make the following conversions

6 inches = % foot

8 inches = % foot .

Further weight of the body is given to be

W =21bs
But W =mg
Therefore m= E = i
g 32
or m= L slugs
TR
Since Stretch=s = % foot

Therefore by Hook’s Law, we can write

2= k(%} = k =41bs/ft
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Hence the equation of simple harmonic motion

2
md—2X = —kx
dt
becomes
Ldix_
16 dt>
2
or 9% | 6ax=o0.
dt

Since th e initial d isplacement is 8 inches = % ft and th e initial velocity is %4 ft/s, the

initial conditions are:

The negative sign indicates that the initial velocity is given in the upward i.e ne gative
direction. Thus, we need to solve the initial value problem.

2
Solve % +64x=0
Subject to x(0)= 2, x'(0)= _4
3 3
2

Putting x=eM d'x 2X =m2e™

dt
We obtain the auxiliary equation

m? +64=0

or m = +8i

The general solution of the equation is
X(t) =C, cos8t +C, sin 8t

Now, we apply the initial conditions.

2 2
X(O):E = 1+60=3

So that x(t) = zcos 8t + ¢, sin 8t
3
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Since
x'(t) = —?sin 8t +8C, cos8t.
Therefore
x(0)=-2 =10 04+8c,1=-2
3 3 3
Thus
1
C2 = _g .

Hence, solution of the initial value problem is
x(t) = %cos 8t — lsin 8t.
3 6

Example 3

Write the solution of the initial value problem discussed in the previous example in the
form

x(t)=Asin(wt+¢ ).
Solution

The initial value discussed in the previous example is:

2
Solve d—2X +64x=0
dt
Subject to x(0) = %, x(0) = _%

Solution of the problem is
X(t) = %cos 8t — lsin 8t
3 6

Thus amplitude of motion is given by

2 2
A= (2] +[_lj 7 oo
3 6 6

and the phase angle is defined by

sing = 2/3 _ 4 >0
1776 17
08 = -1/6 1

=— <0
V1776 17

113

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

Therefore
tan @ = —4
or tan~' (— 4) = —1.326 radians
Since sin¢g > 0, cos¢ < 0, the phase angle ¢ must be in 2" quadrant.

Thus
¢ =m—1.326 =1.816radians

Hence the required form of the solution is

dt)=Y7

:Tsin(8t+l.816)

Example 4

For the motion described by the initial value problem
2

Solve d—i( +64Xx=0

Subject to x(0) = % $(0) = _§

Find the first value of time for which the mass passes through the equilibrium position
heading downward.

Solution

We know that the solution of initial value problem is
x(t) = ECOSSt —lsin 8t.
3 6

This solution can be written in the form

)= Y17

= Tsin(gt +1.816)
The values of t for which the mass passes through the equilibrium position i.e for which
X =0 are given by
wWt+¢=nr
Where n=1,2,..., therefore, we have
8ty +1.816 =7, 8t, +1.816=27, 8t3+1.816=73x,...
or t; =0.166, t, =0558, t3=0951, ...

Hence, the mass passes through the equilibrium position
X=0

heading downward first time at t, = 0.558 seconds.
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Exercise

State in words a possible physical interpretation of the given initial-value problems.

1. ;izx”+3x:0, x(0)=-3, x'(0)=-2

2. %x"+4x:0, x(0)=0.7, x'(0)=0

Write the solution of the given initial-value problem in the form x(t)= Asin(at + ¢)

3. x"+25x=0,  x(0)=-2, x(0)=10
4. %x"+8x:0, x(0)=1, x'(0)=-2
5. x+2x=0,  x(0)=-1, x'(0)=-2v2
6. %x"+16x=0, x(0)=4, x(0)=16

7. 0.1x"+10x=0,  x(0)=1, x(0)=1

8. x"+x=0,  x(0)=—4, x(0)=3

9. The period of free undamped oscillations of a mass on a spring is 7 /4 seconds.
If the spring constant is 16 1b/ft, what is the numerical value of the weight?

10. A 4-1b weight is attached to a spring, whose spring constant is 16 1b/ft. What is
period of simple harmonic motion?

11. A 24-1b weight, attached to the spring, stretches it 4 inches. Find the equation of
the motion ifthe weight is released from rest from a point 3 i nches above the
equilibrium position.

12. A 20-1b weight stretches a s pring 6 inches. The weight is released from rest 6
inches below the equilibrium position.

a) Find the position of the weight at t = i,z,z,z,g—ﬂ seconds.
128 6 4 32
b) Whatisthe velocity of the weight when t =37/16 seconds? In w hich
direction is the weight heading at this instant?

c) At what times does the weight pass through the equilibrium position?
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Lecture 12

Differential Equations with Variable Coefficients
So far we have been solving Linear Differential Equations with constant coefficients.

We will now discuss the Differential Equations with non-constant (variable) coefficients.

These equations normally arise in applications such as temperature or potential U in the
region bounde d be tween t wo ¢ oncentric s pheres. T hen unde r s ome ¢ ircumstances w e
have to solve the differential equation:

2
g u+2d—u:0

r
dr? dr

where the variable >0 represents the radial distance measured outward from the center
of the spheres.

Differential equations with variable coefficients such as
X2y +xy'+(x* —v3)y =0
- xz)y” =2xy"+n(n+1)y=0
and  y"-2xy'+2ny=0
occur i n a pplications r anging f rom pot ential pr oblems, te mperature d istributions a nd
vibration phenomena to quantum mechanics.

The differential equations with variable coefficients cannot be solved so easily.
Cauchy- Euler Equation:
Any linear differential equation of the form

ndny n—ldn_ly d y
a X +a X +--+a, X ——+a,Y=0(X
n an n-1 dxn_] 1 dX Oy g( )

-+,a, are co nstants, i s saidtobea Cauchy-Euler equation or e qui-

where a,a
dimensional equation. T he d egree o f e ach m onomial co efficient m atches t he order o f

differentiation i.e X" is the coefficient of nth derivative of y, X" of (n-1)th derivative of
y, etc.

n’>>~n-1°

For convenience we consider a homogeneous second-order differential equation

2
ax2u+bxﬂ+cy:0, X#0
dx2 dx

The solution of higher-order equations follows analogously.
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Also, we can solve the non-homogeneous equation

2
u+bxﬂ+cy: g(x), x=0
dx? dx

by variation of parameters after finding the complementary function y,(X).

ax2

We find the general solution on the interval (0,00) and the solution on (0,—%) can be
obtained by substituting t = —X in the differential equation.

Method of Solution:

We try a solution of the form y = x™, where m is to be determined. The first and second

derivatives are, respectively,
2
Yyt ang 9V m(m-1)x""2
dx dx?

Consequently the differential equation becomes
2
:d 3/ + bxd—y+ cy =ax’ -m(m—1)x" +bx-mx™" +cx
dx dx

m

ax

=am(m-1)x" +bmx™ +cx"
=x"(am(m—-1)+bm+c)

Thus y = x"is a solution of the differential equation whenever m is a solution of the
auxiliary equation

(am(m—1)+bm+c)=0 or am’* +(b-a)m+c=0

The solution of the differential equation depends on the roots of the AE.

Case-l: Distinct Real Roots

Let m, and m, denote the real roots of the auxiliary equation such that m, # m,. Then

y=x™ and y=x™ form a fundamental set of solutions.

Hence the general solution is
m m
y=c,x™ +c,x™.

117

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

Example 1
2
Solve xzu—zxﬂ—w =0
dx2 dx
Solution:
Suppose that y = x™, then
2
L : ay_ m(m—1)xm~2
dx dx?
Now substituting in the differential equation, we get:
2
x? d 2/ —2xﬂ—4y =x>-m(m-1)x"? =2x-mx™" —4x"
dx dx
=x"(m(m-1)-2m—4)
x™(m? -3m-4)=0 if m’>-3m-4=0
This implies m, =—1,m, = 4; roots are real and distinct.
So the solution is y=cX " +C,x".

Case I1: Repeated Real Roots

If the roots of the auxiliary equation are repeated, that is, then we obtain only one
solution y = x™.

To construct a second solution Y, , we first write the Cauchy-Euler equation in the form
d’ b d C

v, bay,
dx*  axdx ax

y=0

2
Comparing with
d’y
dx’
We make the identification P(X) = L . Thus

+P<x)%+o(x)y=o

dx

Y, = x™ I (exml )2

~®)imx
a

e
_ m.
=X IJ‘ veT dx
b

=xM J. X2 x"2M gx

Since roots of the AE am” + (b—a)m+c =0 are equal, therefore discriminant is zero
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rem = _b=2) or —2my = +M
2a a
b b-a
y2—xmlfxa x a dx
m (OX _ m
y, =X ‘j7—x 'In X
The general solution is then
y=cXx" +c,x" Inx
Example 2
2
Solve w4 Wy
dx dx
Solution:
Suppose that y = x", then
2
dy_ mx™" d—gl =m(m-1)x"".
dx dx

Substituting in the differential equation, we get:

2
4x* (; Z+8X%+y: X"(Amm-1)+8m+1)=x"(4m> +4m+1)=0
X X
if 4m*> +4m+1=0 or 2m+1)> =0.
Since m, = —% , the general solution is
L L

y=CX ?+¢C,X *InX.

For higher order e quations, if m,is a root of multiplicity k, t hen it can be shown that:

XM x™ 1n x, x™ (In X)2 -, XM (In X)k_1 are k linearly independent solutions.

Correspondingly, the general s olution of the di fferential equation must then c ontain a
linear combination of these k solutions.

Case 111 Conjugate Complex Roots
If the roots of the auxiliary equation are the conjugate pair

m=a+if, m=a-ip
where o and >0 are real, then the solution is

y=cx@HP 4o xa 1B,
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But, as in the case of equations with constant coefficients, when the roots of the auxiliary
equation are complex, we wish to write the solution in terms of real functions only. We
note the identity

x1B — (elnx)iﬁ _ eiﬁlnx’
which, by Euler’s formula, is the same as

X7 = cos(BInx)+isin(B1nXx)
Similarly we have

x5 = cos(fInx)—isin(S1n x)

Adding and subtracting last two results yields, respectively,
XP 4 x7 P = 2cos(f1Inx)
and  XB _x7B =2 sin( £ In x)

From the fact that Y = CIXOH_iﬂ +Cy x%71B s the solution of ax> y"+bxy’+cy =0,

for any values of constants ¢, and c,, we see that
y1 = x4 (P x5y, (¢ =c, =1)
Yo =x4(xXP —x7By, (¢, =1,c, =—1)

or y; =2x%(cos(B1nx))
Yo = 2x% (sin( B1n X)) are also solutions.

Since W (X cos(f1n ), x* sin(B1In X)) = Ax**"' = 0; f > 0, on the interval (0,o0), we
conclude that

Y, = X“cos(fInx)and y, = X“ sin(S In X)
constitute a fundamental set of real solutions of the differential equation.

Hence the general solution is
y, = X“[c, cos(fInX) +c, sin( S In X)]

Example 3
Solve the initial value problem

2
9V W a0 vy =1Lyl =-5

dx? dx
Solution:
2
Let us suppose that:  y =x", then j—y =mx™" and d 2, =m(m-1)x"".
X X
2 dzy dy m m 2
X d7+3x&+3y: x'(mm-=0)+3m+3)=x"(M"+2m+3)=0
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if m*+2m+3=0.

From the quadratic formula we find that m, = -1+ \2i and m =-1- V2i. If we make

the id entifications ¢ =—-1 and g = V2 ,sothe general s olution of t he di fferential
equation is

y, = X'[c, cos(+/2 InX) + ¢, sin(+/2 In X)].

By applying the conditions y(I) =1, y'(1) = =5, we find that
c, =1 and 022—2\/5.

Thus the solution to the initial value problem is

y, = X '[cos(v/2 In X) — 24/2 sin(+v/2 In X)]

Example 4
Solve the third-order Cauchy-Euler differential equation
3
x3d—¥+5x a” ¥+7xdy+8y:0,
dx dx dx
Solution

The first three derivative of y = X" are

ﬂ:mx""l, d” g_m(m Hx™2, d—y_m(m D(m=2)x"m"3,
dx dx dx
so the given differential equation becomes
3 2
x> (;—2/ +5%° —(; Z + 7x%+ 8y =x’m(m—-1)(m—-2)x"" +5x’m(m—-1)x™ > + 7xmx™ " +8x™,
X X X

=x"(m(m-1)(M-2)+5m(m—1)+7m +38)
=x"(m’ +2m’ + 4m+38)
In this case we see that y = x™ is a solution of the differential equation, provided m is a
root of the cubic equation
m’ +2m* +4m+8=0
or (M+2)(M*+4)=0
The roots are: m, =-2,m, =2i,m, =-2i.

Hence the general solution is
Yy, =C,X +c¢, cos(2In X) + ¢, sin(21n X)
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Example 5

Solve the non-homogeneous equation
X2y —3xy’ +3y = 2x%eX

Solution
Put y=x"
2
_ mx™", ay 2/ =m(m-1)x"
dx dx

Therefore we get the auxiliary equation,
mm-1)-3m+3=0 or (m—-1)(Mm-3)=0 or m=1,3

Thus y, =CX+C,X’
Before using variation of parameters to find the particular solution y, =u,y, +U,Y,,

y2 yl O
F) Y, i f(
and W is the Wronskian of Yy, and Yy, , were derived under the assumption that the
differential equation has been put into special form . y"+ P(X)y'+ Q(X)y = f(X)

recall that the formulas u; = % and U = %, where W, =

s 2 s

Therefore we divide the given equation by x>, and form y” — 3 y + % y =2x%e"
X X

we make the identification f(x)=2x’e* . Now with y, =x, y, = x*, and
3

X X 0 X’ X
W = J=2¢, W= T T f=-2x’e, W, = , L |=2x%e"
1 3x 2x°e”  3X 1 2x%e
we find
2x°e” 2x’e*
u',=—"——=-x’" and u,=—"——=¢"
2X 2X
u, = —x’e* +2xe* —2e* and u, =e*.
Hence Yo =U Yy, +U,Y,

= (=x’e* +2xe* —2e*)x+e*x’ =2x%e* —2xe*

Finally we have y =y, +y, =¢,X+C,x’ +2x’e" —2xe”

Exercises
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1. 4%y +y=0
2. Xy"—y' =0
3. X2y +5xy'+3y=0
4, 4x2y"+4xy'—y:0
5. x2y”—7xy’+41y=0
3 2
3d’y ,.0d%y o dy o
6. X O 2X ) +4xdx 4y =0
4 3 2
4d®y 307y 4.02d7y L dy
7. X +6X +9x“ ——=+3x=+Yy=0
dx? dx dx? ax Y

8. X2y"—5xy'+8y=0;y(1)=0,y'(1)=4
9. x2y"—2xy’+2y=x31nx
3
x3OI
dx

10.

y_a20%y dy o 3
3 3X ™ +6xdX 6y=3+InX
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Lecture 13

Cauchy-Euler Equation:
Alternative Method of Solution

We reduce any Cauchy-Euler differential equation to a differential equation with constant
coefficients through the substitution

X= et or t=InX

LOy dy dt 1 dy

Tdx dtodx x dt

d’y _d 1.dy 1 d dy 1 dy

b dx d x axla) Xt

d’y 1 d dy dt 1 dy

or

d’y 1 d?y 1 dy

or _:_.___2._

Therefore X——=—"2, X' —=—2>—-—
dx dt dx dt dt
Now introduce the notation
d , d?
D:d—,D = VR etc.
X X
2
and A=%,A2 =3?, etc.
Therefore, we have
xD=A

x2DZ=A2-A=A(A-))
Similarly
x3D3 = A(A-1)(A-2)
x*D% = A(A=1)(A-2)(A=3) so on so forth.

This s ubstitution in a given Cauchy-Euler differential e quation w ill r educe it in to a
differential equation with constant coefficients.

mt

At this stage we suppose Y =€ to obtain an auxiliary equation and write the solution

in terms of y and t. We then go back to X through X = et .
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Example 1

2
Solve xz%—zx%—w =0
X X

Solution

The given differential equation can be written as
(x’D* -2xD-4)y =0

With the substitution X = et or t =In X, we obtain
xD=A, x’D* =A(A-))
Therefore the equation becomes:
[AA-1)-2A-4]y =0
or (A’ =3A-4)y=0
d’y _,dy

32 _4y=0

or
dt? dt

2
Now substitute: Y = e then ﬂ =me™Mt , % =m2eM
t

dt
Thus (m2 -3m-—- 4)emt =0 or m®-3m-4=0, which is the auxiliary equation.
(m+1H(Mm-4)=0 m=-14
The roots of the auxiliary equation are distinct and real, so the solution is

t 4t

y= Cle_ + Cze

But X=¢! , therefore the answer will be
y=cx L +cyx?
Example 2
dy

2
Solve 4x” %+8xd—+ y=0
X X

Solution

The differential equation can be written as:
(4x°D* +8xD+1)y =0

2
Where D=i,D2 _4 -
dx dx

Now with the substitution X =€lor t =1In X ,XD=A, x’D* =A(A—-1) where A = d

The equation becomes:

(AAA-1)+8A+1)y=0 or (4A° +4A+1)y =0
2

4d_2y+4ﬂ+ y=0
dt dt
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2
Now substituting Y = e™ then ﬂ = me™Mt , M =m2eMt
dt dt2
(4m? +4m+1)eM =0

or 4m’> +4m+1=0 or 2m+1)> =0
or m= —l,—%; the roots are real but repeated.

Therefore the solution is
1

y=(¢ +c2t)e_2

1

or y=(C;+CyInx)x 2
1 1

ie y=CX 2+CyX 2InX

Example 3

Solve the initial value problem

2
X2 3)(2’ +3x%+3y =0, y()=1,y'(1)=-5

Solution

The given differential can be written as:
(x’D* +3xD+3)y=0
Now with the substitution X =€% or t=InX we have:
xD=A, x’D* =A(A-1)
Thus the equation becomes:
(AA=1)+3A+3)y=0 or (A>+2A+3)y=0
4y oW 3y
dt>  dt
Put Yy = €M then the A.E. equation is:
orm*+2m+3=0

_ ) 4+4/4—
S2ENACLZ i

2

or m=

So that solution is:

y =e71(c; cos2t +C, sin/2t)
or Y= X_I(Cl cos~/21n X+Cy sin+/2 In X)

, we get
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Now y(1) =1 gives, 1=(c,cos0+c,sin0) = ¢, =1

y' = —x72 (¢ cos 2 Inx+ C, sin J2n X)+ X2 (—\/Ecl sin/2 In X+ \/ECZ cos+/2 In X)

S y'(1) ==5 gives: —5=—[c, + 0]+[/2¢,] or v/2¢, =¢, —=5=—4, ¢, =

Hence solution of the IVP is:

y= X_l[COS(\/E In X)—2+/2 sin(v2 In x)].

Example 4
3 2

Solve x3%+5x2%+7x%+8y:0
X X X

Solution

The given differential equation can be written as:
(xX’D° +5x°D* +7xD +8)y =0

Now with the substitution X =€! or t=1InX we have:
xD=A, x’D* =A(A-1), X’D’ = A(A-1)(A-2)

So the equation becomes:
(AA-1)(A-2)+5AA-1)+T7A+8)y =0

or (A’ —=3A” +2A+5A° —5A+7A+8)y =0
or (A’ +2A° +4A+8)y =0

3 2
d_3y+2d 2y+4d_y
dt dt dt

or

+8y =0

Put Y= emt , then the auxiliary equation is:
m® +2m* +4m+8=0
or (M +4)(M+2)=0
m=-2, ort2i

So the solution is:
y =cie 2t ¢y cos 2t +Cysin 2t

2

or Yy =C;X “ +Cy cos(2In X) +C3sin(21n X)

4N

V2
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Example 5

Solve the non-homogeneous differential equation
X2y —3xy’+3y = 2x"eX
Solution
First consider the associated homogeneous differential equation.
x2y”—3xy’+3y =0
. . d d’
With the notation — =D, —;
X dx
212 _

(x*D“-3xD+3)y=0

With the substitution X =€ or t =In X , we have:
xD=A, x’D* =A(A-))

So the homogeneous differential equation becomes:
[A(A-1)-3A+3]y=0
(N —4A+3)y =0
d’y 4 dy
dt>  dt
Put Y= emt then the AE is:
m>—4m+3=0or (Mm=-3)(m-1)=0,0or m=13
Yo =Cel +ye%t as x =gt
3

or

+3y=0

Yo =CX+CyX

For yp we write the differential equation as:
3 3 20X
2y 2 y=2x2
Y'Y+

Yp = U1X+U2X3, where U, and u, are functions given by

u’—m u'—m
l_W ’ 2_W ’
with
3 3
w =% X2 wi=| ¥ X - 0xeX and
1 3x2 2x2eX  3x2
X 0
= 2x3eX
2711 2x2eX

= D?, the differential equation becomes:
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S5aX 3.X
Sothat U (= 2X 2 ——x%e* and U’ 9= 2X 2
2X 2X
LUy = —J x2eXdx = [x2eX — Zj xeXdx]
= —x%e*+2[xe* - [e¥dx]

= —x2eX +2xeX —2eX

:ex

and Uy = jexdx =eX.
Therefore
Yp = X(—x%eX +2xeX —2e%) + x3e* = 2x%eX - 2xe*
Hence the general solution is:
Y=YctYp
Y =CX+CyX> +2x%eX —2xeX

Example 6
2
Solve xzu—xﬂ+ y=InX
dx2 dx
Solution

Consider the associated homogeneous differential equation.

2
2d7y _dy . o
X %, dX+y 0

or (X2D2-xD+1)y=0

With the substitution X = et , we have:
xD=A, x2DZ=A(A-1)

So the homogeneous differential equation becomes:

[AA=1)—A+1]y=0
(A’ -2A+1)y=0
2
dy ,dy
dt? dt
emt

or +y=0

Putting Y =
m>-2m+1=0 or (m-1)>=0 or m=11

, we get the auxiliary equation as:
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Yo = ciet +cotel
or Yo =CX+CyXInX .
Now the non-homogeneous differential equation becomes:
d_zy -2 d_y +y= t
dt2  dt
By the method of undetermined coefficients we try a particular solution of the form
Yp = A+ Bt. This assumption leads to

— 2B+ A+ Bt =t so that A=2 and B=1.

Using Y =Y¢ +Yp, we get
ye =cel +ootet +2+t;

So the general solution of the original differential equation on the interval (0,) is
Y =CX+CyXInX+2+InX

130

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

Exercises

Solve using X = et

dy dy

1. x—OI ax =0
M d_y

2. Xd d+4y 0

3. xOly xd—y—zy 0

dx? dx
2
4. 25x2%+25xgy+y 0
X
2
5. 3X 22 y+6xgy+y 0
X2
3
6. d}( 647y Y =0
dx dx3
2
7. x2d y+3xdy 0,y(1)=0,y'(0) =4
dx2 — dx
2
207y WY 0y =Ly =
8. X dx2+XdX+y_O’y(1)_Ly(l)_2
2
2d“y d_y 2
9. X OIXz+10xdx+8y_x
2
24 4oy, ox Y _ooy= S
10. W dx 20y ==
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Lecture 14
Power Series: An Introduction

O A s tandard t echnique f or s olving | inear di fferential e quations w ith v ariable
coefficients is to find a solution as an infinite series. O ften this solution can be
found in the form of a power series.

O Therefore, in this 1 ecture w e di scuss s ome of t he m ore i mportant f acts a bout
power series.

O However, for an in-depth review of the infinite series concept one should consult
a standard calculus text.

Power Series

A power series in( X — @) is an infinite series of the form

o0
Y (x—a)" =c,+¢(x—a)+cy(x—a)’ +--.
n=0
The coefficients Cy, ¢, C,,... and @ are constants and X represents a variable. In this

discussion we will only be concerned with the cases where the coefficients, X and a are
real numbers. The number a is known as the centre of the power series.

Example 1
The infinite series
( _ 1 )n+1 X2 X3

n
~ 7 X =X——F——-
; n2 22 32

o0
is a power series in X. This series is centered at zero.

Convergence and Divergence

o If we choose a specified value of the variable X then the power series becomes an
infinite series of c onstants. If, for the given X, the sum of terms of the power
series equals a finite real number, then the series is said to be convergent at X.

o A power series that is not convergent is said to be a divergent series. This means
thatthe sum o fterms ofa divergent pow er series is not equal to a finite r eal
number.
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Example 2

(a) Consider the power series
00 N 2 3
X X X
> —=l+X+—+—++
n=0 N! 2! 3!
Since for X =1 the series become
o0 N
X I 1
> —=I1+1+—+—+
n=0 N! PARNNCY
Therefore, the power series converges X =1 to the number €
(b) Consider the power series

o0

SnIX+2)T =14+ (X+2)+ 21 (X+2)> +31(X+2)> +---

n=0
The series diverges V X, except at X =—2. For instance, if we take X =1 then the series
becomes

s n

> n!(x+2) =1+3+18+---

n=0
Clearly the sum ofall terms onr ight hand side is not a finite number. Therefore, the
series is divergent at X =1. S imilarly, we can see its divergence at all other values of
X#—=2

The Ratio Test

To determine for which values of X a power series is convergent, one can often use the
Ratio Test. The Ratio test states that if

e} o0
n
D a, =) ¢ (x-2a)
n=0 n=0
is a power series and

Cn+1
Ch

L= lim
N—o0

lim |——
N—o0

|x-al=L
a,

Then:
o The power series converges absolutely for those values of X for whichL <1.
o The power series diverges for those values of X for whichL >1orL = «.

o The test is inconclusive for those values of X for whichL =1.
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Interval of Convergence

The set of all real values of X for which a power series

= n
D ¢ (x-2a)
n=0
converges is known as the interval of convergence of the power series.

Radius of Convergence
Consider a power series

écn (x—a)"

Then exactly one of the following three possibilities is true:

o The series converges only at its center X = a.
o The series converges for all values of X.
0 Thereis anumber R > 0 such that the series converges absolutely VX satisfying

‘X - a\ < R and diverges for ‘X - a\ > R. This means that the series converges for

X € (a—R,a+ R) and diverges out side this interval.
The number R is called the radius of convergence of the power series. If first possibility
holds then R =0 and in case of 2™ possibility we write R = oo
From the Ratio test we can clearly see that the radius of convergence is given by
Cn

R=1im

N—o0

Cnt1
provided the limit exists.

Convergence at an Endpoint
If the radius of convergence of a power series is R > 0, then the interval of convergence
of the series is one of the following

(a—R,a+R), (a—R,a+R], [a-R,a+R), [a—R,a+R]
To determine which of these intervals is the interval of convergence, we must conduct
separate investigations for the numbers X=a—Rand x=a+R.

Example 3
Consider the power series

n=l1 n=1 n
. an, Xn+1 \/ﬁ
Then lim|—|=1lim —
n—o| a, n—wo|+/N+1 X
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/ n / n
—.X -
n+1 n+1

Therefore, it follows from the Ratio Test that the power series converges absolutely for
those values of X which satisfy

=lim
n—oo

=lim
Nn—oo

or lim |—
Nn—oo

| X|= x|

a,

x| <1
This means that the power series converges if X belongs to the interval
(=11

The series diverges outside this interval i.e. when X >1or X <—1. The convergence of
the power series at the numbers 1 and —1 must be investigated separately by substituting
into the power series.

a) When we substitute X =1, we obtain

' =l+—=+—=
3 A
which is a divergent p -series, with p =

b) When we substitute X = —1, we obtain

L A -

which converges, by alternating series test.

Hence, the interval o f convergence o fthe power seriesis [—1,1). This means that the
series is convergent for those vales of X which satisfy
-1 <x <1

Example 4
Find the interval of convergence of the power series

ganziu—’&)

n=1 2” * n
Solution

The power series is centered at 3 and the radius of convergence of the series is

n+l
R—lim 2"

N—o0 2” ‘N
Hence, the series converges absolutely for those values of X which satisfy the inequality
|x=3[]<2=>1<x<5

(a) At the left endpoint we substitute X =1 in the given power series to obtain the series
of constants:

135

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

0 0 ( -1 )n
2= o
n=l1 n=1

This series is convergent by the alternating series test.

(b) At the right endpoint we substitute X =35 in the given series and obtain the following
harmonic series of constants

= 1
n=1 n
Since a harmonic series is always divergent, the above power series is divergent.

Hence, the series the interval of convergence of the given power series is a half open and
half closed interval [1, 5) .

Absolute Convergence

Within its interval of convergence a power series converges absolutely. In other words,
the series of absolute values

§|cn I(x—a)"

converges for all values X in the interval of convergence.

A Power Series Represent Functions

o0
o n o o o o o
A power series Z (G ( X— a) determines a function f whose domain is the interval of
n=0
convergence of the power series. Thus for all X in the interval of convergence, we write

f(x)= %Cn(x—a)” :Co+Cl(X—a)+Cz(X—a)2 +C3(X—a)3 SR

(e8]
Ifa functionis f is defined in this way, we say that Z Ch (X - a)n 1S a p ower series
n=0
representation for f (X). We also say that f is represented by the power series

Theorem

o0
o n o
Suppose that a power series z S (X - a) has a radius of convergence R > 0 and for
n=0
every X in the interval of convergence a function f is defined by

f(x)= icn(x—a)” =¢y+¢,(x—a)+cy(x—a) +cy(x—a) +---

n=0
Then
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0 Thef unction f isc ontinuous, di fferentiable,a ndi ntegrableon t he
interval(a—R a+R)
o Moreover, f and J. dX can be found from term-by-term differentiation

and ntegration.
Therefore

f'(x)=¢, +2¢c,(x—a)+3c,(x—a)’ +~-~:incn(x—a)”f1

(x-a) _ (x-a)
J.f(x)dx=C+cO(x—a)+c1 5 +C, ye-

3
—C+Zc

The series obtained by different1at10n and integration have same radius of convergence.
However, the c onvergence atthe end points X=a—R and X =a+ R ofthe interval
may ch ange. T his m eans t hat t he i nterval o f co nvergence m ay b e d ifferent from t he
interval of convergence of the original series.

X a)n+1

n+1

Example 5
Find a function f that is represented by the power series

1= X+ x> = x> 4+ (=D"x"
Solution
The given power series is a geometric series whose common ratio is I = —X. Therefore, if
|X| <1 then the series converges and its sum is

a 1

I-r 1+X
Hence we can write

L:1—x+x2—x3+---+(—1)”xn
I+X

. o . . . 1
This last expression is the power series representation for the function f (X) = 1— .
+ X

Series that are Identically Zero
If for all real numbers Xin the interval of convergence, a power series is identically zero
ie.
- n
D> cy(x-a) =0, R>0
Then all the coefficients in the power series are zero. Thus we can write

=0, VYn=0,1,2,...
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Analytic at a Point
A function f is said to be analytic at point a if the function can be represented by power

series in ( X—a ) with a positive radius of convergence. T he notion of analyticity ata
point will be important in finding power series solution of a differential equation.

Example 6
Since the functionse”, cos X, and 1n(1+ X) can be represented by the power series
. x> X
" =1+ X+—+—+---
3!
2 4
cosX=l-——+——---
2 24

2 X3

X
In(l+xX)=X——+——--
1+x) 53

Therefore, these functions are analytic at the point X =0.
Arithmetic of Power Series

o Power series can be combined through the operations of addition, multiplication,
and division.

a The procedure for addition, multiplication and division of power series is similar
to the way in which polynomials are added, multiplied, and divided.

o Thus we add coefficients of like powers of X, use the distributive law and collect
like terms, and perform long division.

Example 7
If both of the following power series converge for ‘X‘ <R

f(x)=>Dcx", g(x)=> bx"
n=0 n=0

Then £(x)+ g(x)= 3 (c, +by X"
n=0
and f(x)-g(x)=coby +(Coby +C19 ) x+(Coby +10; +Cxl09 ) x> +-+-
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Lecture 15

Power Series: An Introduction
Example 8
Find the first four terms of a power series in X for the product e* cos X.

Solution
From calculus the Maclaurin series for € and cos X are, respectively,
) 2 3y
" =l+X+—+—+—+
2 6 24
x2 x*

cosX=1l—-—+——---.
2 24

Multiplying the two series and collecting the like terms yields

X x> x> x x> x4
e cosXx= 1+x+7+?+—+--- l——+——---.

24

The interval of convergence of the power series for both the functions e* and cosX is
(— 0, OO). Consequently the interval of convergence of the power series for their product

e* cos X is also (—o0,00).

Example 9
Find the first four terms of a power series in X for the functionsec X .

Solution

We know that

2 X4 X6

, cosX=l-—+——-———+
cos X 2 24 720

SeCX =
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Therefore using long division, we have

x> s5x* 61x8
+

e 90
¢ XX o !
2 24 1720
¢ X
2 24 720
X2 X4 X6
S + —_ e e
2 24 720
2 4 48
x X
24 360
24 48
61x6__“-
720

Hence, the power series for the function f(X)=secX is

x> 5x* 61x8
secX=1+—+—+
2 24 720

The interval of convergence of this series is (—7/2,7/2).

Note that
a The procedures illustrated in examples 2 a nd 3 are obviously tedioustodob y
hand.

a Therefore, problems of this sort can be done using a computer algebra system
(CAS) such as Mathematica.

o When we type the command: Series [ Sec [ X] , { X, 0, 8}] and enter, the
Mathematica immediately gives the result obtained in the above example.

a For f inding pow er s eries s olutions i tis important t hat w e be come adepta't
simplifying th e s um o ftw o or m ore p ower s eries, each s eries ex pressed i n

summation ( sigma) not ation, t 0 a n e xpression w ith a s ingle Z _ This of ten

requires a shift of the summation indices.
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0 In order to add any two power series, we must ensure that:

(a) That summation indices in both series start with the same number.
(b) That the powers of X in each of the power series be “in phase”.

Therefore, if one series starts with a multiple of, say, X to the first power, then the
other series must also start with the same power of the same power of X.

Example 10

Write the following sum of two series as one power series
e} o0
> 2nc,x"" + > 6nc, x™!
n=1 n=0

Solution

To write the given sum power series as one series, we write it as follows:
o0 e 0] 0 o0
>2nc,x™ + > ene, x™ =2:-1¢x” + Y 2ne, x™ + > 6nex™!
n=l1 n=0 n=2 n=0

The first s eries on r ight hand s ide s tarts w ith x! for N =2 and the s econd s eries also

starts with X' forn =0. Both the series on the right side start with x! .

To get the same summation index we are inspired by the exponents of X which is N —1in
the first series and N +1 in the second series. Therefore, we let

k=n-1, k=n+1

in the first series and second series, respectively. So that the right side becomes:
2¢,+ Y 2(k+1) ¢, X + > 6(k —1)c,  x* .
k=1 k=1

Recall that the summation index is a “dummy” variable. The fact that K =N — 1in one
case and K =N + lin the other should cause no confusion if you keep in mind that it is
the value of the summation index that is important. In both cases K takes on the same
successive values1,2,3,...for n=234,...(fork =n—1)andn=0,1,2,...(fork =n+1)

We are now in a position to add the two series in the given sum term by term:

> 2nc,x" + > 6ne,x™ =26 + Y[ 2(k+1) 0y +6(k— 1y | x*
n=l1 n=0 k=1

If you are not convinced, then write out a few terms on both series of the last equation.
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Lecture 29
Power Series Solution of a Differential Equation

We know that the explicit solution of the linear first-order differential equation

dy
—-=2xy=0
dx y
2
is y=eX
2 3 4
Also eX:1+x+_+X_+X_+...
2 24

If we replace Xby X in the series representation of €%, we can write the solution of the
differential equation as
00 X2n
Y=2"
n-o N

This last series converges for all real values of X. In other words, knowing the solution
in advance, we were able to find an infinite series solution of the differential equation.

We now propose to obtain a power series solution of the differential equation directly;
the method of attack is similar to the technique of undetermined coefficients.

Example 11

Find a solution of the differential equation
d
- 2xy =0
dx

in the form of power series in X.
Solution

If we assume that a solution of the given equation exists in the form
o0 o0
y=> X" =co+ D X"
n=0 n=1

The que stion i s t hat: C an w ¢ de termine ¢ oefficients C,, for w hich t he p ower s eries

convergest oa f unctions atisfyingth e d ifferential e quation? N ow te rm-by-term
differentiation of the proposed series solution gives

dy < n-1
— = Nnc, X
dx Z n

n=l1

Using the last result and the assumed solution, we have
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dx

We would like to add the two series in this equation. To this end we write

dy —2Xy = chx i2cnx“+1
n=

dy —2xy=1-¢,X +ch X" =" 2¢,x™!
dx n=2 =

and then proceed as in the previous example by letting
k=n-1, k=n+l

in the first and second series, respectively. Therefore, last equation becomes

%—2xy =C +Z(|<+1)C|<+1Xk _chk—lxk
k=1 =

After we add the series term wise, it follows that

d
dy 2Xy =C; + Z[(k 1)k — 26 X
X k=1

Substituting in the given differential equation, we obtain

o+ 2 [(k+1) ¢ — 26 X =
k=l

In order to have this true, it is necessary that all the coefficients must be zero. This means
that

Cl=0, (k+1)Ck+1—2Ck_1:0, k:1,2,3,...
This eq uation provides a recurrence r elation t hat d etermines t he co efficient Cy . S ince

K +1% 0 for all the indicated values of K, we can write as

2C,
Crpp =
Iteration of this last formula then gives
2
2
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2 1 1
k=5, C6_gc4_§fjco_§f0
k=6, c7:2%:0

2 1 1
k=17, Cg_g%_Zji%_Zio

and so on. Thus from the original assumption (7), we find

o0
Y= X" =C +CX+CoX" + 83X +CyX " +CsX +ees
n=0

1 1
=y +0+Cyx° +0+Ecox4+0+§cox6 +0 4

=Co| I+ X" +—=X"+—X +:-+|=Cy ) —
2! 3! o n!

Since t he co efficient C, remains c ompletely undetermined, w e have in fact found the
general solution of the differential equation.

Note that

The di fferential e quation in this example and the di fferential e quation in the following
example can be easily solved by the other methods. The point of these two examples is to
prepare ourselves for finding the power series solution of the differential equations with
variable coefficients.

Example 12

Find solution of the differential equation
4y"+y=0

in the form of a powers series in X .

Solution

We assume that a solution of the given differential equation exists in the form of

o0 e8]
y=> cX"=co+ Y Cx"
n=0 n=l1
Then term by term differentiation of the proposed series solution yields

e8] o0
y' =Y ne,x" =c¢;+ > nex™!
n=1 n=2
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0

y'=> n(n-1)c,x"

n=2
Substituting the expression for Y” and Yy, we obtain

4y"+y = Z4n (n-1)c +Zcx

n=2

Notice that both series start with X° . If we, respectively, substitute

k=n-2, k=n, k=0,1,2,...
in the first series and second series on the right hand side of the last equation. Then we
after using, in turn, N =k +2 andn =Kk, we get

4y"+y=Z4(k+2)(k+1)ck+2xk +chx"

k=0 k=0
or 4y"+y = [4(k+2)(k+1)cp +0; %"
k=0

Substituting in the given differential equation, we obtain
0
2[4(k +2)(k+1)Cpr +Ck]Xk =
k=0

From this last identity we conclude that

4k +2)k +1)c,,, +¢, =0

or Cp.h = , k=0,12,...
24k +2)k +1)
From iteration of this recurrence relation it follows that
C, = __CO — _S_O
4.2.1 2°21
C, = € =— Sl
4.3.2 2°.3!
—C C
C,=—2=+—"
Y443 2%4
_ —C _ C
> 454 2451
C6 = _C4 = — (6:0
4.6.5 2°.6!
c, = —GCs - _ ;:1
4.7.6 2°71
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and so forth. This iteration leaves both Cyand C, arbitrary. From the original assumption
we have

Y =C, +CX+C, X +C,X° +C, X +CX° + ¢ X+, X+

_ _ G 2 C 3 Cy 4 C 5 Cy 6 _ C 7.
~GThX 22.2!)( 22.3!X +24.4!X +2“.5!X 26.6!X 26.7!X "
or
1 1 1 1 1 1
y:co{l— — X+ —xt—— x6+--1+cl[x— XX —— x7+--}
2421 27.41 2°.6! 2<.3! 2°.51 2°.71

is a general solution. When the series are written in summation notation,

k=0

the ratio test can be applied to show that both series converges for all X. You might also
recognize the Maclaurin series as Y, ( X) =Cj cOS ( X/ 2)and Y, (X) =2C, Sin(X/2).
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Exercise
Find the interval of convergence of the given power series.
Ly = XX
k=1 k
2 (x+7)"
3 (x+7)
o n
o0
3. > k12KxK
k=0
S k=1 g
4. Z kw X
k=0

Find the first four terms of a power series in X for the given function.
5. e¥sinx
6. e In(1-x)

2
X x° X

7o | X——t——— -
3 5 7

Solve each differential equation in the manner of the previous chapters and then compare
the results with the solutions obtained by assuming a power series solution

y=> cx"
n=0
8. Yy —x’y=0
9. y"+y=0
10. 2y"+y' =0
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Lecture 16
Solution about Ordinary Points

Analytic Function: A function f is said to be analytic at a point a if it can be represented
by a power series in (X-a) with a positive radius of convergence.

Suppose the linear second-order differential equation

a,(x)y" +a,(x)y' +a,(x)y =0 (D
is put into the form
y'+ Py +Q(x)y =0 2)

by dividing by the leading coefficient a,(X).

Ordinary and singular points: A point X, is said to be a ordinary point of a differential
equation (1) if both P(x) and Q(X) are analytic at X,. A point that is not an ordinary point
is said to be singular point of the equation.

Polynomial Coefficients:
If a,(x),a,(x) and a,(X) are polynomials with no common factors, then X = X 1s

(1) an ordinary point if a,(X) # 0 or
(11) a singular point if a,(x) =0.

Example

(a) T he s ingular poi nts of t he e quation (X2 —1)y"+2xy’+6y =0 aret he s olutions of

x> —1=0 or x = 1. All other finite values of X are the ordinary points.

(b) The singular points need not be real numbers.
The e quation (x2 +1)y"+2xy’+6y =0 hast he singular poi ntsa tt he solutions of
x> +1=0, namely, X = +i.

All other finite values, real or complex, are ordinary points.

Example
The C auchy-Euler equationax’y” +bxy’+cy =0, where a, b and ¢ are co nstants, h as

singular point at X =0.
All other finite values of X, real or complex, are ordinary points.
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THEOREM (Existence of Power Series Solution)

If x =X, is an ordinary point of the differential e quation y"+ P(X)y'+Q(x)y =0, we

can always find two linearly independent solutions in the form of power series centered at

X, :

y =2 Ch(x=x%)".
n=0

A series solution converges at least for |X = X0| <R, where R is the distance from X, to

the closest singular point (real or complex).

Example
Solve y"—2xy=0.

Solution

We see that x =0 is an ordinary point of the equation. Since there are no finite singular

points, t here e xistt wo s olutions of t he f orm y = ZCHX” convergent f or |x| <00,

n=0
Proceeding, we write

=2-1¢,x" + Y n(n—1)c,x"? > 2¢ x""
n=3 n=0

both series start with X

Letting k = n—2 in the first series and k = n+1 in the second, we have

e e} e 0]
y" —=2xy =2¢y + > (k+2)(k +1)cy 4o xK — > 20, x€
k=1 k=1

=2¢, + ) _[(k+2)(k +1)c,,, -2, Ix* =0
k=1

2¢, =0 and (k+2)k+1)c,,,—-2c,,=0
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The last expression is same as

2¢c
Ck+2 :$’ k:1’2’3’...
(k+2)(k+1)
. . 2¢c,
Iteration gives C,=—=
3-2
_25
4.3
2C2
Cs=—==0 because C» =0
5-4
2c, 2?
C6= = CO
6-5 6:5-3-2
2c, 2°
C7: = Cl
7-6 7-6-4-3
2¢;
C:—:
Y87
2¢c, 2’
C9= = CO
9-8 9-8:6-5-3-2
2c, 2°
Cp = = C,
10-9 10-9-7-6-4-3
2¢c
C,=—12-=0 , and so on.
11-10

It is obvious that both ¢c,and c, are arbitrary. Now

Y =Cy+CX+C X" +C, X0 +C X +C,X° +C X0 +C, X7 +CoX® + X +¢, X+ X!+
2 2

3 AR
6-5-3-2 7-6-4-3

_ 2 3,2
y_co+clx+0+3.zcox +4.3clx +0+

s 23 9 23
9-8-6-5-3-2 10-9-7-6-4-3

Cox® + X! +0

Cox” + X040+

2 3
y:c0[1+32 32 6 2 9

X 65325 To9g6532% 7

2 3
+ey[x+ 2 4y 2 7 2 10

33° "7643% Tl097.643% Tk
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Example
Solve (x2 +D)y"+xy'—y=0.

Solution
Since the singular pointsare X ==, x =0 is the or dinary p oint, a pow er s eries w ill

converge at least for |X| <1. The assumption Yy = ZCan leads to
n=0

o0 Q0 o0
(X2 +1) > n(n —Depx"2 + Xy neyx" 1 — > cpx"
n=2 n=1 n=0

o0 o0 o0 o0
= > n(n-Depx"+ >’ n(n—1cyx"2 + > nepx™ =" cpx”
n=2 n=2 n=l1 n=0

=20,X" =X’ +6C,X+ ¢, X—CX+ Y _n(n—1)c,x" + > n(n—1)c,x" >+ nc x" =D ¢ X"
n=2 n=2

n=2 n=4

%/_/
k=n k=n-2

o0
=2Cy —Co +6C3x+ > [k(k =1)c + (k +2)(k +1)c , 5 + Koy —ck]xk =0

k=2
o0
or 20y —Co+6C3x+ > [(K+1)(k—1)c, +(k +2)(k+1)c 4 11X =0.
k=2
Thus 2¢,-¢, =0
c;=0

(k+1)(k =1y + (K +2)(K+1)Cy 4o =0

This implies
C, = 1C
2 = 2 0
c,=0
K+2 :MCW =2,3,
(k+2)
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Iteration of the last formula gives

1 1
G TR T T T T
2
c5:—§03_0
e 3, 3 13
6" 246" 2%3°
4
C7:—7C5—0
e 5. 35 _ 135
8 ° 2.4.68° 2417
6
c9:—§c7_0
7 3-5-7 1-3-5-7
Cp=——-Cg =— C, =——5.—C, and so on.
10 2:4-6-8-10 2°5!

Therefore

Y =Co +CX+CoX? +C3x° +Cy X +Csx° +Cgx0 +07x7 +0gx8 4+

| ) 1 4 13 ¢ 1:3:5.8 1-3:5-7 10
=CX+Co[l+=x"— X+ X — X+ XY =
Y= ext ol X X S T A 2551 ]

The solutions are

_ 12, < n-11-3-5---(2n=3)  2n
yl(x)_co[1+§x +n§2(—1) S x"], ¥ <1

Y2(X) =CiX.

Example

If we seek a solution y = ch x" for the equation
n=0

y'=(1+x)y =0,
we obtain C, = C% and the three-term recurrence relation

C, +C

Ck+2 NN = 192339' e
(k+D)(k+2)
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To simplify the iteration we can first choose ¢, # 0,c, = 0; this yields one solution. The

other solution follows from next choosing ¢, =0,c, # 0. With the first assumption we
find

1
C2 :ECO
c,+¢c, ¢, 1
37 =5 57=-7%
2-3 3 6
C, +C, Co 1

1
C, = = [—+—=]=—C¢, and so on.
4.5  4.5°2:3 27 30

Thus one solution is
2,13, 1 4 1.5

1
X)=Co[l+=X“+=X"+—X"+—X"+---].
Similarly if we choose ¢, =0, then
c,=0
C, +¢, _C_l_lc
3 - - 1
2.3 23 6
_C+C _c_l:ic
3.4 3.4 127
C.,+C
C, = 6 __ & ] ¢, and so on.
4.5 2:-3-4.5 120
Hence another solution is
y2(x)=cl[x+lx3+ix4+ix5+---].

6 12 120

Each series converges for all finite values of x.
Non-polynomial Coefficients
The next example illustrates how to find a power series solution about an ordinary point

of a differential equation when its coefficients are not polynomials. In this example we
see an application of multiplication of two power series that we discussed earlier.
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Example
Solve y"+(cosX)y =0
Solution:

The equation has no singular point.
2 4 6
. X .. . . .
Since cosx =1- o + N6 +---, it is seen that X = 0 is an ordinary point.

Thus the assumption y = ch x" leads to

n=0
0 X2 X4
y"+(cosX)y = > n(n—-De,x" > —(1-—+ ——---)chx”
2 2! 4 o
x2 x* x6 2
_(2c2+6c3x+12c4x +2005x +-- )+(1——+$—ﬁ+---)(co+c1x+c2x 4.

= 2C2 +C0 +(6C3 +C1)X+(12C4 +Cy —%Co)xz +(2OCS +C3 —%CI)X3 +---

If the last line be identically zero, we must have
C
2C2 +Cp :O:>C2 2—70
G
6C3 +C; 20:>C3 :—g
12¢c4 +C —10 —0=>cy =0
4TV2THM0 T 4717
C
20Cs5 +C3 —%Cl =0=>c5= % and so on. C,and c, are arbitrary.

Now
=Cn+CiX+C X2+C X3+C X4+C X5+--°
0™ 2 3 4 5

Co.2 G .3, % 4,CG .5
or =Ch+CiX—X"——= X"+ —X"+—X
y=Co+oX=75 X=X X,

1_ 2, )+ X X e
Y =Co( X +1 X =)+ C(X——X 3 X )

1 1 1 1
Y, (X) :C()[I—EX2 +EX4 —---] and yz(X):CI[X—gx3 +%X5 -]

Since the di fferential e quation has no s ingular p oint, both series converge for all finite
values of X.
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Exercise

In each of the following problems find two linearly independent power series solutions
about the ordinary point X =0.

Y+ X2y =0
y'—Xxy'+2y=0
y'+2xy'+2y=0
(X+2)y"+xy'—y=0
(X2 +2)y"—6y=0

A o e
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Lecture 17
Solution about Singular Points

If Xx=x, issingular point, it is not always possible to find a solution of the form

Y= cn(x=%y)" for the equation a(X)y" +a(X)y’'+ay(X)y =0
n=0

However, we may be able to find a solution of the form
0

y= Z Cn(X— XO)nJrr , where r is constant to be determined.
n=0

To define regular/irregular singular points, we put the given equation into the standard
form

y'+P(X)y'+Q(x)y =0
Definition: Regular and Irregular Singular Points
A Singular point X =x, of the given equation a,(X)y"+a;(X)y’ +ay(x)y =0 is said to be

a regular singular point if both (X —Xx,)P(X) and (x—xO)ZQ(x) are analytic at X,. A
singular point that is not regular is said to be an irregular singular point of the equation.

Polynomial Coefficients
If t he co efficients i n t he g iven di fferential e quation a,(X)y"+a;(X)y'+ay(X)y =0 are

polynomials with no common factors, above definition is equivalent to the following:

Let a,(x,)=0 Form P(x) and Q(x) by reducing wand 3 to lowest
a,(X) a,(x)

terms, respectively. If the factor (x—Xx,) appears at most to the first powers in
the denominator of P(x) and at most to the second power in the denominator of
Q(x),then x = x, is a regular singular point.

Example 1

X =Z£2 are singular points of the equation
(x2 -7y +(x=2)y'+y=0

Dividing the equation by (x* —4)> = (x—2)*(x+2)*, we find that
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1 1
C (x=2)(x+2)? (x—-2)*(x+2)
1. X =2 isaregular singular point because power of Xx—2 inP(X) is 1 and in
Q(x)1is 2.

2. X =-2 is an irregular singular point because power of X +2 inP(X) is 2.

P(X) and Q(X)=

The 1st condition is violated.

Example 2

Both x =0 and X = —1are singular points of the differential equation
XZ(X+ 12y + (X2 1)y +2y =0
Because X* (X +1)> =0 orx=0,-1

Now write the equation in the form

y'+ - Yty =0
x2(x+1)2 x2(x+1)2

" x —1 ' 2
or y'+ y'+ y=0

xz(x+1) x2(x+1)2

x—1 2
So P(X) —m and Q(X) —m

Shows that X =0  is a irregular singular point since (X —0) appears to the second
powers in the denominator of P(X).
Note, however, x = —1 is a regular singular point.

Example 3

a) x=1and x=-1 are singular points of the differential equation
(1=Xx2)y"+-2xy'+30y =0
Because 1- x> =0 or X ==I.

Now write the equation in the form

. 2X , 30
(I-x7) 1-X
" 2x , 30

- y' + y=0
(1-x){A+x) (1=x)(1+Xx)

y 5y=0

or
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P(X) and  Q(X)=— 0

—2X
(1=x)(1+X) 1-x )1+X)
Clearly x = +1 are regular singular points.

(b) X =0 is an irregular singular points of the differential equation
x3y”—2xy’+5y =0
2 ..
or y”——2y’+i3y=0 giving Q(X)=%.
X X X
(©) X =0 is a regular singular points of the differential equation

X y'=2xy'+5y=0

Because the equation can be written as y" -2y’ + £l y =0 giving P(x) =-2and
X
5
QX)) =—
X

In part (c) of Example 3 we noticed that ( Xx—0) and(x —0)*do not even appear in the
denominators of P(x) and Q(X) respectively. R emember, t hese f actors ¢ an ap pear at
most in this fashion. For a singular point X = X, , any nonnegative power of (X — X, ) less

than one (namely, zero) and nonnegative power less than two (namely, zero and one) in
the denominators of P(x) and Q(x), respectively, imply X, is a regular singular point.

Please note that the singular points can also be complex numbers.

For example, X =+ 3i are regular singular points of the equation
(x> +9)y"+-3xy'+(1-X)y =0

Because the equation can be written as

3x N 1-Xx

y"_x2+9 x2+9y:0'
PO=— X Q=
(X =3i)(x+30) T (X=3i )(x+3i)

Method of Frobenius

To solve a differential equation a,(X)y"+a;(X)y'+ay(X)y = 0about a regular singular
point we employ the Frobenius’ Theorem.

Frobenius’ Theorem
If x=x, isaregular singular point of equation a,(X)y"+a;(X)y'+ag(X)y =0, then

there exists at least one series solution of the form
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o0 o0
r n n+r
y=(X=Xg) ZCn(X—Xo) =2Cn(x—xo)
n=0 n=0
where the number r is a constant that must be determined. The series will converge at
least on some interval 0 < X—X, <R.

e 0]
Note that the solutions of the form Y = Z Cr(X— Xo)n+r are not guaranteed.
n=0
Method of Frobenius

1. Identify regular singular point X,

o0
2. Substitute Y= z Ch(X— Xo)n+r in the given differential equation,
n=0
3. Determine the unknown exponent r and the coefficients c, .

4. For simplicity assume thatx, =0.
Example 4

As x =0 is regular singular points of the differential equation
3xy"+y' —y=0.

We try a solution of the form Y = ¢ x™"
n=0

Therefore y'=> (n+r),x""".

1 1

And y' =Y (n+r)n+r-ne x"".
n=0
3xy"+y' ' —y= 3Z(n+r)(n+r—1)c X" +Z(n+r)cn AL Zc X"
n=0

e 0]

Z (N+1)3n+3r-2)c,x ! —chx”*r

n=0 n=0

= X [r(3r—2)c X +Z(n+r)(3n+3r—2)c X" —Zc x" |
n=0
k=n-1 =N

k=0

X' {r(3r -2)c,x! +Z[(k +r+1)3k+3r+1)c,,, —ck]xk} =0

which implies r(3r —2)c, =0

159

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701)

VU
(k+r+D@Bk+3r+1)c,,, —-c, =0, k=0,1,2,...
Since nothing is gained by taking ¢, = 0, we must then have
r(3r—-2)=0 [called the indicial equation and its roots r = 2,0 are called
indicial roots or exponents of the singularity.]
C
and Cuy = X ,k=0,1,2,...
(K+r+D)Bk+3r+1)
Substitute r, = % and r, =0 in the above equation and these values will give two
different recurrence relations:
c
For :g, Cy=———, k=0,1,2,... (1)
3 Bk +5)(k+1)
For r,=0 C —— % k=012 )
? U k+ DBk +1) o
Iteration of (1) gives C, = %
=S _ G
82 258
C) 0
C3 = =
11.3 3!15.8.11
G 0
C4 p— —
144 4158.11.14
CO
In general C, = , h=12,...
n!5.8.11.14...3n +2)
Iteration of (2) gives
C
C, =—>
1.1
NS
24 214
¢ __ %
C3 == =
3.7 3147
% %
C4 p—ry p—y
4.10 41.4.7.10
CO
In general C, = , h=12,..
n'1.4.7..3n-2)
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Thus we obtain two series solutions

o 1
=c x3|1+ x" 3
1=% { Zn!5.8.11.14...(3n+2) ] ®)

n=1

2 I
=c x| 1+ X' *
276 { ;n!1.4.7...(3n—2) } ¥

By the ratio test it can be demonstrated that both (3) and (4) converge for all finite values
of x. Also it should be clear from the form of (3) and (4) that neither series is a constant
multiple of the other and therefore, y,(X) and y,(X) are linearly independent on t he x -
axis. Hence by the superposition principle

2 1 N+l
=Cy,(X)+C,y,(x)=C, | X’ + X 3
=G0 +C.y, (0 ‘{ ;n15.8.11.14...(3n+2) }

: 1
c,|1 ”
’ { flaT.on )" } [ <0

is a nother solution of the di fferential equation. O n any interval not c ontaining t he
origin, this combination represents the general solution of the differential equation

Remark: The method of Frobenius may not always provide 2 solutions.

Example 5
The differential equation

Xy"+3y'—y =0 has regular singular point at X =0

o0
We try a solution of the form ¥ = " ¢, x"*"

n=0
x 00
Therefore y' = z (n+ r)cnx””_1 and y"= Z(n +r)(n+r =T, X2,
n=0 n=0
so that
xy"+3y'—y=x [r(r +2)c,X "+ D [(k+r+1)(k+r+3)c,,, —ck]xk} =0
k=0

sot hatt he1 ndicial equationa nde xponenta re r(r+2)=0 and r, =0, r,=-2,
respectively.

Since (kK+r+1)(k+r+3)c,,,—c, =0, k=0,12,... (1)
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it follows that when r, =0,
Ck
Cnn = a0
(k+1)(k +3)

C
C, =—%
1.3
¢ 2¢,
> 24 24
c C_2_2CO
3= P
3.5 35!
C3 2CO
C4 ==
6 46!
C, :L, n=1,2,...
n'(n+2)!

Thus one series solution is

o0 2 n
h=edley S 1 =aY T

=1 n=0

Now when r, = -2, (1) becomes
k=Dk+De,, -¢, =0 (2)
but note here that we do not divide by (k —1)(k + 1) immediately since this term is zero
for k =1. However, we use the recurrence relation (2) for the cases k =0and k =1:
—-1.1c, -¢c, =0 and 0.2¢c, —c, =0
The latter equation implies that ¢, = 0 and so the former equation implies that ¢, =0.
Continuing, we find

C
Copy =————— k=2,3,..
(k=1)(k+1)
C2
C,=—=
13
c, _ G 2c,
24 214
CS =C_4— 202 D
3.5 315!
2
In general C, :L, n=3,4,5,...
(n=2)!n!

162

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

Thus Y, :czx{x2 +Z# “} (3)

X
= (n-2)!n!
However, close inspection of (3) reveals that Yy, is simply constant multiple of y, .

To see this, let k =n—2 in (3). We conclude that the method of Frobenius gives only one
series solution of the given differential equation.

Cases of Indicial Roots

When using the method of Frobenius, we usually distinguish three cases corresponding to
the nature of the indicial roots. For the sake of discussion let us suppose that r, and r,

are the real solutions of the indicial equation and that, when appropriate, r, denotes the
largest root.

Case I: Roots not Differing by an Integer

If r, and r, are distinct and do not differ by an integer, then their exist two linearly
independent solutions of the differential equation of the form

y, =2 c,X"..c,#0,and y, = > b x"", b, =0.

n=0 n=0
Example 6
Solve 2xy"+(1+Xx)y'+y=0.

Solution

o0

If y= chxmr , then

n=0

2xy"+(1+X)Y +y=2> (n+r)(n+r-De X"+ (n+r)e,x™ " +

n=0 n=0

D (n+r)e, X"+ > e XM
n=0

= (N+1)@2n+2r =D, x™ ™+ > (n+r+1e, X"
n=0

n=0
= X' [r@r =1)e,x ! X (n+nEn+2r —1)e,x™ + > (n+r+1)c,x" |
n=1

n=0
n=k+1 k=n
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=x" {r(zr -, x ' + Z[(k +r+D)2k+2r+1)c,,, +(k+r +1)ck]xk} =0
k=0

which implies r2r-1)=0
(k+r+DR2k+2r+1c,,, +(k+r+1c, =0, k=0,1,2,... (1)

1 .. . . .
Forr, = 5 we can divide by k +% in the above equation to obtain

-1)"c
In general C, _ 3 0 n=1273,..
2'n!

Thus we have

1 © _1\N
y, = ¢, x2[1 +z (2 nl)' x" |, which converges for x> 0.
n=l1 n

1
As given, the series is not meaningful for X < 0 because of the presence of X?.

Now for r, =0, (1) becomes

_ —G&
“t k1
—C
C, = 1"
c,=—a_%
3 1.3
¢, =% G
5 1.3.5
¢, =G G
7 1.3.5.7
In general c, = S

o= , n=1,2,3,...
1.3.5.7..(2n-1)
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Thus second solution is

_ S (_l)n n
2= {17L21.3.5.7...(2n—1)X } <o

n=1

On the interval (0,0), the general solution is
y= C1 Yy, (%) + Cz Y, (X).
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Lecture 18
Solutions about Singular Points

Method of Frobenius-Cases Il and 111

When the roots of the indicial equation differ by a positive integer, we may or may not be
able to find two solutions of

a,(X)y"+a,(x)y' +a,(x)y=0 (1)
having form
y =2 C(x=%)"" )
n=0

If not, then one solution corresponding to the smaller root contains a 1ogarithmic term.
When the exponents are equal, a second solution always contains a logarithm. This latter
situation is similar to the solution o fthe Cauchy-Euler di fferencial equation w hen the
roots of the auxiliary equation are equal. We have the next two cases.

Case I1: Roots Differing by a Positive Integer

Ifr, —r, = N, where N is a positive integer, then there exist two linearly independent
solutions of the form

(o @)
Y1 = Z Cnxn+r1 ,Co#O0 (3a)
n=0
= n+r
Yo =Cy;(X)Inx+ > byx  2.,by =0 (3b)
n=0

Where C is a constant that could be zero.
Case I11: Equal Indicial Roots:

If i =TIy, there always exist two linearly independent solutions of (1) of the form

o0
y,=>_¢, x"M e =0 (4a)
n=0
N
Y2 =y (0)Inx+ > byx ! T =T, (4b)
n=I
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Example 7:  Solve xy"+(x—-6)y' =3y =0 (1)

Solution: The assumption y = chx”” leads to
n=0

Xy"+(x—6)y'—3y

=D (+0)(n+r=De,x™ " =6> (n+r)c, x™ " + > (n+r)c,x"" =3> ¢ x"'
n=0 n=0 n=0 n=0

=X’ {F(r—7)cox1 B U R RS YUY, _3)cnx”}

n=1 n=0

X' {r(r —7)c, X +i[(k +r+1)k+r-6),, +(k+r-3), ]xk} =0

Thus r(r-7)=0 sothat r, =7,r,=0,r, —r, =7,and

(kK+r+D(k+r—6)c,, +(K+r-3), =0, k=0,1,2,3,... (2)

For smaller root r, = 0,(2)becomes
(k+D(k —6)c,., +(k—3)c, =0 3)

recurrence relation becomes
k-3
Cen =~ ( ) Cy
(k+1)(k—6)

Since k-6=0, when, k=6, we do not divide by this term until k>6.we find

1.(-6)c, +(-3)c, =0
2.(-5)¢c, +(-2)c,=0
3.(-4)c, +(-1).c, =0
4.(-3)c,+0c, =0
5.(-2)¢,+1c, =0
6.(-1)c,+2.c, =0
7.0c,+3¢c, =0

This implies that
c, =C; =C, =0, But ¢, and ¢, can be chosen arbitrarily.
1

Hence C, = Y Co
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B 1
c2——§c1 _ECO
1 1
c,=——C,=———C 4
3 12 2 120 0 ()
and fork>7
—(k-3)
Ck+1:—ck
(k +1)(k — 6)
C —_—40
81’
P B S I
’ 927 21897
-6 456

C,= C, = C
Y1037 3189.10 '

c - (—1)””4-5-6---(n—4)c
" (n=7)18-9-10---(n)
If we choose ¢,=0andc, # 01t follows that we obtain the polynomial solution

Lee e Lo

y, = Coll —=X+—X
But when ¢, #=0andc, =0, It follows that a second, though infinite series solution

—X
2 10 120
1S

n=8,9,10, (5)

0 —_— n+1 . . oo —_—
PR G EiEE RO

~ (N-7)!8-9-10---n :

x —_— k . . DY
= C7[X7+Z( 1)"4-5-6 (k+3)xk+3
k=1 k!8'910 cec (k+7)
Finally the general solution of equation (1) on the interval (0,0) is
Y =C yl(x) + Czyz(x)
© _— k . . LIS
=C, [l—lx+Lx2 —Lx3]+cz[x7 +Z( 7456k +3)xk”]
2 10 120 = k!18-9-10---(k+7)
It is interesting to observe that in example 9 the larger root r,=7 were not used. Had we
done so, we would have obtained a series solution of the form*

y — icnxnﬂ (7)
n=0

Where ¢, are given by equation (2) with r,=7

1, |X| < o (6)
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—(k+4)
Ck-¢—l T oL ko
(k+8)(k+1)
Iteration of this latter recurrence relation then would yield only one solution, namely the
solution given by (6) with ¢, playing the role ofc,)

k=0,12...

When the roots of indicial equation differ by a positive integer, the second solution may
contain a logarithm.

On the other hand if we fail to find second series type solution, we can always use the
fact that

—I p(x)dx

Y, (0
is a solution of the equation y"+ P(X)y'+ Q(X)y = 0,whenever Y, is a known solution.
Note: In case 2 it is always a good idea to work with smaller roots first.

e

Y=Y (X)I

dx (8)

Example8:
Find the general solution of xy”+3y'—y =0

Solution The method of frobenius provide only one solution to this equation, namely,

ylzz—z NS P SYC I )
= n(n+2)! 3 24 360
From (8) we obtain a second solution
o J P00 dx
Y = Y (0] =5 ——dx=y,(0) [
yir (%) X+ =X+ — X +— X+
3 24 360
dx
X+ X+ — X+ — X +-+]
3 30
1 1 19
=y, (X) | =[1-ZX+=X> ——X +---]dx
y,()jx3[ 374 270 :
=Y,(X)| - ! +£+llnx—£x+
: 2x* 3x 4 270
1 1 2 19
==Y, (X)In X+ Yy, (X)| ——5+———=X+... *
4y1()n Yi( ){ 3 770 } *)
1 1 2 19
Y =CY,(X)+C, | =y, (X)Inx+y,(X)| - +———X+... oK
y 1y1() 2{4)/1() yl( )( 2X2 3x 270 ):| ( )

169

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU
Example 9:
Find the general solution of
xy"+3y'—y=0
Solution :
y, =y, Inx+ Z:bnx""2 10)
n=0
< 2
=) = X 11
7 gnz(mz)!x an
differentiate (10) gives
y2' Y Y, lnx+Z:(n—2)bnx“"3
X n=0
y, =—2b+ 2y1 2y nx+ Y (n-2)(n-3)bx"
X n=0
so that
Xy, +3y, -y, =lnx[xy1" +3y1 yl}r2y1 +—=L +Z(n 2)(n—-3)b, x""
+3> (n-2)b,x"> =D b x"?
n=0 n=0
=2y + +Z(n 2)nb,x"* - 'bx"?  (12)
n=0
where we have combined the Ist two summations and used the fact that
Xy +3y1-y,=0
Differentiate (1 1) we can write (12) as
3 3 X"+ 3 (= 2)nb, x™ =3 b x™
nzn'(n+2)' Z(;n'(n+2)' nZ:(;( e, nzz(; "
_ _ 4n+1) = _
=0(-2)b, x> + (b, b )X+ ———~ n—2)nb, x" b x"*
(=2)by X +(~b, —by) ;n!(n”), 2( by X" =2 b,
5 4k +1) B kel
—(b, +b,)x +Z{k'(k ) +k(k+2)b, ., —b, X" (13)
Setting (13) equal to zero then gives b, = —b,and
AKED | k42, —b,, =0, For k=0,1,2, ... (14)
K!(k +1)!
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When k=0 in equation (14) we have 2+0-2b, —b, = 0so that but
b, =2,b, =-2,but b, is arbitrary
Rewriting equation (14) as
b . — B 4k+1)
2T k(k+2)  kI(k +2)tk(k +2)
and evaluating for k=1,2,... gives
b, 4

b =2 _2
309
o olp L 1, 25
8 32 24 288
and so on. Thus we can finally write

Y, =Y, Inx+b,x? +bx" +b, +b,x+---

=yllnx—2x2+2x1+b2+(b?2—ijx+-- (16)

(15)

9
Where b, is arbitrary.

Equivalent Solution
At this point you may be wondering whether (*) and (16) are really equivalent. If we
choose ¢, =4 in equation (**), then

y, =Y In X+ _i+i_£x+...
> x> 3x 135
Y, =y lnx+£1+§x+%xz+%x3+mj _2 . 8 38, (17)
20 x> 3x 135
=y11nx—2x‘2+2x‘1+£—£x+
36 108

Which is precisely obtained what we obtained from (16). If b, is chosen asg

The next example illustrates the case when the indicial roots are equal.
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Example:10
Find the general solutionof xy”+y'—4y=0 (18)
Solution :The assumption yzz ¢, X" leads to
n=0
Xy"+y —4y= Z(n+r)(n+r-l)c X" 1+Z(n+r)c X" 420 X"
n=0 n=0

:Z (n+r)2Can+r—1 _ 4zcnxn+r
n=0 n=0
=X {rzcoxl +Y (ntr)’e, X" —4)° cnxn}

n=1 n=0

X' [rzcox‘1 + Y (ktrt1)’e,,, —4c, } X =0
k=0

Therefore r*=0, and so the indicial roots are equal: I, =r, = 0. Moreover we have

k+r+D?c,., —4c, =0,k=0,1,2,...
k+1 k

(19)

Clearly the roots 1, =0 will yield one solution corresponding to the coefficients defined

by the iteration of
4c,

c..,.=—— k=0,1,2,...
T (k+1)°
The result is
o 40
yl:cong‘wa < 00
—J.f)dx
dx
=N S g dx =y, (0|
I

2
x{1+4x+4x2 +196x3 +}
= YI(X)J.%|:1—8X+4OX2 —%)ﬁ +-~}dx

—yl(x)I[——8 ra0x -2 2+.}1x

(20)
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= y,(x){lnx—8x+20x2 —%y@ +}

Thus on the interval (0, c ) the general solution of (18) is

y=¢y,(x)+c, {yl (x)Inx + yl(x)(—8x +20x° —%XS + ﬂ

where Y,(X) is defined by (20)

In casell we can also determine Y, (X) of example9 directly from assumption (4b)

Exercises

In problem 1-10 determine the singular points of each differential equation. Classify each
the singular point as regular or irregular.

1 Xy +4xX°y'+3y=0
2 Xy —(x+3)7y=0

3 (X*-9)Y'+(X+3)+2y=0
4

14 1 !
——y'+
x’ (x=1)

(X> +4X)y"=2xy'+6y =0)
X2(X=5)"y" +4xy' +(x=2)y =0
(X +X=6)Y +(X+3)y' +(x=2)y=0

y y=0

X(X>+1)°Y" +y=0
X (X* =25)(X=2)>Y" +3xX(X=2)y' + 7(Xx+5)y =0
10 (X =2X> =3X)° Y + X(X+3)’y' + (x+1)y =0

© 0 N O (5

In problem 11-22 show that the indicial roots do not differ by an integer. Use the method
of frobenius to obtain two linearly independent series solutions about the regular singular
point X, = 0 Form the general solution on (0, )

11.2xy" -y +2y =0
12. 2xy" +5y"+xy =0

13. 4xy"+%y’+y:0

14. 2X°y" —xy'+ (x> +1)y =0
15. 3xy"+(2-x)y'+y=0

2
6 XY - =3 y' +Xxy =0
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17. 2xy"+(3+2x)y'+y=0
18. x2y”+xy'+(x2—gjy=0
19. 9X*Y"+9X°y' +2y =0
20. 2X°y"+3xy'+(2x-1)y =0

21, 2x*y" = x(x=1)y' -y =0
22. X(x=2)y"-y' =2y =0

In problem 23-34 show that the indicial roots differ by an integer. Use the method of

frobenius to obtain two linearly independent series solutions about the regular singular
point X, = 0 Form the general solution on (0, )

23.xy"+2y'—xy =0

24, xX*y"+ xy'+(x2 —%jy =0

25.
26.

217.
28.
29.
30.
31.
32.
33.
34.

X(X=1)y"+3y' -2y =
V'S y -2y =0

X
Xy"+(1-x)y'—y=0
xy"+y=0
Xy"+y'+y=0
Xy"—y'+y=0
XY+ X(X=1DY' +y =
Xy"+y —4xy =0
XY+ (x =1y -2y =
xy"—y' +xy=0

0

0

0
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Lecture 19
Bessel’s Differential Equation

A second order linear differential equation of the form
diy Ay (oo
X2+ X2+ (x> =V’ )y =0
dx*  dx ( )y
is called Bessel’s differential equation.

Solution of this equation is usually denoted by T, (x)and is known as Bessel’s function.

This equation occurs frequently in advanced studies in applied mathematics, physics and
engineering.

Series Solution of Bessel’s Differential Equation

Bessel’s differential equation is

x2y"+xy’+(x2—v2)y:0 (1)
If we assume that
y:ZCan-H'
n=0
Then
y'=> Cpln+rx™!
n=0
y =Y Cpln+r)(n+r—1)x"2
n=0
So that
x2y" + xy’+(x2 —vz)y =Y Coln+r)(n+r—1x™" +> " Cp(n+r)x™"
n=0 n=0
+ZCan+r+2 _V2 chxmr -0
n=0 n=0
o0 o0
Co(r2 —v2)xr +x' Y C, [(n+r)(n+r—1)+(n+r)—v2Jxn +x"Y X" =0 ... (2)
n=1 n=0

From (2) we see that the indicial equation is r2—v:=0 , so the indicial roots are I, =V,
I, =-Vv. When r; =V then (2) becomes
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0

X'y Con(n+2v)x" + xViCnx”” =0

n=1 n=0
X" (1+2V)Clx+icnn(n+2v)x”+§:Cnx”+2 =0
n=2 n=0
L k=n-2 k=n
X" (1+2V)Clx+i[(k+2)(k+2+2v)Ck+2+Ck]x"+2}:0
L k=0

We can write

(1+2V)C1 =0
(k+2)k +2+2v)Cy,, +C, =0
_Ck
Crir = 3
K27 (k+2)(k +2+2v) ©)
k=0,2,...
The choice C, = 0in (3) implies
C,=C,=C,=...=0
so for k =0,2.4,... we find, after letting K+2=2n, n=1,2.3,... that
_Czn—z
- 4
o 2%n(n+v) @
Thus
C2 = - ) CO
22.1-(1+V)
c, C,
Cy=— -
22.2-(2+v) 2*-12-(1+v)(2+v)
C C
Cg=-— 4 —_ 0 (5)
© T 223.(34v) 25123 (1+v)(24V) (3+V)
n
Cyp = (1) Co n=12,3,...
22" nl(14v)(2+V)---(n+V)
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It is standard practice to choose C, to be a specific value namely

1

Co=—"
2'T1+v)
where I'(1+V)the Gamma function. Also
I'l+a)=a(a).

Using this property, we can reduce the indicated product in the denominator of (5) to one
term. For example

FA+v+1)=(1+Vv)I(1+Vv)
F(1+v+2)=(2+V)[(2+V)
=(2+Vv)(1+Vv)C1+v)

Hence we can write (5) as

C (-1)"

22V ni(14v) (24 V) (n+V) T+ V)

= G n=0,12,...
22"V RIT(14v+n)

So the solution is
0 0 n 2n+v
2n+v (_1) X
TS G

If v > 0, the series converges at least on the interval [0 o).
Bessel’s Function of the First Kind

As for 1, =v, we have

o0 (_l)ﬂ X 2n+v
J = — 6
v() g;)(n!)r(nvm)(zj ©
Also for the second exponent I, = -V, we have
0 (—l)n (X}zn—v
J = — 7
() ng;)(n!)l“(l—v+n) 2 @

The function J, (X) and J_, (X) are called Bessel function of the first kind of order V and
—V respectively.
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Now some care must be taken in writing the general solution of (1). When v=0, it is
clear that (6) and (7) are the same. If v>0and 1, — I, =V — (— V) =2V is not a positive

integer, then J, (X) and J_, (X) are linearly independent solutions of (1) on (O, oo) and
so the general solution of the interval would be

y=CyJ,(x)+CyJ ., (x)
If r, —r, =2V is a positive integer, a second series solution of (1) may exists.

Example 1

Find the general solution of the equation
1
X2y" + xy’+(x2 —Z)y =0 on (0, «)

Solution

The Bessel differential equation is

xzy”+xy'+(x2 —vz)y:O (1)
x2y”+xy'+(x2 —ﬂy:o )
Comparing (1) and (2), we get v2 = %, therefore vV = i%
So general solution of (1) is y=CJy,5(x)+CoJ ()

Example 2

Find the general solution of the equation

xzy”+xy’+[x2 —éjy =0

Solution
. > 1 1
We identify V© = 5 , therefore vV = ig
So general solution is y=CJ,5(X)+CJ,5(x)
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Example 3
Derive the formula XJy (X) =V (X) = xJy 41 (X)
Solution
o0 n 2n+v
(=) (xj
A J = 77 |2
° v() Z:: nIT1+v+n) 2

X, (X) = i M(anw

N'TC(1+v+n)

o )n X 2n+v o0 nn X 2n+v
=V z nvr(1+v+n)(_j z n'l“(l+v+n)[_j

n=0

o0

2n+v-1
—vJ +x
Z n 1'F(1+v+n)( j

nO

k=n-1
o kK 2k+v+1
=VJV(X)_XZL(E)
I(:Ok!l“(2+v+k) 2

=Vly (X)_ XJy41 (X)

So Iy (X) =Vl (X) = XxJy41(X)
Example 4
Derive the recurrence relation 23] (X) =J. (X) -J..,(x)
Solution:
s (_ 1)5 (ijzs
A J =) —| =
i ) sZ(‘;s!(n+s.)! 2
’ B 0 (_1)5 (ier_zs_l (lj
J”(X)_Szzosz(n+s)!(n+2s) 2 2
~ o0 (_1)3 (ijmzs l(lj
_E)S'(n+s)'(n+s+s) 5 5
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:gslzg?ss n+s( jmzs IG " S'E ?Ss ( jn+zs_1Gj
1
2

© jn+sl
Saaciner

Ss!(n+ s)(n +5 —1)I

© X n+2s-1 1
+§s n+s)l (2) EJ

n-l+2s © s n+2s-1
sl s

25 (s-1(n+sp (2
1 0 X n+2s-1

= — J —

2 ”I(X)Jrz I(n+s) (2)

Put s—1= p1n2ndterm:>S— p+1

:lJn_l(x)+li

p+1 (X
2 2p:0p n+p+1l 2

Loty E) @

— N~
wMS
‘?_
|
p—

+
U)
/_\\
N | X<

n+2 p+1

Example 5
1
Derive the expression of J | (X) for N = iE

Solution:

coitr 18- 'E; 1+)Ss)! sz

5=0 S*
As n!=T(n+1)

) (_1)5 X n+2s
= In ()= E)F(s+1)l“(n+s+l) (5]
put N=1/2

Ji 5 (X) = S (_l)s X2
12 ( )_Szor(s+1)r(1/2+s+l)(5j
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Z ( )S ( Xj2+2s

oL (s+DI'(s+3/2)\ 2
Expanding R.H.S of above

3172 (X) = (‘1)0 gji .\ (—1)l (EJ;”(I)

T(0+1)I(0+3/2) T1+DI1+3/2)\ 2

+ .-

(P (O )
CQ2+DC2+3/2) Ej "TG+DI(3+3/2) (Ej
5

X % 2:2(x)\2 2-2-2 (X %
-2 255

5 X _4xex? iﬁ-X“_..}
\/_ 3 25/2 15 29/2

2 4x* 4 x*
\/5_3_25/24'%29/2_"1
x| 2 4x° 4x* _}

5 81 i

- +
_\/E\/E 3“\/5.25/2 15“\/5.29/2

S

)
g
o [ X,
)%
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Similarly for n=—1/2, we proceed further as before,

- 0s'(n+s

= 3,(0=3 (1) (1)””5

ol (s+ DIC(n+s+1)\ 2

tn !
u = -
P 2

I 12(x)= i (-1)° (ij;ﬂs

s (s+DI'(=1/2+s+1)\ 2

Lin(x)=3 (-1)° (Zj;fzs

S T(s+DI(s+1/2)\2

Expanding the R.H.S of above we get

I_1/2(x)= (1)’ (ﬁj; . (-1 (ij;+2(l)

LO+D)I0+1/2)\ 2 r(1+Dr+1/2)\ 2

(-1 (1)}2(2) )

rQ+Dr2+1/2)\ 2

3 7
1 2 1 x\2 1 x\2
3—1/2(X)=—,/———(—j +—(—) —
rora/2)\'x r@ra/2)l2) rEere/2)l2

3 7
_ ﬁ_;@a;@zw
(MHra/2) \x 1.;.r(1/2) 2) 2.2.21a/2)

1 [z 232 20472
F(l/2){\/_ 372 33 2772 _:l
1 [v2 2x32 2x72

Jz \/;_ 372 +§27/2_"1
\/5" ﬁ x32 9 x7/2
Jz| bz 4 36 _}
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\/5‘ ﬁ _X3/2+lx7/2_...
Jr[JIxv2 2 308
_ﬁ' 1 x3/2 +X7/2 }

\/E_ {\& X3/2 N X7/2 }
X

= J_l/z(x)z\/%cosx

Remarks:

Bessel functions of index half an odd integer are called Spherical Bessel functions. Like
other Bessel functions spherical Bessel functions are used in many physical problems.
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Exercise

Find the general solution of the given differential equation on (0, 00 )
1. xzy"+xy’+(x2 —éj y=0
2. x2y”+xy’+(x2 —1) y=0
2.n i 2 _
3. 4x7y"+4xy +(4x —25)y—0

4 16x2y”+16xy’+(16x2—1)y=0

Express the given Bessel function in terms of sin X and cos X, and power of X.
5. J3/2(x)
6. Js/2(x)

7. 37/2(%)

184

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Lecture 20
Legendre’s Differential Equation

A second order linear differential equation of the form

(1 -x? )y” —2xy"+n(n+1)y=0

is called Legendre’s differential equation and any of its solution is called Legendre’s
function. If n is positive integer then the solution of Legendre’s differential equation is
called a Legendere’s polynomial of degree n and is denoted by P, (X)

We assume a solution of the form  y= Z‘Ckxk
.'.(l—xz)y”—zxy’+n(n+1)y:

(l—xz) 3 Cek(k-1)xk 223 cpkx® +n(n+1) 3 Cpx¥

0

:ickk(k 1)x* ZCk (k —1)x* —2ZC kx® +n(n+1)ZCkx

k=2 k=1 k=0

o]

=[n(n+1)Cy +2C, ]x* +[n(n +1)C, —2C, + 6C; Jx + > C, k(k — 1)x*7

k=4
j=k-2
_ickk(k —1)x* —2iCkak +n(n +1)ickxk
k=2 = ~
e
j=k j=k ik
=[n(n+1)Cy+2C, |+[(n-1)(n+2)C; +6C5 |x
Z[ +2)(i+1)Cja+(n=j)(n+j+1)Cj]x) =0
= n(n+1)C, +2C, =0

(n=1)(n+2)C;+6C3 =0
(J+2)(j+1)C;,+(n—j)(n+j+1)C,; =0, j=2,3,4,...

nin+1
or C2=——(2' ) 0
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c, _ (n-1)(n+2)
3!

_ __(n—j)(n+j+1) B
T ) (e F

C

i=2.3,... (1)

From Iteration formula (1)

c, :_(n—2)(n+3)c (n—2)(n)(n+1)(n+3)C

4.3 ? 41 0
C. = ~(h=3)n+ 4)C3 _(n=3)n-1)n+2)n+ 4)Cl
5-4 51
C, =_WC4 __(n=4)(n-2) n{n+ )(n+3)(n+5)c0
5-6 6!
(n—5)n+6) (h=5Xn=3)n—1)n+2)n+4)n+6)
757 C,=- c,
7-6 7
and so on. Thus at least ‘X‘ <1, we obtain two linearly independent power series
solutions.
yi(x)= Co[l _nn+1) o (=2)n(n+1)n+3)
2! 41
_ (n —4)(n —2)n(n +1)(n +3)(n +5)x6 +}
6!

B (n-1)n+2) 5 (n=-3)n-1)n+2)n+4) s
yz(x)_Cl[x— 3 x> + 5 X
~(n=5)n=-3)n-1)n+2)n+4)n+ 6)X7 +}

7

Note that if Nis even integer, the first series terminates, where Y, (X) is an infinite series.
For example if N =4, then

el A5 0 2457 | Al 2L 30 e
yl(x)_Co[ TRAETR }_CO[I 10x* + 3 x}

Similarly, when Nis an odd i nteger, the series for Y, (X)terminates with X".i.e when

Nis a non-negative integer, we obtain an nth-degree pol ynomial solution of Legendre’s
equation. Since we know that a constant multiple of a solution of Legendre’s equation is
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also a solution, itis traditional t o ¢ hoose s pecific values for C,and C,depending on
whether Nis even or odd positive integer, respectively.

Forn =0, we choose C, =1 and for N =2,4,6,...

wal-3-..(n=1)
2-4-...(n)

Whereas for N =1, we choose C; =1and for N =3,5,7,...

(-2 13-n
Ci=(1) 2-4-..(n=1)

C, :(_ 1)

For example, when N =4, we have

1-3 35
yl(x):(—l)‘”zﬁ[l ~10x? +?x4}

2330, 3y

8 8 8

y,(x)= é (35x* —30x> +3)

Legendre’s Polynomials are specific n degree polynomials and are denoted by P, (X)

From the series for Y, (X)and Y, (X)and from the above choices of Cjand C,, we find
that the first several Legendre’s polynomials are

Py(x)=1

P, (x)=—(35x* —30%> +3)

Ps(x)= %(63x5 —70x° +15x)

Note that Py(x), P (x), P, (x), P;(x),...are, in turn particular solution of the differential
equations
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n=0 (l—x2 y"—2xy’ =0

Rodrigues Formula for Legendre’s Polynomials
The Legendre Polynomials are also generated by Rodrigues formula
1 d A 2 n
P, (x)=— n(x —1)
2" n! dx

Generating Function For Legendre’s Polynomials

The Legendre’s polynomials are the coefficient of z" in the expansion of

1
p=(1-2x2+7°)°
in ascending powers of Z.

: :{l—z(2x—z)}_;

Now ¢:(l—2xz+22)

Therefore by Binomial Series

e 13y
¢=1+%z(2xz)+#2j{z(2xz)}2+ 2(2j(2j{z(2xz)}3+m

=1+%Z(2X—Z)+%Zz(4xz + 72 —4xz)+%z3(8x3 -7 —12x22+6x22)+~-

1 2 322 34 3 3 5133 15

1
=1+zx—Ez +5x 2134 353 0333 5,6 15,24 s

2 16 4
=1+xz +%(3x2 —l)z2 +%(5x3 —3x)z3 +%(35x4 —30x2 +3)z4 +ee

Also

SR, (X)2" =Py (X)+ P (x)2+ Py (x)22 + Py (X) 2" 4+

n=0

Equating Coefficients of (1) and (2)

(1)
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P (x)=x
e

Py (x) =5 (5% ~3¥)

P4(x):é(35x4 ~30x" +3)

Which are Legendre’s Polynomials

Recurrence Relation

Recurrence relations that relate Legendre’s polynomials of different degrees are also very
important in some aspects of their application. We shall derive one such relation using

the formula
(1—2xt+t2); =§:Pn(x)-t“
Differentiating both sides of (1) with respect to t glvoes
(1-2xt+t? ) ZnP x)t"! i nP, (x)t""!
o=

so that after multiplying by 1—2xt +t*, we have

1

(x=t)(1-2xt+t7) 2 =(1-2xt +t2)§:nPn(x)t“-1

n=l

(X_t)i P, (X)t" = (1—2xt +t2)gnpn(x)t"_l

0

ixPn (x)t" - i P(})t"™ => nP, (x)t"" + ZXE: nP, (x)t

n=0 n=0 n=l1 n=l1
—i nP, (x)t"™ =0
n=l1
0 2
X+Xt+ > xP (X)t" —t— ZP X)t" - 2[3)(2_1
n=2

0 o0

=> 0P, (X)t"" +2x7t + 2xz R, (X)t" = > _nP,(x)t™ =0

n=3 n=2 n=1

(1)
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Observing the appropriate cancellations, simplifying and changing the summation indices

Z[ K+1)R, (X)+(2k +1)xR (x)— kP, (x) |t* =0

Equating the total coefficient of t* to zero gives the three-term recurrence relation

(K+1)P,,, (x)—(2k +1)xP, (x) + kP, (x) =0, k=2,3,4,...

Legendre’s Polynomials are orthogonal

Proof:

Legendre’s Differential Equation is (1— X2 ) y'=2xy"+n(n+1)y=0

Let B, (X) and Py, (X) are two solutions of Legendre’s differential equation then
(13 ) i ()= 2xPy (x)+n(n+1) Py (x) =0, and
( xz)P' —2xPy (X)+m(m+1)Py (x)=0

which we can write

[(l—xz)Pﬁ(x)}’+n(n+l)Pn(x)=0 W

!

[(1_x2)pr;1(x)} +m(m+1)Py (x)=0 @
Multiplying (1) by Py, (X)and (2) by P, (X) and subtracting, we get

Pm(x){(l—x2)Pr’]}’—Pn(x){(l—xz)Pﬁ](x)},
+{n(n+1)—m(m+1)} Py (x)Py(x)=0

3)

Now

Add and subtract(l—xz)P'mP'n to formulizetheabove

'

Bn00{1-320P'n | =By {3 )P'y
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(1= ) By (X) P () B ()] (15 ) B () |
—(l—xz)Pr;](x)Pr;(x)+ Py (x)[(l—xz)Pr{] (x)}

T ———

Which shows that (3) can be written as

(1222 ) ()P4 ()P ()P0 (0}
0

+[n(n+1)—m(m+1)] P (X) Py (x) =

((l—xz){Pm(x)Pr’,(x)—Pr’n(x)Pn})’+(n—m)(n+m+1)Pm(x)Pn(x):O

!

(n=m)(m-+n-+1) Ry (x) Po (%) = (13 ){ P (%) Pr ()= P () Py (x)})'
b b ,
(n—m)(m+n+1)ij(x)Pn(x)dx=j((1—x2){P,{1(x)Pn (x)—Pm(x)Pr;(x)})dx
ba a .
(n=m)(m+n+1) [ By (x) P (x)x=(1=3% ) { By (x) P () = B () B ()}

a

a

As 1-x2 =0for x =21 so
1
(n—-m)(n+m+1) I Pn (X) Py (x)dx=0 for x=+1
-1
Since M & N are non-negative

1
= j Pn (X)Py(x)dx=0 for m=n
-1
which shows that Legendre’s Polynomials are orthogonal w.r.to the weight function
W( X) = lover the interval [—1 1 ]
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Normality condition for Legendre’ Polynomials
Consider the generating function
1

(1—2xt+t2)_2: > B ()tT (1)
=0
Also
L
(1—2xt+t2) 2= B (x)t" )
n=0

Multiplying (1) and (2)

(1—2xt+t2)_1 =3 S By (X) By ()T

m=0n=0

Integrating from -1 to 1

o

1 -2t 202 m-+n
__J . X = z Z IPm(x)Pn(X)t dx
(1—2xt+t ) m=0n=0_

-1

jmg;loélo j‘ P (X)Pn (X)tm+ndx=—2Lt[ln(l—2t+t2)—1n(1+2t+t2)}
)
=—2Lt{ln(l+t)2 —ln(l—tz)}

|
—_
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:—%[ln(1+t)—ln(1—t)]

1 2 3 ¢4 2 3
- t—-—+————4- - t-—— ...
t 2 3 4 2 3

Equating coefficient of 2" on both sides

1
= I[Pn(x)]zdx= 2
~1

2n+1

1

= [ By (%) Py (X)dx ==

2n+1

2n+1dX:1
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which shows that Legender polynomials are normal with respect to the weight function

2n+1
W(X)z > over the interval —1 < x<1.

Remark:

Orthognality condition for P, ( X) can also be written as

}1 P (X) Py (X)X :(ﬁj@n,n

0 , 1fm=n

where O n =
m.n {1 ,otherwise

Exercise

1. Show that the Legendre’s equation has an alternative form
d ( 2\ dy
—|1=-X y—-+n n+1)y=0
dx[ dx ( )y

2. Show that the equation
2
. d d :
sind Y +coso Y n(n+1)(sin@)y=0 canbe
d6? do
transformed into Legendre’s equation by means of the substitution X = cosé
3. Use the explicit Legendre’s polynomials P (X), P»(x) Py (x) and P;(x)
1
to evaluate I Pn2 dx for n=0,1,2,3. Generalize the results.
-1

4. Use the explicit Legendre polynomials B ( X) , P ,( X) P ( X) and P ( X)
1
to evaluate J. Pn (X) Pm (X) dx for N # M. Generalize the results.
-1
5. The Legendre’s polynomials are also generated by Rodrigues’ formula
1 d" o, D
Ph(x)= ———(x —1)
2"n1dx"
verify the results for n=0,1,2,3.
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Lecture 21
Systems of Linear Differential Equations

o Recall that the mathematical model for the motion of a mass attached to a spring
orfort her esponseo fas eriesel ectrical ci rcuiti sad ifferential e quation.

2
au+bd—y+cy = f(X)
dx>  dx
o However, we can attach two or more s prings to gether to hold tw o masses m;
and m, .S imilarlya n etworko fp arallelc ircuitsc anb e formed.

-
s,
——
—
—
=
p—_
—
[ Rk

o Tom odelt hesel atter situations, w e w ould n eed t wo or m ore c oupled or
simultaneous e quations to describe the motion of the masses or the response of
the network.

a Therefore, in this lecture we will discuss the theory and solution of the systems of
simultaneous linear differential equations with constant coefficients.

Note that

An nth order linear differential equation with constant coefficients a,, Q, ..., d,isan
equation of the form

dny dn—ly dy
a, —+a,  ——+-+a—=+3a,y = g(X
n an n-1 an_l 1dX ()y g( )
d ., d? , dn
If we write D:d—,D :—2,---,D :—nthen this equation can be written as follows
X dx dx

(anDn +an_1D(”*1)+---+alD+a0)y= g(t)

Simultaneous Differential Equations

The s imultaneous or dinary di fferential e quations i nvolve t wo or m ore e quations t hat
contain derivatives of two or more unknown functions of a single independent variable.
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Example 1
If X,y and z are functions of the variable t, then
d’x
4 e =-5X+Yy
d’y
2 =3X-
dt’ y

and
X'=3x+y'+2'=5
X+y' —-62"=t-1
are systems of simultaneous differential equations.

Solution of a System
A solution of a system of differential equations is a set of differentiable functions
x=f(t) y=g(t) x=h(t),...

those satisfy each equation of the system on some interval | .
Systematic Elimination: Operator Method

o This m ethod of s olution of a s ystem o f1 inear hom ogeneous o r I inear non -
homogeneous di fferential e quationsi s ba sed ont he pr ocess of s ystematic
elimination of the dependent variables.

o This elimination provides us a single differential equation in one of the dependent
variables that has not been eliminated.

o This e quation w ould be a I inear hom ogeneous or a | inear non -homogeneous
differential e quation a nd ¢ an be s olved b y e mploying one of t he methods
discussed earlier to obtain one of the dependent variables.

Notice that the analogue of multiplying an algebraic equation by a constant is operating
on a differential equation with some combination of derivatives.

The Method

Step 1 First write the differential e quations o fthe system in a form that involves the
differential operator D .

Step 2 Wer etain first of t he de pendent va riables a nd e liminate t he r est f rom t he
differential equations of the system.

Step 3 The result of'this elimination is to be a single linear differential e quation with
constant coefficients in the retained variable. We solve this equation to obtain the value
of this variable.

Step 4 Next, w er etain s econd o f't he d ependent v ariables an d eliminate al 1 o thers
variables

Step 5 The result of the elimination performed in step 4 1 s to be again a single linear
differential e quation w ith ¢ onstant ¢ oefficients in th e r etained 2™ variable. W e ag ain
solve this equation and obtain the value of the second dependent variable. This process of
elimination is continued untill all the variables are taken care of.
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Step 6 The computed values of the dependent variables don’t satisfy the given system for
every choice of all the arbitrary constants. By substituting the values of the de pendent
variables computed in step 5 into an equation of the original system, we can reduce the
number of constant from the solution set.

Step 7 We use the work done in step number 6 to write the solution set of the given
system of linear differential equations.

Example 1
Solve the system of differential equations

OI—y=2x, %:3y
dt dt

Solution:

Step 1 The given system of linear differential equations can be written in the differential
operator form as

Dy = 2x, Dx =3y

or 2x—Dy =0, Dx-3y=0

Step 2 Next we e liminate one o fthe tw o variables, s ay X, from t he t wo di fferential
equations. Operating on the first equation by D while multiplying the second by 2 and
then subtracting eliminates X from the system. It follows that

~D?’y+6y=0 or D’y-6y=0.
Step 3 Clearly, the result is a single linear differential equation with constant coefficients
in the retained variable y . The roots of the auxiliary equation are real and distinct

m, =6 and m, SENG

Therefore, y (t) = Cle\/g b, Cze_\/— t

Step 4 Wen ow el iminate t he v ariable y that w asr etained i nt he pr evious s tep.

Multiplying th e first e quation by —3 , w hile ope rating ont he second by D and t hen
adding gives the differential equation for X,

D2x—6x=0.
Step 5 Again, the result is a single linear differential equation with constant coefficients
in the retained variable Xx. We now solve this equation and obtain the value of the second

dependent variable. The roots of the auxiliary equation arem = +1/6 . It follows that

x(t):c3e%t+c e 1

4

Hence the values of the dependent variables X(t ), y(t) are.
x(t)= ce t +c,e t

y(t):c,eﬁt ree

2
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Step 6 Substituting the values of X(t) and y(t) from step 5 1 nto first e quation of the
given system, we have

(\/Ecl —2c4 )e*%t + (— Jec, —2¢y )e_\Et =0.

Since this expression is to be zero for all values oft, we must have
Joc, —2c3 =0, —/6c, —2¢c4 =0

= \/g C C,=— \/g c
3 2 12 4 2 2
Notice thatifw es ubstitute t he c omputed va lues of x(t) and y(t) into the s econd
equation o f'th e s ystem, w e s hall find th at th e s ame r elationship hol ds be tween t he
constants.

or c

Step 7 Hence, by using the above values of C, andC,, we write the solution of the given

system as
x(t) ﬁcle‘gt 6 czc_*/gt
2 2
y(t)= cle‘/gt + cze_*/gt
Example 2

Solve the following system of differential equations
Dx+(D+2)y=0
(D-3) x-2y=0
Solution:

Step 1 The differential equations of the given system are already in the operator form.
Step 2 We eliminate the variable X from the two equations of the system. Thus operating
on the first equation by D —3 and on the second by D and then subtracting eliminates X
from the system. The resulting differential equation for the retained variable y is

[(D-3)D+2)+2D]y=0

(D2 +D- 6)y =0
Step 3 The auxiliary equation of the differential equation for y obtained in the last step
is

m2+m-6=0=(m-2)m+3)=0
Since the roots of the auxiliary equation are

my = 2, m, = -3
Therefore, the solution for the dependent variable Y is
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2t 3t

y(t)=ce” +cre”

Step 4 Multiplying the first equation by 2 while operating on the second by (D + 2) and
then adding yields the differential equation for X

(D*+D-6)x=0,
Step 5 The auxiliary equation for this equation for X is

m? +m-6=0=(M-2)(m+3)
The roots of this auxiliary equation are

m =2, my=-3
Thus, the solution for the retained variable X is

2 3t

x(t)=cse?t +cqe”

Writing two solutions together, we have

x(t)=cse2t +cuet

y(t)=ce? +cre™
Step 6 To reduce the number of constants, we substitute the last two equations into the
first equation of the given system to obtain

(4c, +2¢5)e?t +(=cy —3c4)e ™t =0

Since this relation is to hold for all values of the independent variablet. Therefore, we
must have

4C1 +2C3 =0, —Cy —3C4 =0.
1
or Cy = —2C1 5 Cq = —ECZ
Step 7 Hence, a solution of the given system of differential equations is

x(t)=—2c,e?t —%cze_3t

y(t)=c,e?t + et
Example 3
Solve the system
2
%—4x+ ?jtz =t’
o + X + Yy =0
d dt

Solution:
Step 1 First we write the differential equations of the system in the differential operator
form:
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(D-4)x+ Dy =t>
(D+1)x+Dy=0
Step 2 Then we eliminate one of the dependent variables, say X. Operating on t he first

equation with the operator D + 1, on the second equation with the operator D — 4 and then
subtracting, we obtain

[(D+1)D? -(D-4)D]y =(D+1)t?

or (D3+4D)y:t2+2t.
Step 3 The auxiliary equation of the differential equation found in the previous step is
m? +4m=0= m(m2 +4)
Therefore, roots of the auxiliary equation are
m1=0, m2=2i, m3=—2i
So that the complementary function for the retained variable y is
Yo =Cj +Cp cos2t +C3sin2t.
To determine the particular solution y,we use undetermined coefficients. Therefore, we
assume
_ At3 2
yp = At” + Bt” +Ct.
So that y, =3At* +2Bt+C,
yp =6At+ 2B, yp=6A
Thus yp +4y}, =12At> +8Bt+6A+4C

Substituting in the differential equation found in step, we obtain
12At* +8Bt+6A+4C =t* + 2t
Equating coefficients of t2, t and constant terms yields
12A=1, 8B=2, 6A+4C=0,
Solving these equations give
A=1/12, B= /4, C=-1/8.
Hence, the solution for the variable Yy is given by
Y=Yct+VYp

. 1 1 1
or Yy =C; +Cycos2t+Cy s1n2t+at3+—t2—§t.

Step 4 Next w e e liminate th e v ariable y from the given s ystem. For this pur pose we

multiply first equation with 1 while operate on the second equation with the operator D
and then subtracting, we obtain

[(D-4)-D(D+Dx= t?

200

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

or (D? + 4)x =—t?

Step 5 The auxiliary equation of the differential equation for X is

m? +4=0=m=+2i
The roots of the auxiliary equation are complex. Therefore, the complementary function
for x

X¢ =C4 cOS2t +C5 sin 2t
The method of undetermined coefficients can be applied to obtain a particular solution.
We assume that

xp:At2+Bt+C.

Then X’p =2At+B, X'b =2A

Therefore Xp +4Xp =2A+ 4At? + 4Bt +4C
Substituting in the differential equation for X, we obtain
4At? +4Bt+2A+4C = —t2

Equating the coefficients of t2, t and constant terms, we have
4A=-1, 4B=0, 2A+4C=0
Solving these equations we obtain
A=-1/4,B=0,C=1/8

4 8
. 1,0 1
So that X=Xc+xp=C4c0s2t+c551n2t—zt +§

Hence, we have

. 1 1
X =Xg + Xp =C4q cOS2t +C5 s1n2t—Zt2 +§

. 1.3 1.0 1
=Cy +Crcos2t+Cysin2t+—t~ +—t° ——t.
y=are 3 12 4 8

Step 6 Now C4and Cs5canbe expressedintermsof €, and C3 by s ubstituting th ese

values of X and y intothe second equation of the given s ystem and we find, a fter
combining the terms,

(c5 —2¢4 —2¢, )sin 2t + (2C5 +C4 +2C3 )cos 2t =0

So that C,—2C,—2c,=0, 2c5+C4+2c3=0
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Solving the last two equations for ¢4 and C5in terms of C,and C5 gives
1 1
Cyq :—§(4C2 +2C3), Cs ZE(ZCZ —4C3).

Step 7 Finally, a solution of the given system is found to be
1 1 . 1o 1
X(t) = ——(402 +2C3 )cos 2t+ —(202 —4c4 )sm 2t——t" +-t
5 5 4 8
. 1.3 1,0 1
y(t) =C; +Cpcos2t+Cysin2t+ Et +—t —gt.
Exercise

Solve, if p ossible, th e g iven s ystem o fd ifferential e quations b y either s ystematic
elimination.

dx dy
1. —=x+7y, —=Xx-2
dt S y
2 ¥ gyl e Mo
dt dt

3. (D+1)x+(D-1)y=2, 3x+(D+2)y=-1

2
u+O|—y:—5x %+ﬂ:—x+4y
dt? dt dt dt

b

5. D’x-Dy=t, (D+3)x+(D+3)y=2
2
dx+d_y:et d-x

6. — ,
dt  dt dt?

7. O-x+(D2+1)y=1.  (D2-1k+(D+1)y=2
8. Dx=y, Dy=z, Dz =x

dx dy dz
—=-X+2, —=-Y+2, —=—-X+Y
dt dt dt

10. Dx—2Dy=t2, (D+1)x-2(D+1)y=1
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Lecture 22
Systems of Linear Differential Equations

Solution of Using Determinants

If L;,L,,L5 and L4 denote linear differential operators with constant coefficients, then a
system of linear differential equations in two variables X and Yy can be written as

Lix+Lyy=0(t)
Lyx+Lgy =0(t)

To eliminate y , we operate on the first equation with L4 and on the second equation with
L, and then subtracting, we obtain

(LiLg - Lyly )x = Lygy - Ly 97

Similarly, o perating on the first equation with L3and second equation with L;and then
subtracting, we obtain

(LiLy - LoL3)y = L1gs - L3g

: Ly L,
Since Ll L4 — L2 L3 =
L3 Ly
L
Therefore L40; - Ly0, = 9 2
P Ly
g1
and Lig2 —L39; =
L3 )

Hence, t he given s ystem of di fferential e quations ¢ an be de coupled into nth order
differential equations. These equations use determinants similar to those used in Cramer’s
rule:

Ly L
L, Ly

Ly Ly
Ly Ly

Ly g
L3 o]

g1 L,
9 Ly

X =

The uncoupled differential equations can be solved in the usual manner.
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Note that

0 The determinant on left hand side in each of these equations can be expanded in
the usual algebraic sense. This means that the symbol D occurring in L;is to be

treated as an algebraic quantity. The result of this expansion is a differential
operator of order n, which is operated on X andy.

o However, some care should be exercised in the expansion of the determinant on
the r ight ha nd s ide. W e m ust e xpand t hese d eterminants i n t he s ense of t he

internal di fferential ope rators a ctually op eratingont he f unctions g, and g, .
Therefore, the symbol D occurring in L; is to be treated as an algebraic quantity.

The Method

The steps involved in application of the method of detailed above can be summarized as
follows:

Step 1 First w e h ave t o write th e d ifferential equations o fth e given system in th e
differential operator form

Lix+Lyy=g(t)
Lyx+Lsy =g, (t)
Step 2 We find the determinants
Ly Ly
L, Ly

L 01
Ly 0>

0y L,
9> Ly

Step 3 Ifthe first determinant is non -zero, then it r epresents an n ™ order d ifferential
operator and we decoupled the given system by writing the differential equations

9 3

Ly L, x| % L,
L; Ly g, Ly
Ly L, Ly = Ly 91
L3 Ly Ls 92

Step 4 Find t he c omplementary functions for the t wo e quations. R emember t hat the
auxiliary equation and h ence the co mplementary function o f each o f these d ifferential
equations is the same.

Step 5 Find the particular integrals X D and Y D using method of undetermined coefficients
or the method of variation of parameters.

Step 6 Finally, we write the general solutions for both the dependent variables X and Y
X=X +Xp, Y=Ye +Yp.
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Step 7 Reducet he num ber of ¢ onstants b y substitutingi n one of the differential
equations of the given system

Note that

If the determinant found in step 2 is zero, then the system may have a solution containing
any number of independent constants or the system may have no solution at all. Similar
remarks hold for systems larger than system indicated in the previous discussion.

Example 1

Solve the following homogeneous system of differential equations

2d——5x+ﬂ=et

d dt
%—x+ﬂ=5et
dt dt

Solution:

Step 1 First we write the differential equations of the system in terms of the differential
operator D

(2D-5)x+ Dy =¢'
(D -1)x + Dy = 5¢'
Step 2 We form the determinant
el D| [2D-5 ¢

b

sel D D-1 5et

b

2b-5 D
D-1 D

Step 3 Since the 1% determinant is non-zero

D=3 D—(2D 5)D—(D-1)D
D-1 D|
2D-5 D| ,
or =D“-4D #0
D-1 D

Therefore, we write the decoupled equations

20-5 D| _|e' D
D-1 D| |t p

2D-5 D 2D-5 et
D-1 D D-1 5et
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After expanding we find that

(D2 —4D)x= Det —D(5 Bt = —4et

(D2 —4D)y:(2D—5)(5et)—(D—l)et _ _15¢!

Step 4 We find the c omplementary function for t he t wo e quations. T he a uxiliary
equation for both of the differential equations is:

m? -4m=0=>m=0,4
The auxiliary equation has real and distinct roots

XC =C + 0264t

yC =C3 + C4€4t

Step 5 We now use the method of und etermined c oefficients to find the particular
integrals Xpand Y.

Since g1 (t)=—4¢e', gy(t)=-15¢
We assume that
_ aat _npal

Xp = Ae’, Yp = Be
Then D xp =Ael,  D%xp = Ae
And Dyp=Be', D%y, =Be
Substituting in the differential equations, we have

Ael —4Ael = —4¢!

Bel —4Be! =—15¢!

or ~3A¢t :—4et, _3Bet = —15¢
Equating coefficients of e' and constant terms, we obtain
4
A=—, B=5
3
_ 4t _ ot
So that Xp—ge, yp—Se

Step 6 Hence, the general solution of the two decoupled equations

B B 4t 4t

y=Yc+Y¥p=6¢ +c4e4t+5et
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Step 7 Substituting these solutions for X and y into the second e quation of the given
system, we obtain

—¢ +(3¢y +4c4)e4t =0
or C1=0, Cq Z—%Cz.

Hence, the general solution of the given system of differential equations is
4
x(t)=cpett +§et

y(t)=c3 —%cze‘” +5et

If w e re -notate t he ¢ onstants Cy and C3 as C; and Cp,r espectively. T hent he
solution of the system can be written as:

x(t)=cle4t+§et

y(t):—%cle4t ¢, +5€
Example 2
Solve

X'=3x—y-1

y' =x+y+4e
Solution:

Step 1 First w e write the d ifferential equations o fth e s ystemin termso fthe
differential operator D

(D-3)x+y=-1
—x+(D-1)y =4e'

Step 2 We form the determinant

D-3 1 -1 1 D-3 1
-1 D-1 [4¢* D-1 | -1 4e!
Step 3 Since the 1% determinant is non-zero
D-3 1 )
=D“-4D+4 =0
-1 D-1

207

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Therefore, we write the decoupled equations

D-3 1 -1 1
X=|

-1 D-1" |4e D-1

D-3 1| [|D-3 -1

0 p-1?7 a1 4

After expanding we find that
(D-2)x=1-4¢"

(D-2)y=-1-8e".

Step 4 We find the c omplementary function for t he t wo e quations. T he a uxiliary
equation for both of the differential equations is:

(m-2=0=>m=2.2
The auxiliary equation has real and equal roots

XC = cle2t + CztEZt

Yo = C3(32t + C4t(i‘2t

Step 5 We now use the method of und etermined c oefficients to find the particular
integrals Xpandy .

Since g (t)=1-4 el, gr(t)=-1-8 !
We assume that
Xp=A+Be', yp=C+Ee
Then Dx,=Be', D’x,=Be'
And D yp:Eet, D2y|o=Eet
Substituting in the differential equations
(D-2)’x, = D*x, —4Dx,, +4x,, =1-4¢'
(D-2)’y, =D?y, -4Dy, +4y, =-1-8e'

Therefore, we have
Be' —4Bel +4A+4Bel =1-4¢!

Eel —4Ee! +4C +4Eet = —1-get

or Bel +4A=1-4e!, Ee'+4C=—1-8¢

208

© Copyright Virtual University of Pakistan



Differential Equations (MTH401) VU

Equating coefficients of e! and constant terms, we obtain

B= -4, A:l
4
Cz—l, E=-8
4
Lt _ 1ot
So that xp—z—4e, yp——z—8e

Step 6 Hence, the general solution of the two decoupled equations

2t 2t 1 t
X=X.+X,=Ce" +cte” +——4e
C p 1 2 4
2t a1 t
=y.+ =87 +Cyte” ———8e
Y=Y yp 3 4 4

Step 7 Substituting these solutions for X and y into the second e quation of the given
system, we obtain

(c3—c;+c e? +(cy —c,o te® =0

or C4=02’ C3:C1—C4:CI—C2.

Hence, a solution of the given system of differential equations is

x(t)=ce® +c,te? + % —4¢

y(t)=(c, —c, Je** +c,te —i— ge'

Example 3
Given the system
Dx + Dz —t?
2x+ D2y =gl
~2Dx-2y+(D+1)z=0
Find the differential equation for the dependent variables X, yandz.

Solution:

Stepl The d ifferential e quations o fth e s ystem are a lready w ritten in th e d ifferential
operator form.

Step 2 We form the determinant
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D 0 D t> 0 D D t> D D 0 t?
2 D2 o, eeD?> o0, |2 e o], |2 D?¢
2D -2 D+1| |0 =2 D+1 |-2D 0 D+1 |-2D -2 0

Step 3 Since the first determinant is non-zero.

D 0 D ) )
2 b2 ol|=p” %l|sp 2 P
5D 2 Dal P2 D+l |-2D -2
D 0 D
or 2 D* 0 :D@D3+D2—O¢0
—2D -2 D+l
Therefore, we can write the decoupled equations
D 0 D t> 0 D
2 D?> 0 |-x=le! D 0
—2D -2 D+1 0 -2 D+1
D 0 D D t2 D
2 D2 0 |-y=|2 e 0
2D -2 D+l ~2D 0 D+1
D 0 D D 0 t
2 D 0 |-z=| 2 D?¢
-2D -2 D+l 2D -2 0

The determinant on the left hand side in these equations has already been expanded. Now
we expand the determinants on the right hand side by the cofactors of an appropriate row.

2
2 0 D

2 t 2
et 02 o |-P % |24p/® P
V5 pa |2 De 0 -2

=D?(D +1)t? + D(=2¢!) = (D? + D?)t? — 26!
=226
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D t2 D t t
2 e o |=p® O —‘2 0 12 2 e
_2D D+1 _
9D 0 Dl 0 D+1 + 2D 0
= D[(D +1)et]-[(D +1)(2t?)] + D[2De']
=26t —4t—2t% +2e' = 4e! —2t2 —4t.
D 0 t2
2 D2 etzDD2 et+ 2 th2
_9D -2 0 -2 0| |-2D -2

=D(2e") +(—4+2D)t? =2et —4t% +0
=26t —4t?

Hence the differential equations for the dependent variables X, y and z can be written as
D@D3+D2—4ﬁx=2—2é
or (D3 + D2 - 4y)y = et ~2t2 -4t

D@D3+D2—4ﬁz=2é—4¥

Again we remind that the D symbol on the left-hand side is to be treated as an algebraic
quantity, but this is not the case on the right-hand side.
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Exercise

Solve, if possible, the given system of differential equations by use of determinants.

1.

dx y

— =2X-Y, 2 =x-2

dt ST y

dt dt
(D2+5)x—2y=0, ; 2x+(D2+2)y:0
2 2

d—2X=4y+et, O|—2y=4x—et

dt dt

2

u+ﬂ=—5x, %+ﬂ=—x+4y
dt2  dt dt dt

Dx+D2y=e3, (D+1)x+(D-1)y =4e

(Dz—l)x—y:(), (D-1)x+Dy=0

(2D%? -D-Dx-@2D+1)y=1, ( D-I)x+Dy=-1

2
dx+d—y:et, —ﬂ+%+x+y=0
dt dt di2 dt

10. 2Dx+(D-1)y=t,  Dx+Dy=t?
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Lecture 23
Systems of Linear First-Order Equation

In Previous Lecture

In the preceding lectures we dealt with linear systems of the form

R1(D)X +P2 (D)X +-+ Py (D)X, =Dy (t)
Py (D)X + Py (D)X +--+ Py (D) Xy = by (1)

where the P, j were polynomials in the differential operator D.

The nth Order System

1. The study of systems of first-order differential equations

dx
d_tlz gl (t, XI,XZ,...,Xn)
dx
d—t2=92 (%, X500 Xy )
dx
d—t”:gn(t,xl,xz,...,xn)

is also par ticularly importan t in advanced m athematics. This system of n first-order
equations is called and nth-order system.

2. Every nth-order differential equation
y" =F (t, Yoy y "

as well as most systems of differential equations, can be reduced to the nth-order system.
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Linear Normal Form

A particularly, but important, case of the nth-order system is of those system s having the
linear normal or canonical form:

dx

d_'[1 - a11(t)X1 +a, (t)xz Tt a, (t)Xn + fl(t)
dx

d_'[2 - a21(t)xl +tay (t)xz Tt a, (t)Xn + 1, (t)
dx

d_'[r1 - anl(t)xl + anz(t)xz Tt ay, (t)xn + fn (t)

where the coefficients a; and the f;are the continuous functions on a common interval | .
When f; (t) =0,i=1,2,...,n,the system is said to be homogeneous; otherwise it is
called non-homogeneous.

Reduction of Equation to a System

Suppose a linear nth-order differential equation is first written as

d"y ) a; ap_1 (n-1
— 2=y Sy e Gnmt ) f(t).
dt an an ap

If we then introduce the variables

14

y=X, Y =X, Y :x3,...,y(”‘1):xn

it follows that

!

n-1 n
y’:X{:X27 y":Xé:X3J"'9y( ):Xn—1:Xn7 y( ):Xr'1
Hence the given nth-order differential equation can be expressed as an nth-order system:

X =X

' —_—

X =X

X3 =Xy4

!

Xn-1 = Xp
a a a._

Xy ==X Xy == x4 f (1)
an an n

Inspection of this system reveals that it is in the form of an nth-order system.
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Example 1

Reduce the third-order equation

m

2y" =—y—4y'+6y" +sint
or 2y" —6y"+4y'+y =sint
to the normal form.
Solution: Write the differential equation as

m_

1 1
=——y-2y' +3y"+=sint
2y y +3Yy >

Now introduce the variables
Y=X,Y =X,y =X,.

Then

X =y =x%

K=y =%

X; — yW
Hence, we can write the given differential equation in the linear normal form

X| =X

Xy = X3

, 1 I .
X3 =——=X; —2X; +3X%; +—sint
2 2

Example 2

Rewrite the given second order differential equation as a system in the normal form

2
29—¥+ Y _sy-0
dx dx
Solution:
We write the given the differential equation as
2
Py Ly s
dx2 dx 2
Now introduce the variables
y=xX, ¥ =X
Then
y' =X =X
yl! — Xl2
So that the given differential equation can be written in the form of a system
X =X

X5 =—2%, +§x1

This is the linear normal or canonical form.
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Example 3
Write the following differential equation as an equivalent system in the Canonical form.
d 3
4 3y +y=¢'
dt
Solution:
First write the given differential equation as
d’y
4—3 — —y + et
dt
dividing by 4 on both sides
d’ 11
or 3y =——V+ —et
dt 4 4

Now introduce the variables
Y=X, ¥Y=%X Yy'=X

Then
y'= )(1’ =X,
y" — Xé — X3
y"’ — Xé
Hence, the given differential equation can be written as an equivalent system.
!
x| =%
! —_—
X =%
Xy =——x +—¢
3= TS
4 4

Clearly, this system is in the linear normal or the Canonical form.

Example 4
Rewrite the differential equation in the linear normal form

2y +ty’ +(t2 —4)y =0
Solution:
First we write the equation in the form
t’y” :—ty’—(t2 —4)y
.1, (-4)
o YR T
, 1., t*P-4

or yz—fy— 2

Then introduce the variables
y = Xl s y’ = X2

y, t#0
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Then
y'= xl’ =X,
y" — Xé
Hence, the given equation is equivalent to the following system.
!
X =%
vl t? —4
2 (2T Tz

The system is in the required linear normal or the cnonical form.
Systems Reduced to Normal Form

Using Procedure similar to that used for a single equation, we can reduce most systems of
the linear form

R1(D)X +PR2 (D)X +-+ PR (D)% =hy (1)
Py (D)X +Pyy (D) Xy ++-+ Py (D) Xy =by (1)

Pnl (D)Xl + PI’]2 (D)Xz + e+ Pnn (D)Xn = bl’] (t)
to the cano nical form. To accom plish this we need to solv e the system for the hi ghest
order derivative of each dependent variable.

Note:
It is not always possible to solve the given system for the highest-order derivative of each
dependent variable.

Example 5
Reduce the following system to the normal form.

(DZ—D+5)x+2D2y=et

X+ (D2+2)y = 3t2

Solution:

First write the given system in the differential operator form

D2x+2D%y =e' —5x+ Dx
D2y =3t? +2x -2y
Then eliminate D*y by multiplying the s econd equation by 2 and subtractin g from first

equation to have
D*x =e' —6t> —9x+4y + Dx.
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Also D2y =3t2 +2x -2y
We are now in a position to introduce the new variables. Therefore, we suppose that

Dx=u, Dy=v

Thus, the expressions for D°x and Dy, respectively, become

Du=¢'—6t> —9x+4y+u
Dv =3t +2x - 2y.

Thus the original system can be written as
Dx =u
Dy =v
Du=-9x+4y+u+e' —6t’
Dv =2x-2y+3t’
Clearly, this system is in the canonical form.

Example 6

If possible, re-write the given system in the canonical form
X'+4x—y’ =7t
X'+ y'—2y =73t
Solution:

First we write the differential equations of the system in the differential operator form
Dx+4x—-Dy =Tt
Dx +Dy -2y =3t
To eliminate DYy we add the two equations of the system, to obtain
2Dx=10t-4x+2y
or Dx=-2x+y+5t
Next to solve for the Dy, we eliminate DX . For this purp ose we simply subtract the first
equation from second equation of the system, to have
—4x+2Dy -2y =—4t
2Dy =4x+2y -4t
or Dy =2x+y-2t
Hence the original system is equivalent to the following system
Dx=-2Xx+y+5t
Dy =2x+y-2t
Clearly the system is in the normal form.
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Example 7

If possible, re-write the given system in the linear normal form

3 2
ﬂ:4x_3ﬂ+ﬂ
dt? dt2  dt
2

9 g2 g 9X 50y
dt? dt = dt

Solution:
First write the given system in the differential operator form

D3x = 4x—3D%*x +4Dy
D2y =10t? —4Dx+3Dy

No need to elim inate anything as the equations are already expres sing the highest-order
derivatives of X and Y in terms of the remaining functions and derivatives. Therefore, we

are now in a position to introduce new variables. Suppose that

Dx=u, Dy=v
D’x=Du=w
Dzy =Dv, D’x=Dw
Then the expressions for D3x and for D2y can be written as

Dw=4x+4v-3w

Dv=10t> —4u +3v

Hence, the given system of differential equations is equivalent to the following system

Dx=u
Dy=v
Du=w

Dv=10t> —4u +3v

Dw =4x+4v-3w
This new system is clearly in the linear normal form.

Degenerate Systems
The systems of differential equations of the form

R1(D)X +PR2 (D)X +-+ PR (D)xy =hy (1)
Py (D)X +Pyy (D) Xy ++++ Py (D) Xy =by (1)

Pnl (D)Xl + PI’]2 (D)Xz +--+ Pnn (D)Xn = bl’] (t)
those cannot be reduced to a linear system  in normal form is said to be a degenerate

system.
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Example 8
If possible, re-write the following system in a linear normal form
(D+1)x+(D+1)y=0
2Dx+(2D+1)y =0
Solution:

The given system is already written in the differential operator form. The system can be
written in the form

Dx+x + Dy+y=0

2Dx +2Dy +y=0
We elim inate DX to solv e f or the h ighest de rivative Dy by multiplying the first
equation with 2 and then subtracting second equation from the first one. Thus we have

2Dx+2x + Dy22y=0
+2Dx + 2Dy+ y=0

2X + y=0

Therefore, it is im  possible to so lve the system for the highest derivative of each
dependent variable; the syst em cannot be reduced to th e canonical form. Hence the
system is a degenerate.

Example 9

If possible, re-write the following system of differential equations in the canonical form
X"+y'=1
X"+y'=-1

Solution:

We write the system in the operator form

D?x+Dy= 1

D?x+ Dy =-1
To solve for a highest order derivative of Yy in terms of the rem aining functions and
derivatives, we subtract the second equation from the first and we obtain

D?x+Dy= 1
+D?x + Dy=-1
0=2

This is absurd. Thus the given system cannot be reduced to a canon ical form. Hence the
system is a degenerate system.
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2
Example 10

If possible, re-write the given system

2D+1)x—-2Dy= 4

Dx - Dy= ¢
Solution:
The given system is already in the operator form and can be written as

2Dx+x-2Dy = 4
Dx - Dy= e
To solve f or the h ighest de rivative DYy , we elim inate the highest d erivative DX .

Therefore, multiply the second equ ation with 2 and then subtract from the first equation
to have

2Dx+x-2Dy = 4
+2Dx 2Dy =+2¢

X = 4-2¢
Therefore, it is impossible to solve the system for the highest derivatives of each variable.
Thus the system cannot be reduced to the li near normal form. Hence, the system is a
degenerate system.

Applications

The systems having the linear norm al form arise naturally in some physical applications.
The following exam ple provides an applicatio n of a hom ogeneous linear normal system
in two dependent variables.

Example 11

Tank A contains 50 gallons of water in whic h 25 pounds of salt are dissolved. A second
tank B contains 50 gallons of pure water. Liquid is pumped in and out of the tank at rates
shown in Figure. Derive the differential equa tions that describe the number of pounds
X, (t)and X, (t)of salt at any time in tanks Aand B, respectively.

Pure water 3 gal / min Mixture 1 gal / min
—>

4

Mixture 3 gal / min

Mixture 4 gal / min
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Solution:

Tank A

Input through pipea = (3 gal/min)-(0 1b/gal)=0

. X X .
Input through pipeb = (1 gal/min)-| == 1b/gal |==% 1b/min
50 50
. X2 X2
Thus, total input for the tank A = 0+—=—
50 50

4
Output through pipe ¢ = (4 gal/min)-(%lb/galj :5—’81b/min

Hence, the net rate of change of x,(t) in 1b/ minis given by

dx, .
—- =input - output
dt p p
dx
or ax _ X 4%
dt 50 50
dx, -2 X,
or —L=—=x+-=
dt 25 50

Tank B
. . . 4x .
Input through pipe Cis 4 gal/min :5_01b/m1n
. X .
Output through pipe bis 1 gal/min =22 |b/min
50
. : . . 3X% :
Similarly output through pipe d is 3 gal/min :Elb/mln
X, 33X, 4x,

Total output for the tank b = -2+ —2 = "2
50 50 50

Hence, the net rate of change of X, (t)in Ib/min

dx, .
—2 —input—output

dt
or dx, _AX A%
dt 50 50
or dx, _2X 2%
dt 25 25
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Thus we obtain the first order system

%:__2)( &
d¢ 257" 50
dx, 2x, 2x,
dt 25 25

We observe that the foregoing system is accompanied the initial conditions
x,(0)=25, x,(0)=0.

Exercise
Rewrite the given differential equation as a system in linear normal form.
2
1 %—3%+4y:sin3t
t
2. y"-3y"+6y' —10y=t>+1
3. _d4y —2—d2y +4ﬂ+ y=t
dt*  dt*  dx
4 3
s 29V 9 gy 1
dt*  dt?

Rewrite, if possible, the given system in the linear normal form.

5. (D—l)x—Dy:tz, X+Dy=5t-2

6. x"-2y"=sint, X"+y"=cost

7o ==K+ Ky (% = Xp), MyXy == Ky (X — %)
8. D’x+Dy=4t, ~D’x+(D+1)y =6t +10
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Lecture 24
Introduction to Matrices

Matrix

A rectangular array of num bers or functions subject to certain rules an d conditions is
called a m atrix. Matrices are deno ted by capital letters A, B,...,Y,Z . The num bers or
functions are called elem ents or en tries of the m atrix. The elem ents of am atrix are
denoted by small lettersa,b,...,y,z.

Rows and Columns

The horizo ntal and ve rtical lin es in a m atrix are, respe ctively, ca lled the rows and
columns of the matrix.

Order of a Matrix

If amatrix has m rows and n columns then we say that the siz e or o rder of the m atrix
ismxn.If A is a matrix having m rows and n columns then the matrix can be written as

all alz cen aln

a21 a22 cee a2n
A=

dn An2 ..o Amn

Square Matrix
A matrix having nrows and n columns is said to be a nxn square matrix or a square
matrix of order n. The elem ent, or entry, in the ith row and jth columnofa mxn

matrix A is written asajj . Therefore a 1 x 1 matrix is simply a constant or a function.

Equality of matrix
Any two matrices A and B are said to be equal if and onl y if they have the sam e orders
and the corresponding elements of the two matrices are equal. Thus if A =[ajj ]mxpn and

B = [bjj Imxn then
A= B<:>aij :bija Vi,j
Column Matrix

A column matrix X is any matrix having n rows and only one column. Thus the column
matrix X can be written as

X =|b3; | =[bj1 Inx1

by

A column matrix is also called a column vector or simply a vector.
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Multiple of matrices

A multiple of a matrix A is defined to be

_kall ka12 kaln i
ka21 kazz cee ka2n
kKA=| . | =[KajjImxn
_kaml kamz cee kamn_
Where Kk is a constant or it is a function. Notice that the product KA is sa me as the

product Ak . Therefore, we can write

kA = Ak
Example 1
2 -3] [10 -15
(a) 5. 4 -1|=[20 -5
1/5 6 1 30
1 et
(b) el.| -2 |=]-2¢
4 4et

Since we know that kA = Ak . Therefore, we can write
21 |27t [2
I I |7 a3t
5] |se3t] |5

Addition of Matrices

Any two matrices can be added only when they have same orders and the resulting matrix
is obtained by adding the correspon ding entries. Therefore, if A=[aj;] and B = [b; jl are

two mx N matrices then their sum is defined to be the matrix A+ B defined by

A+B =[aij +bij]
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Example 2

Consider the following two matrices of order 3 x 3
2 -1 3 4 7 -8
A=l 0 4 6 |, B=|9 3 5
-6 10 -5 1 -1 2

Since the given m atrices have sam e orders. Therefore, these m atrices can be added and
their sum is given by

2+4 -1+7 3+(-8) 6 6 -5
A+B=| 0+9 4+3 6+5 |=] 9 7 11
-6+1 10+ (-1) -5+2 -5 9 -3

Example 3

Write the following single column matrix as the sum of three column vectors

3t* —2¢'
t* + 7t
5t
Solution
3t2 — ¢ 3t? 0 _ gt 3 0 )
247t |=| 2 |+ 7t |+ 0 |=| 1|2+ 7 |t+] O |
5t 0 5t 0 0 5 0

Difference of Matrices

The difference of two matrices A and B of same order mxn is defined to be the matrix
A-B=A+(-B)
The matrix — B is obtained by multiplying the matrix B with—1. So that

-B=(-1)B
Multiplication of Matrices

Any two matrices A and B are conform able for the product AB , if the number of
columns in the f irst matrix A is equal to the number of rows in the second m atrix B .
Thus if the order of the matrix A is mxn then to m ake the product AB possible order
of the matrix B must benx p. Then the order of the product matrix AB is mx p . Thus

Amxn - Bn><p :mep
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If the matrices A and B are given by
ETRED ayp | by by bip |
ar; ax aon by by byp
A = s B = .
[ 8mi 8m2 8mn | by by brp |
Then
ETRED ain ||bir b2 b p
a ax apn |[b21 bao by
AB = ,
[8m1 @m2 ** 8mn | _bnl b2 bnp ]
ar by +abyy +--+abng -agbyp +a1200p +-- +a1pbyp
ax1by1 +agbyy +--+axnbpy --azibyp +axbyp + o+ azpbpp
amibr1 +amaboy + -+ amnbny - @mibrp +amabap + o+ @mnbnp
n
=1 > aikhy
k=1 nxp
Example 4
If possible, find the products AB and BA, when
4 7 9 -2
() A= . B-=
35 6 8
5 8
4 -3
(b) A=|1 0|, B=
2 0
2 7
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Solution

(a) The matrices A and B are square matrices of order 2. Therefore, both of the products
AB and BA are possible.

4 79 —2) (4-9+7-6 4-(-2)+7-8) (78 48
AB: = =
3 506 8 3:9+5-6 3-(-2)+5-8 57 34

9 -2Y4 7 9-4+(-2)-3 9-7+(-2)-5 30 53
Similarly BA = = =

6 8 \3 5 6-4+8-3 6-7+8-5 48 82
(b) The product AB is possible as th e num ber of colum ns in the m atrix A and the

number of rows in B is 2. However, the product BA is not possible because the number of
rows in the matrix B and the number of rows in A is not same.

5.(-4)+8-2  5-(=3)+8-0) (-4 -15
AB=[1-(-4)+0-2  1-(-3)+0-0 |=|-4 -3

2:(4)+7-2 2-(=3)+7-0 6 —6
Note that

In gene ral, m atrix m ultiplication is not com mutative. This m eans that AB = BA . For
example, we observe in part (a) of the previous example

78 48 30 53
AB = , BA=
57 34 48 82

Clearly AB # BA.. Similarly in part (b) of the example, we have

~4 -15
AB=|-4 -3
6 -6

However, the product BA is not possible.
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Example 5

2 -1 3Y=3) (2:(=3)+(-1)-6+3-4) (0
(a) 0 4 5( 6 |=| 0(3)+4-6+5-6 |=| 44
1 =7 9\ 4 ) (1:(=3)+(-7)-6+9-4) |-9

-4 2\ x —4x+2y
S g
3 8y 3X+8y

Multiplicative Identity

For a given positive integern, the nxn matrix

100 --0
010--0
=001 -0
000 -1

is called the multiplicative identity matrix. If A is a matrix of order N x n, then it can be
verified that
I-A=A-1=A
Also, it is readily verified that if X is any nx1column matrix, then |- X = X
Zero Matrix

A matrix consisting of all zero entries is called a zero matrix or null matrix and is denoted

by O. For example
00
0 00
0= : 0= , O=/00
0 00
00

and so on. If Aand O are mx nmatrices, then
A+O=0+A=A
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Associative Law

The m atrix m ultiplication is asso ciative. This m eans thatif A, B and C are mx p ,
pxrand rxn matrices, then

A(BC)=(AB)C
The resultisa mxn matrix.

Distributive Law

If B and C are matrices of order rxn and A isam atrix of order mxr , then the

distributive law states that
AB+C)=AB+ AC

Furthermore, if the product (A+ B)C is defined, then
(A+B)C=AC+BC

Determinant of a Matrix
Associated with every square m  atrix A of constants, thereisanu  mber called the

determinant of the matrix, which is denoted by det(A) or |A|

Example 6

Find the determinant of the following matrix
3 62

A=l 2 51

-1 2 4
Solution

The determinant of the matrix A is given by
3 62

det(A)=|2 5 1

-1 2 4
We expand the det(A) by cofactors of the first row, we obtain
3 62
5 1 |2 1 2 5
det(tA)=|2 5 1|=3 -6 +2
2 4 -1 4 -1 2
-1 2 4
or det(A) =3(20-2)-6(8+1)+2(4+5)=18
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Transpose of a Matrix

The transpose of a mxn matrix A is obtained by interchanging rows and columns of the

matrix and is denoted by A'" . In other words, rows of A become the columns of A'". If

all alz e e am

a a - |
A= .21 22 . 2n

aml am2 . . . . amn

Then

arp a2 o @mp

ap ax am2
Al

ain An “* @mn

Since order of the matrix A is mxn, the order of the transpose matrix A s nxm.

Example 7

(a) The transpose of matrix

3 62
A=l 2 51
-1 2 4
32 -1
is A =16 5 2
21 4
(b) If X denotes the matrix
5
X=[0
3
Then X" =[5 0 3]
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Multiplicative Inverse of a Matrix

Suppose that A is a square m atrix of order nxn. If there exists an nxn matrix B such
that

AB =BA=1
Then B is said to be the m  ultiplicative inverse of the m atrix A and is denoted by

B=Al
Non-Singular Matrices

A square matrix A of order nxnis said to be a non-singular matrix if
det(A)#0
Otherwise the square m atrix A is said to be s ingular. Thus for a singular A we must

have
det(A)=0
Theorem

If A is a square matrix of order nxn then the matrix has a multiplicative inverse A7lif
and only if the matrix A is non-singular.

Theorem
Let A be anon singular m atrix of order nxn and let C ; denote th e cofactor (signed

minor) of the corresponding entry ajj in the matrix A L.e.
Cij =(-1'" My
M is the determinant of the (n—1)x(n—1) matrix obtained by deleting the ith row and

jth column from A. Then inverse of the matrix A is given by
A7l !

_ N
_defQ”

Further Explanation
1. For further referenc e we take n=2so that A is a 2x2 non-singular matrix given by

a4
A=
azr an

Therefore Cll =aj), C12 =—-ds, CZl =—dj) andC22 =4a]- So that
tr
Al = 1 ay —ay _ 1 ay —ap
det(A)\ -a), ay det(A) | -ay;
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2. For a 3 x3 non-singular matrix
a1 Q3 3
A=| 3y 3y a3
&1 a3 33
ax a3 a1 ax a
Ch= 12 =T , Ci= B ”
dip azj di| aiz as 32
and so on. Therefore, inverse of the matrix A is given by
Cii Cor ay
_ 1
ATl Cp Cy C
det A 12 22 32
Ci3 Co3 Cy3
Example 8
Find, if possible, the multiplicative inverse for the matrix
1 4
A= :
2 10
Solution:
The matrix A is non-singular because
1 4
det(A) = =10-8=2
2 10
Therefore, A~ exists and is given by
1(10 -4 5 =2
A== =
2-2 1 -1 1/2
Check
| 1 45 -2 5-4 -2+2 10
2 10\-11/2 10-10 —4+5 0
| 5 =2\1 4 5-4 20-20 10
AA_ = = = = I
-1 1/2)\2 10 —1+1 —-4+5 0
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Example 9
Find, if possible, the multiplicative inverse of the following matrix

2 2
A=
3 3
Solution:

The matrix is singular because

22
det(A)=| |=2-3-2-3=0

33

Therefore, the multiplicative inverse A~ of the matrix does not exist.

Example 10
Find the multiplicative inverse for the following matrix
2 2 0
A=| — 2 1 1
3 0 1
Solution:
2 20
Since det(A)=]-2 1 1]=2(1-0)-2(-2-3)+0(0-3)=12=0
3 01

Therefore, the given matrix is non singular. So that, the m ultiplicative inverse A~ of the
matrix A exists. The cofactors corresponding to the entries in each row are

11 -2 1 -2 1
01 3 3 0
2 0 20 2 2
Co=- |=-2, Cpn= =2, Cpy=- |=6
01 31 30
20 2 0 2 2
Csy = =2, Cyp =~ =2, Cy3= =6
1 -2 1 -2 1
. 1 -2 2 /12 -1/6 1/6
Hence A_IZE 5 2 =2|=5/12 1/6 -1/6
-3 6 6 -1/4 1/2 1/2

Please verify that A-A™ =A™l . A=
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Derivative of a Matrix of functions
Suppose that

A = ajj () |
®=|ai0 ]
i1s a m atrix whose entries are functions t hose are differentiable on a comm on interval,

then deriv ative of the m atrix A(t) is a m atrix whose entries are deriv  atives of the
corresponding entries of the matrix A(t). Thus

dA _| dajj
dt | dt
mxn

The derivative of a matrix is also denoted by A'(t).
Integral of a Matrix of Functions
Suppose that  A(t) = \ajj (t))an isam atrix whose entrie s are f unctions those are
continuous on a common interval containing  t, then in tegral of the m atrix A(t) is a
matrix whose entries are integrals of the corresponding entries of the matrix A(t). Thus

t

t
I A(s)ds = U aj;i (s)dsj
t, Y
t 0 mxn
Example 11
Find the derivative and the integral of the following matrix
sin 2t
X({t)=| e
8t—1
Solution:

The derivative and integral of the given matrix are, respectively, given by

d .
a(sm2t) 2cos 2t
, d 3t 3t
X'(t)y=| —(e = 3e
t) ddt( )
8
— (8t -1
dt( )
t
J.sin2tds

‘ 0 —1/2cos2t+1/2
t

[X(s)ds=| [e¥ds |=|1/3e> -1/3

0 0

}St—lds
0

42 —t
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Augmented Matrix

Consider an algebraic system of n linear equations in nunknowns
d; Xy +appXy -+ )Xy = bl
dr Xy +aApp Xy +--+aynXpy = b2

Suppose that A denotes the coefficient matrix in the above algebraic system, then

ar;p ajp A

dy; azp - App
A=

[8mi @m2 ** 8mn |

It is well known that Cramer’s rule can be used to solve the system, wheneverdet(A) = 0.
However, it is also well known that a Hercul ean effort is required to solve the system
ifn > 3. Thus for larger systems the Gaussian and Gauss-Jordon elimination methods are
preferred and in these methods we apply elementary row operations on augmented matrix.
The augm ented matrix of the system of linear e  quations is the following nx(n+1)
matrix

ajp app Qb
A ay;p axp v Ay by
| @p; Qnp t @pp by |

If B denotes the colum n matrix of the b, Vi=12,...,n then the a ugmented matrix of

the above mentioned system of linear algebraic equations can be written as (A | B).

Elementary Row Operations
The elementary row operations consist of the following three operations
o Multiply a row by a non-zero constant.
o Interchange any row with another row.
0 Add anon-zero constant multiple of one row to another row.
These row operations on the augmented matrix of a system are equivalent to, multiplying

an equation by a non-zero constant, interchang ing position of any tw o equations of the
system and adding a constant multiple of an equation to another equation.
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The Gaussian and Gauss-Jordon Methods

In the Gaussian Elim ination m ethod we carry out a succession of elem entary row
operations on the augmented matrix of the system of linear equations to be solved until it
is transformed into row-echelon form, a matrix that has the following structure:

o The first non-zero entry in a non-zero row is 1.

o In consecutive nonzero rows the first entry 1 in the lower row appears to the right
of the first 1 in the higher row.

o Rows consisting of all 0’s are at the bottom of the matrix.

In the Gauss-Jordan method the row operations are continued until the augmented matrix
is transformed into the reduced row-echelon form. A reduced row-echelon matrix has the
structure similar to row-echelon, but with an additional property.

o The first non-zero entry in a non-zero row is 1.

o In consecutive nonzero rows the first entry 1 in the lower row appears to the right
of the first 1 in the higher row.

o Rows consisting of all 0’s are at the bottom of the matrix.

0 A column containing a first entry 1 has 0’s everywhere else.

Example 1

(a) The following two matrices are in row-echelon form.

1 50 |2
001 -62 |2
010—1,[ }
000 O 1 |4
000 |O

Please verify that the three conditions of the structure of the echelon form are satisfied.

(b) The following two matrices are in reduced row-echelon form.

1 00 |7
001 -60 |-6
010—1,{ ]
000 O 1 4
000 |O

Please notice that all remaining entries in the columns containing a leading entry 1 are 0.

Notation
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To keep track of the row operations on an augmented matrix, we utiliz ed the following
notation:

Symbol Meaning
R.: Interchange the rows 1 and }.
1
cR: Multiply the ith row by a nonzero constantc .
i
CRj + R Multiply the ith row by ¢ and then add to the jth row.

Example 2

Solve the following system of linear algebraic equations by the (a) Gaus sian elimination
and (b) Gauss-Jordan elimination
2% +6Xy + X3 = 7

5% +7Xy —4X%3 = 9
Solution

(a) The augmented matrix of the system is

2 6 1|7
1 2 -1-1
57 -49

By interchanging first and second row i.e. by R, , we obtain

1 2 -1-1
2 6 1|7
5 7 -49

Multiplying f irst row with —2 and —5 and then addingto2 ™ and 3 “row i.e. by
-R, +R, and-5R, + R;, we obtain

1 2 -1-1
0 2 319
0 -3 114

Multiply the second row with1/2, i.e. the operation% R, , yields
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1 2 -1|-1
0 1 3/2/9/2
0 -3 1]14

Next add three times the second row to the third row, the operation 3R, + R, gives

1 2 -1 -1
0 1 3/2/19/2
0 0 11/2/55/2

Finally, multiply the third row with2/11. This means the operation 1—21 R;

1 2 -1/-1
0 1 3/29/2
00 1|5

The last matrix is in row-echelon form and represents the system
X| + Xy —X3 = 1
3
Xy + 5 X3 = 9/2

X3=5

Now by the backward substitution we obtain the solution set of the given system of linear
algebraic equations

XIZIO, X2:_3, X3:5
(b) W start with the last matrix in part (a). Since the first in the second and third rows are
1's we must, in turn, making the remaining entries in the second and third columns 0Os:

1 2 -1/-1
0 1 3/29/2
0 0 1|5
Adding —2 times the 2nd row to first row, this means the operation - 2R, +R,;, we have
1 0 —-4-10
0 1 3/2/9/2
0 0 1|5

Finally by 4 times the third row to first and —1/2 times the third row to second row, i.e.

: -1 :
the operations 4R; +R, and7 R; + R, , yields
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1 0 0|-10
010]-3
001]5

The last matrix is now in reduce row-echelon form .Because of what the matrix means in
terms of equations, it evident that the solution of the system
X1=10, X2:—3, X3:5

Example 3

Use the G auss-Jordan elim ination to solv e th e following system of linear algebraic
equations.

X+3y—-2z=-7
4x+y+3z2=5
2X-5y+77=19
Solution:
The augmented matrix is
1 3 =-2-7
4 1 315
2 =5 71|19

—4R; +R, and -2R, +R; yields

1 3 -=-2-7
0 —-11 11}33
0 —-11 11}33

-1 -1
R and T produces

1 3 -2-7

0 1 -1-3

01 -1]-3
3R, + R, and - R, +R; gives

1 0 1|2

01 -1-3

0 0 0|0

In this case the las t matrix in reduced row-echelon form implies that the original system
of three equations in three unknowns.
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X+z2=2, y—-z=-3
We can assign an arbitrarily value to z . [f we let z =t, t € R, then we see that the system
has infinitely many solutions:

X=2-t, y=-3+t, z=t
Geometrically, these equations are the parametric equations for the line of intersection of

the planes
X+0y+0z=2, 0X+y—-z=-3

Exercise
Write the given sum as a single column matrix
2 -1 3t
Lostl t [+(t-1)-t|-2 4
-1 3 -5t
1 -3 4 t ! 2
202 5 =1 2t-1(+| 1 |-| 8
0 -4 -2 —t 4 -6
Determine whether the given matrix is singular or non-singular. If singular, find AL
3 2 1
3. A=l 4 1 0
-2 5 -1
4 I -1
4. A=l 6 2 -3
-2 -1 2
., dX
Find —
dt
lsin 2t —4cos2t
5. X=|2
—3sin2t + Scos 2t
e" cosaxt i h
6. If A(t)= L ) J then find (a) j At)dt, (b) j A(s)ds.
2t 3t7 -1 0 0

7. Find the int l.z[B(t)dt if B(t) (a 2)
. 1mn ¢ Itegra 1 =
1 1/t 4t

Solve the given system of equations by either Gaussian elimination or by the Gauss-
Jordon elimination.
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8. 5x-2y+4z=10
X +y+z =9
4x-3y+3z=1

9. X+ Xy - X3 - X4=-1
X + X + X3 + X=3
X = Xy + X3 - X=3
4% + X -2X3+X%X=0

10. X + Xy — X3 +3X4 =1

Xy — X3 —4X, =0

X +2X) —2X3 = X4 =6
4% +7X, — TX3 =9
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Lecture 25
The Eigenvalue problem

Eigenvalues and Eigenvectors

Let A be a n X n matrix. A number A is said to be an eigenvalue of A if there exists a
nonzero solution vector K of the system of linear differential equations:

AK =K

The solution vector K is said to be an eigenvector corresponding to the eigenvalue A .
Using properties of m atrix algebra, we can write the abov e equation in the f ollowing
alternative form

(A-AK =0
where [ is the identity matrix.
ky
k,
If we let K= ks
k

Then the above system is same as the following system of linear algebraic equations
((111 _/1>k1 +a12k2 +---+a1nk :0

n
a21k1 +(a22 —i)kz +"'+a2n n =0

anlkn +an2k2 ++(ann —i)kn =0

Clearly, an obvious solution of this system is the trivial solution
ky=k,=...=k,=0
However, we are seeking only a non-trivial solution of the system.

The Non-trivial solution
The non-trivial solution of the system exists only when

det(4—AI)=0

This equation is called the charac teristic equation of the matrix A . Thus the Eigenvalues
of the m atrix A are given by the roots of the char acteristic equation. To find an
eigenvector correspondi ng to an eigenvalue A we sim ply solve th e s ystem of linear
algebraic equations

det(A—/U)K =0
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This system of equations can be solved by applying the Gauss-Jordan elim ination to the
augmented matrix

(4-21 |0).
Example 4

Verity that the following column vector is an eigenvector
1

K=|-1
1
is an eigenvector of the following 3 x 3 matrix

0 -1 -3
A= 2 3 3
-2 1 1

Solution:
By carrying out the multiplication AK , we see that

0 -1 -3)(1 -2
AK=| 2 3 3 || -1]|=(-2)| 2 |=(-2)K
-2 1 1)1 1

Hence the number A =-2 is an eigenvalue of the given matrix 4 .

Example 5

Find the eigenvalues and eigenvectors of
I 2 1
A= 6 -1 0
-1 -2 -1
Solution:

Eigenvalues

The characteristic equation of the matrix A is

-2 2 1
det(4-AI)=| 6 -1-2 0 [=0
-1 -2 -1-2

Expanding the determinant by the cofactors of the second row, we obtain
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2P - +122=0

This is so much easy given below the explanation of the above kindly see it and let me

know if you have any more query

L: STAND FOR LEMDA

(1-L)((-1-L) (-1-L) -0)-2(6(-1-L)-0) +1(6(-2) +1(-1-L) =0
(1-L)(1+LA2+2L)-2(-6-6L) +1(-12 -1-L) =0
(1-L)(1+LA2+2L)+12+12L+1(-13-L) =0
1+L"2+2L-L-L"3-20L72+12+12L-13-L=0
-LA3-LA2+121L=0

AA+4)1-3)=0
Hence the eigenvalues of the matrix are

A =0, b =—4, i, =3.

Eigenvectors

For A, =0 we have

1 2 110
(4-0[0)=| 6 -1 010
-1 -2 -1{0
1 2 110
0 -13 -6{0
0 O 010
1
By ——R
y 13 2
1 2 I |0
0 1 6/13(0
0 0 010
1 0 1/13(0
0 1 6/13|0
0 0 0 |0
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Thus we have the following equations in ~ kj, k,andk;. The num ber k5can be cho sen
arbitrarily

by =—(1/13)ky» ky =—(6/13) k5
Choosingk, =—13,we get k; =1 and k, = 6. Hence, the eigenvector corresponding A, =0

1S

For A, =—4, we have

5 2 1[0
(4+4 |0)=| 6 3 00
-1 -2 3|0
By (=DR3, R3;
12 =30
63 0/0
52 1/0
By —6R, + Ry, —5R, + Rs
12 -3/0
0 -9 180
0 -8 160
By—éRz, —%R3
1 2 =3]0
01 -2{0
01 -2/0
By 2R, +R;, —R, + R4
10 1o
0 1 -2/0
00 0]0

Hence we obtain the following two equations involving k;, k,andk;.
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Choosing k; =1 ,wehave &k =-1,Z%, = . Hence we have an eigenvector

corresponding to the eigenvalue 4, =—4

1
K,=|2
1
Finally, for 4; =3, we have
-2 2 110
(4-3110)=[ 6 -4 0|0
-1 -2 -4|0

By using the Gauss Jordon elimination as used for other values, we obtain (verify!)

1 0 1|0
0 1 3/2(0
0 0 010

So that we obtain the equations

ky = ks, ky=(=3/2)k;
The choice k3 =—2 leads tok; =2, k, =3 . Hence, we have the following eigenvector

Note that
The com ponent k; could be chosen as any nonzero num  ber. Therefore, a nonzero

constant multiple of an eigenvector is also an eigenvector.

Example 6
Find the eigenvalues and eigenvectors of

3 4
A=
Solution:

From the characteristic equation of the given matrix is
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det(A—M):F_l ) ‘z

1 7-2
or B-A(T-)+4=0=(2-5)"=0

Therefore, the characteristic equatio n has re peated r eal r oots. T hus the m atrix has an
eigenvalue of multiplicity two.

A=A,=5
In the case of a 2 X2 matrix there is no need to use Gauss-Jordan elimination. To find the
eigenvector(s) corresponding to A, =5 we resort to the system of linear equations
(A-51)K =0
or in its equivalent form
-2k +4ky, =0
ky +2ky, =0
It is apparent from this system that
k, =2k, .

Thus if we choose k, =1, we find the single eigenvector

a1

Example 7
Find the eigenvalues and eigenvectors of
9 1 1
A=|1 9 1
I 1 9
Solution

The characteristic equation of the given matrix is

9-1 1 1
det(A—Al)=| 1 9-4 1 |=0
1 1 9-1
or (A-11)(1-8) =0=1=11, 8 8
Thus the eigenvalues of the matrix are A =1L4,=4;=8
For A4, =11, we have
-2 1 110
(4-117]0)=| 1 -2 10
1 I =20

The Gauss-Jordan elimination gives
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I 0 -1} O
0 1 -1/ 0
0 0 00
Hence, k, =ky, ky, =k;.If k; =1, then
1
K =1
1
Now for 4, =8 we have
I 1 1(0
(A—8[|O): I 1 1|0
I 1 1|0
Again the Gauss-Jordon elimination gives
I 1 1|0
0 0 0|0
0 0 0|0
Therefore, ky+ky+k;=0
We are free to select two of the variab les arbitrarily. C hoosing, on the one hand,

k, =1,k; =0 and, on the other, k, =0,k; =1, we obtain two linearly independent
eigenvectors corresponding to a single eigenvalue

-1 -1
K,=|1 |,K;=|0
0 1
Note that
Thus we note th atwhen a nxn matrix A possesses n distinct

eigenvalues 4, 4,,..., 4, , aset of n linearly independent eigenvectors K, K,,...,K

cees s n

can be found.

However, when the characteris tic equation has repeated roots, it m ay not be possible to
find 7 linearly independent eigenvectors of the matrix.

Exercise

Find the eigenvalues and eigenvectors of the given matrix.
-1 2
=N
2 1
)
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, (8 - 1)
16 0
5 -1 0
4. |10 -5 9
5 -1 0
300
5. 10 20
4 0 1
0O 4 0
6. |-1 -4 0
0 0 -2
Show that the given matrix has complex eigenvalues.
7 -1 2)
-5 1
2 -1 0
8 5 2 4
0 1 2
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Lecture 26
Matrices and Systems of Linear First-Order Equations
Matrix form of a system
Consider the following system of linear first-order differential equations
dx
P 1(OX +a (DX +---+a (DX, + T (1)
dx,
T a1 (D)X + 85 ()X ++--+ 8y, ()X, + (1)
dx,
W = anl(t)xl + anz(t)xz et agy (t)xn + fn t)
Suppose that X, A t) and F (1), respectively, denote the following matrices
X (1) a () a,() - a,(h) fi (1)
X, (t a (1) apn(t) - a,(t fo(t
X = 2.() A= 21.() 22.() 2n.() CF(t) = 2.()
Xn ) anl(t) anz(t) ann(t) fn (t)
Then the system of differential equations can be written as
X (t) a(t) ap() - ap) ) x() fi(®)
d %M | [al) anl) - an) || %) N fo (1)
dt| : : : E : :
Xn (t) anl(t) ano (t) ann(t) Xn (t) fn (t)
or simply
dX
—=AX +F(t
ot (t) ®
If the system of differential equations is homogenous, then F(t) =0 and we can write
dX
—=A)X
" (t)
Both the non-homogeneous and the homogeneous systems can also be written as
X' = AX +F, X' =AX
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Example 1
Write the following non-homogeneous system of differential equations in the matrix form

%:—2x+5y+et—2t
dt

v =4x-3y+10t
dt
Solution:

If we suppose that

()

Then, the given non-homogeneous differential equations can be written as

dx (-2 5 et —2t
—= X+
dt 4 -3 10t
/ -2 5 1) ¢ (-2
or X' = X+ e + t
4 -3 0 10
Solution Vector
Consider a homogeneous system of differential equations

dX
—=AX
dt
A solution vector on an interval | of the homogeneous system is any column matrix
X (1)
X (1
N 2‘( )
Xn (1)

The entr ies of the solu tion ve ctor have to be differentia ble functions satisf ying e ach
equation of the system on the interval .

Example 2

Verify that

-2t 6t
1 _ e 3 3e
le[ je 2t _ ’ X2=[ je6t:

-1 2 5 5o6t

are solution of the following system of the homogeneous differential equations

/ 1 3
X' = X
53

on the interval (—o0,00)
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Solution:
Since
X] = = X1 =
2 52t
Further
1 3 e_2t e 2t 3e 2t
5 3)| g2t | | 52t a2t
or AX1 = = X1
2e—2t
Similarly
3 ¢t ;[ seft
Xy = = X2 =
5 36t 0 e6t
(1 3) 3 % eOl 115 ¢t
and AXy = =
5 358 efl 415 Ot
18€6t /
or AXH = = X2
300t

Thus, the vectors X| and X7 satisfy the homogeneous linear system

/ I 3
X' = X
53
Hence, the given vecto rs are solu tions of the given hom ogeneous system of di fferential
equations.

Note that

Much of the theory of the system s of N linear first-order differential equations is similar
to that of the linear nth -order differential equations.
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Initial =VValue Problem

Let ty denote any point in some interval denoted by | and

X1(to) 7
X2 (to) 72
X (to) = . N XO = .
Xn(to) ’n
7i;1=1,2,...,n are given constants. Then the problem of solving the system o f

differential equations

dX
P AMX +F(1)

Subject to the initial conditions
X(tp) = Xo

is called an initial value problem on the interval | .
Theorem: Existence of a unique Solution

Suppose that the entries of the m  atrices A(t) and F(t) in the syste m of diff erential

equations

dX
< = AOX+FO

being considered in the above m entioned initial value problem, are continuous functions
on a common interval | that contains the point ty. Then there exist a uniqu e solution of

the initial-value problem on the interval | .
Superposition Principle

Suppose that Xy, Xo,..., X be a set of solution vectors of the homogenous system

dX
—— = A(t)X
Al

on an interval | . Then the principle of superposition states that linear combination

X =C1X1 +C2X2 +--'+Cka
Cj;i=1,2,...,Kk being arbitrary constants, is also a solution of the system on the sam e
interval | .

Note that

An immediate consequence of the principle of superposition is that a constant multiple of
any solution vector of a hom ogenous system of first order differential equation is also a
solution of the system.
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Example 3

Consider the following homogeneous system of differential equations

1 0 1
x'=l'1 1 0|X
2 0 -1

Also consider a solution vector X7 of the system that is given by

cost
X1 = —lcost+lsint
2 2

—cost—sint

For any constant Cj the vector X = C; X is also a solution of the hom ogeneous system.
To verify this we differentiae the vector X with respect to t

—sint
dX dX 1 1 .
—=C ——=Cj| —cost+—sint
dt dt 2 2
—cost+sint
Also
L o0 1 1 cost1
AX=c| I 1 0 || —-=cost+—sint
20 1 2 2
B B —cost—sint
—sint

AX =¢ lcost+lsint
2 2

—cost+sint

Thus, we have verified that:

d_X:Ax
dt

Hence the vector Cj X is also a solution vector of the homogeneous system of differential
equations.
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Example 4

Consider the following system considered in the previous example 4

1 0 1
x'='1 1 0|X
2 0 -1

We know from the previous example that the vector X1 is a solution of the system

cost

1 1 .
X1 =| ——=cost+—sint
2 2

—cost—sint
0
If X, =|¢€
0
0
Then X5 =] ¢
0

10 1Y)0 0
and AX,=| 1 1 0| el |=]el
20 -1)l o 0

Therefore

/
AX, =X >
Hence the vector X, is a solution vector of the hom ogeneous system. We can verify that

the following vector is also a solution of the homogeneous system.

X =C1X1 +C2X2

cost 0
1 | t
or X =¢Cy| ——cost+—sint |+Cy| €
2 2 0
—cost—sint
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Linear Dependence of Solution Vectors

Let X1, X5, X3,..., Xk be a set of solution vectors, on an interval I, of the homogenous
system of differential equations
dX
—=AX
dt

We say that the set is linearly dependent on | if there exist constants C,C,C3...,Cx not
all zero such that

XO = Xi()+cXo M)+ + e X (1) =0, Vtel
Note that

0 Any two solution vectors X and X, are linearly dependent if and only if one

of the two vectors is a constant multiple of the other.

0 For k >2 ifthe set of K solution vecto rs is linea rly dependent then we can
express at least one of the solutio n vectors as a linear com  bination of the
remaining vectors.

Linear Independence of Solution Vectors

Suppose that Xy, X5,..., Xk isasetof solution vectors,0 naninte rvall, of the
homogenous system of differential equations
dX
—=AX
dt

Then the se t of solution vectors is said to be linearly ind ependent if it is no t linearly
dependent on the interval | . This means that

X)) = X{(t)+Cr Xo(t)+---+C XK (1) =0
only when each ¢j =0.

Example 5
Consider the following two column vectors
X 36! X et
1= ) 2=
! et
t —t
dX 3e dX —e
Since ] B , 22 -
(2 —3) 3et) [6et =3¢t ) [3et) dx,
and = = ki &
L =2 ¢t 3et — 26 el dt
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Similarly

et et —2e7t — et dt
Hence both the vectors X; and X, are solutions of the homogeneous system
(2 =3
X' = X
1 -2
Now suppose that Cj, C, are any two arbitrary real constants such that
C Xl +Cy X 2= 0

el

This means that

301et + cze_t =0

2 -3 e_t B 2e_t—3e_t —e_t _dXy
1 -2

clet + cze_t =0

The only solution of these equations for the arbitrary constants C; and Cy is
Cp =Cy = 0

Hence, the solution vectors X, and X, are linearly independent on (—o0,00).

Example 6

Again consider the same homogeneous system as considered in the previous example

S (2 -3
X' = X
I -2
We have already seen that the vectors X, X, i.e.

3et e_t

are solutions of the homogeneous system. We can verify that the following vector X3

'+ cosht
X3 =
cosht
is also a solution of the hom ogeneous system However, the set of solutions that consists
of X1, X, and X, is linearly dependent because X3 is a lin ear com bination of the

other two vectors

1 1
X3 :EX1+5X2
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Exercise

Write the given system in matrix form.

dx

. —=X-y+z+t-1
at
d
Y o axry—z-3t?
dt
Z 2
—=X+y+zZ+t"—-t+2
dt

2. P syiaysetsinat
dt
dx

” =5x+9y+4e_t cos 2t

3. %=—3x+4y—9z
dt

dy
_:6)(_
dt d
E:10x+4y+3z
dt
dx —t .
4, — =-3X+4y+e “sin2t
dt
%=5x+9y+4e_tcos2t
Write the given system without of use of matrices
7 5 -9 0 8
s. X'=[4 1 1 |x+|2]et-|o0le™
0 -2 3 1 3
o 1S T Mt e
dtly I 1 )\y 8 2t+1
d X I -1 2)\(x 1 3
B I y |+ 2 et = =1t
z -2 5 6)\z 2 1

Verify that the vector X is the solution of the given system
dx
8. —=-2X+35y
dt

%:—2x+4y, X =(
dt

Scost ot
3cost—sint
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Lecture 27
Matrices and Systems of
Linear 1:-Order Equations (Continued)

Theorem: A necessary and sufficient condition that the set of solutions, on an interval 1.,
consisting of the vectors

X1 X|2 XIn
X X X
Xp=| 2V %y = 2] X =] "
Xn1 Xn2 Xnn

of the homogenous system X / = AX tobe linearly independent is that the Wronskian of
these solutions is non-zero for everyt € | . Thus

11 X2 --- X
X1 X279 ... X
W (X1, X0, Xp) =[ 20 22 MNzo, vtel

Note that

o Itcanbeshownthatif X, X,,..., X, are solution vectors of the system, then
either
W (X, X9,...,Xp) =0, Vtel
or W(X;, X9,...,Xp)=0, Vtel
Thus if we can show that W # 0 for somety € |, then W #0, Vte | and hence
the solutions are linearly independent on |

0 Unlike our previous definition of the Wronskian, the determinant does not involve
any differentiation.

Example 1

As verified earlier that the vectors

1) ot 3 et
Xq = e 7, Xo5= e
=) %[

are solutions of the following homogeneous system.
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/ 1 3
X' = X
53

Clearly, X, and X, are linearly independent on (—0,0) as neither of the vectors is a

constant multiple of the other. W e now com pute Wronskian of the solution vec tors X,
and X, .

-2t 6t
€ 3e 4t
W (X1, Xp) = =8¢ #0, Vte(—w,)
Fundamental set of solution
Suppose that { X1, X9,..., Xp } isa setof N solution vectors, on an interval |, ofa

homogenous system X/ = AX . The set is said to be a funda mental set of solutions of the
system on the interval | if the solution vectors Xi, X»,..., Xyare linearly independent.

Theorem: Existence of a Fundamental Set

There exist a funda mental set of solution for the hom ogenous system X’ = AX on an
interval |

General solution
Suppose that X1, X5,..., Xy is a fundamental set of solution of the homogenous system

X' = AX onaninterval | .Then any linear com  bination of the solution vectors
X1, X2,..., Xy of the form

X =C1X1 +C2X2 +---+chn

Cj;i=1,2,...,Nn being arbitrary constants is said to be the general solution of the system

on the interval | .

Note that
For appropriate choices of  the arbitrary constants  C;,Cy,...,Cn any solution, on the
interval I, of the homogeneous system X' = AX can be obtained from the general

solution.

Example 2
As discussed in the Example 1, the following vectors are linearly independent solutions

1) ot 3) 6t
X1 = e “, Xo= e
(o) el

of the following homogeneous system of differential equations on (—o0,0)
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, (13
X' = X
53
Hence X; and X, forma fundam ental set of solution of the system on the
interval (—o0,00) . Hence, the general solution of the system on (—o0,) is

1 3
X =¢X]1+Cr X5 =cl( Je_zt +C (Sje&

Example 3

Consider the vectors X;, Xo and X3 these vectors are given by

cost 0 sint
X| = —lcost+lsint , Xy = el, X3 = —lsint—lcost
2 2 0 2 2
—cost—sint —sint+cost

It has been verified in the last lectu re that th e vectors Xl and X2 are solutions of the
homogeneous system

1 0 1
x'='1 1 0|X
2 0 -1

It can be easily veri fied that th e vector X3 is also a solution of the system. W e now
compute the Wronskian of the solution vectors X;, X, and X3
cost 0 sint
1 1. ¢ 1. 1
W (X, X,,X;)= —Ecost+zsmt e ——sint——cost
—cost —sint 0 —sint + cost
Expand from 2" column

or W(Xl,XZ,X_o,):et cost | .s1nt
—cost—sint —sint+cost
or W(X[, Xo, X3) =€ 20, VteR
Thus, we conclude that X1, X, and X3 form a fundamental set of solution on (—00, 00).
Hence, the general solution of the system on (—00, %) is
X =C1X1 +C2X2 +C3X3
or
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cost 0 sint
1 1 . t 1 . 1
X = —Ecost+5s1nt +Cy| 1 e +C3 ——s1nt—Ecost
—cost—sint 0 —sint+cost

Non-homogeneous Systems

As stated earlier in this lecture that a system of differential equations such as
dX
—=A)X +F(t
pm (t) ()
is non-homogeneous if F(t) # 0, Vt. The general solution of such a system consists of a
complementary function and a particular integral.

Particular Integral
A particular solution, on an interval |, of a non-hom ogeneous system is any vector X P

free of arbitrary param eters, whose entries ar e functions that satisfy each equation of the
system.

Example 4
Show that the vector
3t—4
X p =
—5t+6

is a particular solution of the following non-homogeneous system on the interval (- oo, 00)

1 3 12t—-11
X' = X +
5 3 -3
Solution:

Differentiating the given vector with respect tot, we obtain

[

Further

1 3 12t-11 1 3 3t—4 12t-11

Xp+ = +

5 3 -3 5 3){-5t+6 -3

1 3 12t-11 3t—4)+3(-5t+6 12t-11
or Xp+ = ( ) ( ) +

5 3 -3 53t—-4)+3(-5t+6) -3

1 3 12t-11 —12t+14 12t-11
or Xp+ = +

5 3 -3 -2 -3

264

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

1 3 X 12t-11 3 X
or + = =
s 3) P -3 _5) 7P
Thus the given vector X D satisfies the non-homogeneous system of differential

equations. Hence, the given vector X D is a particular solutio n of the non-hom ogeneous

system.

Theorem

Let Xy, X9,..., X be a set of solution vectors of the hom ogenous system X = AX on

aninterval | andlet X D be any solution vector of  the non-hom ogenous system

X' = AX +F(t) on the same interval | . Then3 constants C,C,,...,C, such that
Xp =C1X1 +C2X2 +...+Cka + X p

is also a solution of the non-homogenous system on the interval.

Complementary function

Let X1, X5,..., X, be solution vectors of the homogenous system X =AX onan
interval | , then the general solution

X =C1X1+C2X2 +...+Can

of the homogeneous system  iscalled  the com plementary function of the non-
homogeneous system X = AX + F(t) on the same interval | .

General solution-Non homogenous systems

Let X, be a particular integral and X the complementary function, on an interval I, of

the non-homogenous system
X' = At)X +F(t).

The general solution of the non-homogenous system on the interval | is defined to be

X=X.+X D
Example 5

In Example 4 it was verified that
3t—4
X p =
-5t+6
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is a particular solution, on (—00, ), of the non-homogenous system

, (13 12t—-11
X' = X +
53 -3
As we have seen earlier, the general soluti on of the associated hom ogeneous system i.e.
the complementary function of the given non-homogeneous system is

1) ot 3) 6t
Xec=C¢C e “+¢cC e
o=a e
Hence the general solution, on(—o, o), of the non-homogeneous system is

1 3 3t—4
X =0 e 2t +Cy et 4
-1 5 -5t+6

Fundamental Matrix

Suppose that the a f undamental set of N solution vectors of a hom ogeneous

system X/ = AX , on an interval | , consists of the vectors

X1 X|2 XIn

X = X1 X, = X22 X - X2n
- : > - : LERRE) n— .
Xn1 Xn2 Xnn

Then a fundamental matrix of the system on the interval | is given by

11 X2 -~ Xn
X721 X929 ... Xop
g = : :

Example 6

As verified earlier, the following vectors
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6t

3 6t 3e
Xzz[sje ~| et
5e

form a fundamental set of solutions of the system on (—o0, o0)

S (13
X' = X
5 3

So that the general solution of the system is

1 3
X =¢ ( Je_zt +C (Sje&

Hence, a fundamental matrix of the system on the interval is
-2t 3 e6t

pO=|

—e 50t

Note that
o The general solution of the system can be written as

2t 3,0t ( o j
X =

Or X=¢®C, € c)"

o Since X =¢@(t)C is a solution of the system X' = A(t)X . Therefore
¢'(HC = A(g(t)C

Or [4'(D) - AP(H)IC =0
Since the last equation is to hold for every t in the interval | for every possible column
matrix of constants C , we must have

¢'(H) - AD$(1) =0
Or ¢'(t) = A(A()

Note that
0 The funda mental m atrix @(t) of ahom ogenous system X' = A(t)X is non-
singular because the determ inant det(g(t)) coincides with the W ronskian of the

solution vectors of the system and linea r independence of the solution vectors
guarantees thatdet(g(t)) # 0.

267

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

o Let ))(t be a fundam ental matrix of the hom ogenous system X' = A(t)X on an
interval | . Then, in view of the above m entioned observation, the inverse of the
matrix )~ (t exists for every value of t in the interval | .

Exercise

The given vectors are the solutions of a system X' = AX . Determine whether the vectors
form a fundamental set on (- oo, ).

1 2 8
1. X1= ljet,X2 =(6]et+( 8jtet

1 1 2
2. Xy=| 6 [ Xo=|-2]eH, x3=| 3 |
~13 ~1 -2

(21 1) ¢ 1) ¢ 1) ¢
3. X'= X - e;Xp: e + te
3 4 7 1 -1

Verify that vector X p is a particular solution of the given systems

4. =X+4y+2t-7, %:3x+2y—4t—18

e
5. x/zﬁ _IJX{_;} Xp:@

1 2 3 -1 sin 3t
6. X'=| -4 2 0|X+ sin3ts  Xp| 0
-6 1 0 cos3t
7. X1 = lje_zt, Xzz(l je_a
1 -1
1 1 1 3 2
8. Xy=|-=2|+t| 2], Xo=|=-2|, X3=|-6|+t| 4
4 2 4 12 4
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9. Prove that the general solution of the homogeneous system

X' =

—_— = O

—_— O N

oS = O
>

on the interval (—o0,0) is
6 -3 2
X=c| -1 e_t+cz 1 |e?

-5 1 1
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Lecture 28
Homogeneous Linear Systems

Most of the theory developed for a single linear differential equation can be extended to a
system of s uch differential equations. The extension is not entirely obvious. However,
using the notation and some ideas o f matrix algebra discussed in a pr evious lecture most
effectively carry it out. Theref ore, in the pres ent and in th e next le cture we will lea rn to
solve the homogeneous linear sy stems of linear differential equations with r eal constant
coefficients.

Example 1
Consider the homogeneous system of differential equations
ax_ X+3y
dt
d
Y sx+3 y
dt

In matrix form the system can be written as

ra) (s 35

If we suppose that

()

Then the system can again be re-written as

13
X'= X
5

Now suppose that X; and X, denote the vectors

y e—2t y 3e6t
1~ > 2=
Then
[ —2e7 o [18¢e%
xl = 5 X2 =
2e_2t 30 e6t
1 3 e—2t e—2t _3e—2t
5 3)| o2t || o2 o2
_2e—2t
or AXy= = X1
2e—2t
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Similarly
13)(3e% ] [ 3e% +15et
5 3| 5eft 15e% 4+15¢°t
AX 18 %t ,
or 9= = X5
30 e
Hence, X; and X, are solutions of the hom ogeneous system of differential
equations X' = AX . Further
e—2t 3e6t .
W (X1, X9)= =8 " #0, VteR

Thus, the solutions vectors X{ and X, are linearly independent. Hence, these vectors
form a fundam ental set of solutions on (—o0,0). Therefore, the general solution of the
system on (—o0,) is

X = c1X1 + C2X2

1) _ 3
X =0 e 2ty Cy eft
-1 5
o Each of the solution vectors X and X5 are of the form

k
xz( 1]e/u
ko

W here kjand Kj are constants.

Note that

o The question arises wh ether we can alwa ys find a solution of the homogeneous
system X'= AX, A is Nnx N matrix of constants, of the form

ki
k
x =| K2 [o2t _ ket

Kn

for the homogenous linear 1% order system.
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Eigenvalues and Eigenvectors

Suppose that
ki
Kk
X — 2 e/It _ Ke’u
Kn
is a solution of the system
X
d— = AX
dt
where A is an Nx N matrix of constants then
dX
2k aeM
dt

Substituting this last equation in the homogeneous system X' = AX , we have

K et = Aket = AK = 4K

or (A-11)K=0
This represents a system of linear algebraic equ ations. The linear 1 * order hom ogenous
system of differential equations

9X _ ax
dt

has a non-trivial solution X if there exista non-trivial solution K of the system of
algebraic equations

det(tA-Al)=0
This equa tion is called chara cteristic equ ation of the m atrix A and represents an nth
degree polynomial in A .

Case 1 Distinct real eigenvalues

Suppose that the coef ficient m atrix A in the hom ogeneous system of differential
equations

0x _
dt
has n distinct eigenvalues Aj, 4y, 43,..., 4 and K{, Ks,..., K, be the corresponding

AX

eigenvectors. Then the general solution of the system on (—o0,00) is given by

X = clkle/11t + czkze/12t + c3k3e;t3t o +Cp kne/lnt
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Example 2

Solve the following homogeneous system of differential equations
dx

— =2X+3
dt y
dy

— =2X+
dt y

Solution

The given system can be written in the matrix form as

dx

dt | (2 3)(«x
dy [ (2 1)y
dt

Therefore, the coefficient matrix

(3 )

Now we find the eigenvalues and eigenvectors of the coefficient A. The characteristics
equation is

2-4 3

det(A-Al)=

1-2

det(A—A1)=A4% -31—4

Therefore, the characteristic equation is

det(A—A1)=0=1>-31-4
or A+D(1-4)=0=>1=-1, 4
Therefore, roots of the characteris  tic equa tion are real and distin ¢t and so are the

eigenvalues.
For A =—1, we have
2+1 3 ki
(A-ADHK =
2 1+1 ) ko

3k1 +3k2
or (A—ADK =
Zkl +2k2
3k1+3k2 =0
Hence (A-AHK =0=
2k1+2k2 =0

These two equations are no different and represent the equation
k1+k2 =0:>k1 =—k2
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Thus we can choose value of the constant K arbitrarily. If we choose Kk, =—1 then

ki =1. Hence the corresponding eigenvector is

at

For A = 4 we have

(A—ADK :[2—4 3 j(klj
2 1-4 )k

—2k1 +3k2
or (A-AHK =
2k; —3ky
—2k1 +3k2 =0
Hence (A-AHK=0=
2k; =3k, =0

Again the above two equations are not different and represent the equation

wrsg=0:h=3%

Again, the constan t Ky can be chosen arbitrarily. Let us choose Ky =2 thenk; =3.
Thus the corresponding eigenvector is

=

Therefore, we obtain two linearly independent solution vectors of the given homogeneous

system.
1) ¢ 3 at
X1 = e, X= e

Hence the general solution of the system is the following
X = G Xl +Co X 2

1) _ 3
or X:cl( Je t+c2(2je4t

[ x(t)j ciet +3cye™
or =

YO ) | —cje™t +2¢,e%
This means that the solution of the system is

X(t) = cle_t + 3(:2e4t

y(t) = —cle_t + 2(:2e4t
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Example 3

Solve the homogeneous system

|Q_Q_|Q_Q_|Q_
N ~ |[\< | X

Solution:

The given system can be written as

dx/dt -4 1 1 X
dy/dt|=| 1 5 —-1]|ly
dz/dt 0 1 -3)\z

Therefore the coefficient matrix of the system of differential equations is

-4 1 1
A= 1 5 -1
0 1 -3
—-4-1 1 1
Therefore A-Al = 1 5-4 -1
0 1 -3-1
Thus the characteristic equation is
—4-1 1 1
det(A-Al)=| 1 5-4 -1 |=0
0 1 -3-1

Expanding the determinant using cofactors of third row, we obtain

—(A+3)(A+4)(A1-5=0
A=-3,4,5
Thus the characteristic equation has real and distinct roots and so are the eigenvalues of
the coefficient m atrix A . To find the eigenvectors corresponding to these com puted
eigenvalues, we need t o solve the following system of linear algeb raic equations for
Ki,Ky andky whenA=-3, 4 , 5, successively.

S 1 ki) (0
det(A—ADK=0=| 1 5-4 -1 ||ky|=|0
0 1 —3-1)lks) Lo
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For solving this system we use Gauss-Jor don elimination technique, which consists of
reducing the augmented matrix to the reduced echelon form by applying the elem entary
row operations. The augmented matrix of the system of linear algebraic equations is

—4-2 1 1 0
1 5-4 -1 0
0 1 -3-1 0
For A = -3, the augmented matrix becomes:
-1 1 1 0
I 8 -1 0
0 1 0

Appling the row operation Ry, Ry + Ry, Ry3, R3—9Ry , R —8Ry in success ion
reduces the augmented matrix in the reduced echelon form.

1 0 -1 0
01 0 O
0 0 0 O
So that we have the following equivalent system
1 0 —-1)k 0
0 1 01k, [=|0
0 0 0 )k, 0
or kl = k3 , k2 =0

Therefore, the constant K3 can be chosen arbitrarily. If we choose k3 =1, thenk; =1, So
that the corresponding eigenvector is

1
1
For A, = -4, the augmented matrix becomes
01 1 O
(A+41)|0 =19 -1 0
01 1 O

We apply elem entary row operations to transf orm the m atrix to the f ollowing reduc ed
echelon form:

1 0 -10 0O

01 1 0

00 0 O
Thus kl =1 0k3, k2 = —k3
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Again K3 can be chosen arbitrarily, therefore choosing k3 =1 we get k; =10, k) =—
Hence, the second eigenvector is

10
Ky =| -1
1
Finally, when 23 =5 the augmented matrix becomes

9 1 1 0
(A-50)]0)=|1 0 -1 0
0 1 -8 0

The application of the elementary row operation transforms the augmented matrix to the
reduced echelon form

1 0 -1 0

01 -8 0

00 0 O
Thus kl = k3, k2 = 8k3

If we choose k3 =1,then kj =1 and ky =8. Thus the eigenvector corresponding to
/13 =51s

Thus we obtain three linearly independent solution vectors

1 10 1
X1=|0 e_3t, X} =| - e ¥, X3=|8 et
1 1 1

Hence, the general solution of the given homogeneous system is

1 10 1
X=¢|0 e_3t+cz -1 e_4t+c3 g |e
1 1 1
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Case2  Complex eigenvalues

Suppose that the coef ficient m atrix A in the hom ogeneous system of differential
equations

dX
—=AX
dt
has complex eigenvalues. This means that roots of the characteristic equation
det(A-Al)=0

are imaginary.
Theorem: Solutions corresponding to complex eigenvalues
Suppose that K is an eigenvector corresponding to the complex eigenvalue

A=a+if; a,peR

of the coefficient matrix A with real entries, then the vectors X; and X, given by

Xl = Kleﬂ’lt N X2 = Rleﬂlt
are solution of the homogeneous system.
d_X = AX
dt

Example 4

Consider the following homogeneous system of differential equations

dx

— =6X-—
at y
dy
——=5X+4
dt y

The system can be written as
dx/dt 6 —1)(x
or =
dy/dt 5 4 )y
Therefore the coefficient matrix of the system is
6 -1
A=
5 4
So that the characteristic equation is

det(A—Al) = =0

4-1
or (6-A)(4-2)+5=0=2%-104+29
Now using the quadratic formula we have

A =5+2i, A=5-2i

6-1 -1 ‘

278

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

For, 4 =5+ 2i, we must solve the system of linear algebraic equations

(1-2i)k; —ky =0

1-2i)k; —Kky =0
5k1—(1+2i)k2:0}:>( ki =k

or Ky =(1-2i)k;
Therefore, it follows that after we choose ki =1 then ky =1-2i. So that one
eigenvector is given by

(L

Similarly for 4y = 5—2i we must solve the system of linear algebraic equations

(1+ 2iYk; —ky =0

1+2i)k; —ky =0
5k1—(1—2i)k2=0}:>( 2k ko

or k2 =(1+2i)k1
Therefore, it follows that after we choose kj =1 then ky =1+2i. So that secon d
eigenvector is given by

1
Ky =
2 (1+2ij

Consequently, two solution of the homogeneous system are

X1=[ 1 _]e(5+2i)t) X, — [ I _]6(5—2i)t
1-21 1+ 21

By the superposition principle another solution of the system is
L) (5+2ixt L) -2it
X = e )+Q e3=2)
1-2i 1+21

The entrie sin K5 corresponding to A 2 are the co njugates of the entries in  K;

Note that

corresponding to A 1. Further, Ay is conjugate of A;. Therefore, we can write this as

12211, K2=R1
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Theorem Real solutions corresponding to a complex eigenvalue
Suppose that

a A =a+if isacomplex eigenvalue of the matrix A in the system

d_X:Ax
dt

o Kjis an eigenvector corresponding to the eigen value A,
1 — [ —
Q Bl=5(K1+K1):R6(K1),Bz:5(—K1+K1)=Im(K1)

Then two linearly independent solutions of the system on (—o0, ) are given by

X = (By cos Bt — By sin At)e*
X, = (B, cos Bt + By sin At)e*!

Example 5

Solve the system

, 2 8
X' = X
-1 -2
The coefficient matrix of the system is

SR ST

2-4 8
A-Al =
-1 -2-1

Thus, the characteristic equation is

Therefore

-1 -2-2
~2-)2+1)+8=0=4%+4

2-1 8
det(A—A1)=0=

Thus the Eigenvalues are of the coefficient matrix are 4 =2iand 4y = Al ==2i.

For A; we see that the system of linear algebraic equations (A—AlI)K =0
(2 - 2i)k1 + 8k2 =0
_kl - (2 + 2i)k2 G=

Solving these equations, we obtain

kl = —(2 + 2|)k2
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Choosingky =—1 gives k; = (2 + 2i)k, . Thus the corresponding eigenvector is
2+ 2i 2 (2
Kl = = +1
-1 -1 0
2 2
So that Bl ZRC(K1)= | ’BZ =Im(K1)= 0
Since @ = 0, the general solution of the given system of differential equations is

2 2) . 2 2.
X =¢ cos2t— sin2t [+Cp cos2t+ sin 2t
-1 0 0 -1

(2cos2t—2sin2t] [2cos2t+2sin2tJ
X=q +Cp

—cos2t

—sin 2t

Example 6
Solve the following system of differential equations

/ 1 2
X' = X
-1/2 1
Solution:

The coefficient matrix of the given system is

12
A:
[—U2 1]

1-4 2
Thus A-Al =
-1/2 1-2
So that the characteristic equation is
-4 2
det(A-A1)=0=
-1/2 1-4
or A% —22+2=0

Therefore, by the quadratic formula we obtain
2=(2+4-8)/2
Thus the eigenvalues of the coefficient matrix are
ﬂ’l =1+i, /121211 = —]

Now an eigenvector associated with the eigenvalue A is

N GRG
el

So that we have the following two linearly independent solutions of the system
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e . ]

Hence, the general solution of the system is

2 0) . t 0 23 . t
X =¢ cost— sint |[&" +Cp cost+ sint |e
0 1 1 0
2cost) 2sint) ¢
or X = ) e +C e
—sint cost

Exercise

Find the general solution of the given system
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8. %:4x+5y
dt
y
—=-2X+6
dt d
4 -5
9. X'= X
-
I -8
10. X'= X
.
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Lecture 29
Real and Repeated Eigenvalues

In the prev ious lecture we tried to learn  how to solve a system of linear differential
equations having a coefficient m atrix that ha s real dis tinct and co mplex eigenvalues. In
this lecture, we consider the systems

X'=AX
in which so me of the n eigenvalue A,,4,,4,,...,4, ofthe nXxn coefficient matrix
A are repeated.

Eigenvalue of multiplicity m

Suppose that m is a positive integer and (Z -4 )m is a factor of the characteris  tic
equation

det(A— Al)=0

Further, suppose that (/1 -4 )m *+Lis not a factor of the characteristic equ ation. Then the

number A, is said to be an eigenvalue of the coefficient matrix of multiplicity 7 .

Method of solution:
Consider the following system of 7 linear differential equations in » unknowns
X'=4X

Suppose that the coefficient matrix has an eigenvalue of multiplicity of m . There are two
possibilities of the existence of the eige nvectors corresponding to this repeated
eigenvalue:

o Forthe mxn coefficient matrix A4 , it may be possible to find m linearly
independent eigenvectors K1,K2,...,Ky, corresponding to the eigenvalue A, of

multiplicity m < n. In this cas e the general solution of the system contains th e
linear combination

clKle/llt +cpKoe™ +---+cpKye

a Ifthere is only one eigenvector corresponding to th e eigenvalu e A, of

multiplicity m , then m linearly independent solutions of the form
X, = Knellt

_ At At
X, =K, e" +K,e

_ " At iy At
Xm_Kmlme +szm€l —I—”.—i_1<mmel

where the column vectors K jj can always be found.
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Eigenvalue of Multiplicity Two

We begin by considering the syst ems of differential equations X'= AX in which the
coefficient m atrix 4 has an eig envalue A, of m ultiplicity two. Then th ere aretw o

possibilities;

o Whether we can find two linearly inde  pendent eigenvectors corresponding to
eigenvalue 4, or

a We cannot find two linearly indepe ndent eigenvector s corresponding to
eigenvalue A

The case of the possibility of us being able to find two linearly independent eigenvectors
K1, K7 corresponding to the eigenvalue A, is clear. In this case the g eneral solution of
the system contains the linear combination

cKte" +c,Ke™
Therefore, we suppose that there is only one eigenvector K7 associated with this
eigenvalue and hence only one solution vector X . Then, a second solution can be found
of the following form:

Mt | oAt

X9 =Kte”™" + Pe
In this expression for a second solution, K and P are column vectors

Kk 2
k

K=|"2| p=|"?
kn Pn

We substitute the expression for X into the system X' = AX and simplify to obtain

(AK-AK) t e* +(AP-AP-K) " =0

Since this last equation is to hold for all values of 7, we must have:

(A-4DK=0, (4A-MI)P=K
First equation does not tell anything new and si mply states that K must be an eigenvector
of the coefficient m atrix 4 associated with the eig envalue A, . Therefore, by solving this

equation we find one solution

X, = Ke™
To find the second solution X ,, we only need to so lve, for the vector P, the additional
system
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(A-4I)P=K

First we solve a hom ogeneous system of differential equations having c oefficient matrix
for which we can find two distinct eigenvectors corresponding to a double eigenvalue and
then in the second example we consider the case when cannot find two eigenvectors.

Example 1

Find general solution of the following system of linear differential equations

3 —18
X'= X
2 -9
Solution:

The coefficient matrix of the system is

3 —18
A:
2 -9

3-4 -—18

Thus det(4—Al) =
2 -9-1
Therefore, the characteristic equation of the coefficient matrix A is
3-4 -18
det(A—Al)=0=
2 -9-1

or -B3-A)O+1)+36=0
or (A+3)2=0=1=-3,-3

Therefore, the coefficient matrix 4 of the given system has an eigenvalue of multiplicity
two. This means that

[3-—1 -18 ](k}j (o]
Now (A-AHK=0= =
2 9-A)lk, 0

For A = -3, this system of linear algebraic equations becomes

6 —18\ k) (0) ([6k; —18ky =0
= |=
2 -6 \ky) 0 ki —6ky =0

However
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6ky — 18k, =0
= kl - 3k2 =0
2ky — 6k, =0
Thus kl :3k2

This m eans that the value of the constant &, can be chosen arbitrarily. If we choose
ko =1, we find the following single eigenvector for the eigenvalue 4 =-3.

<[}

The corresponding one solution of the system of differential equations is given by

3) _

But since w e are inte rested in f orming the general so lution of the system , we need to
pursue the question of finding a second solu  tion. W e identify the column vectors K

and P as:
3
1 P2

O I [

Therefore, we need to solve the following system of linear algebraic equations to find P
6p) —18py =3

2p1—6py =1

or p,=—(1-2p)/6

}:>2p1—6p2 =1

Therefore, the num ber p; can be chos en arbitrarily. So we have an infinite num ber of
choices for p, and p,. However, if we choose p, =1, we find p, =1/6. Similarly, if

we choose the value of py =1/2 then P, =0. Hence the column vector P is given by

P=

S N =

Consequently, the second solution is given by

3 1
Xzz( Jte_3t+ 2 e3¢
! 0

Hence the general solution of the given system of linear differential equations is then
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chle +02X2

Example 2

Solve the homogeneous system

Solution:
The coefficient matrix of the system is:
1 -2 2
A=1-2 1 =2
2 =2 1

To write the characteristic we find the expansion of the determinant:

-4 =2 2
det(A—/U)z -2 1-4 =2
2 -2 1-4
The value of the determinant is
det(A-AI)=5+9A+34% -2’
Therefore, the characteristic equation is
54944347 -2°=0
or ~(A+1P(2-5)=0
or A=-1LL 5
Therefore, the eigenvalues of the coefficient matrix A4 are
=4 =-15%=

Clearly —1 is a double root of the coefficient matrix 4.
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-2 =2 2 \(k) (0
Now (A-ADK=0=| -2 1-2 =2 |k |=|0
2 -2 1-a)lk) |0

For A, = —1, this system of the algebraic equations become
2 =2 2k 0
-2 2 2|k |=]0
2 -2 2 Nk 0

3

The augmented matrix of the system is

2 -2 20
(4+10)=| -2 2 -2|0
2 -2 20

By applying the Gauss-Jordon m ethod, the augmented m atrix redu ces to the reduced
echelon form

1 -1 1/0
0 0 0|0
0 0 0|0

Thus ky =k +hy =0 =k =k, — k,

By choosing k, =1 and k3 =0 in k, =k, —k;, weobtain k, =1 and so one
eigenvector is

1
K, = 1
0
But the choice k, =1, k; =1 implies k; = 0. Hence, a second eigenvector is given by
0
K, =|1
1
Since neither eigenvector is a c onstant m ultiple of th e other, we have found,

corresponding to the same eigenvalue, two linearly independent solutions
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Last for A; =5 we obtain the system of algebraic equations

—4 -2 2\(k

0
2 -4 2|k |=|0
2 -2 -4)lk) (o0

The augmented matrix of the algebraic system is

-4 -2 200
(4-5100)=| -2 -4 -2/0
2 -2 -4]0

By the elementary row operation w e can tran sform the augm ented matrix to the red uced
echelon form

1 0 -1/0

01 110

0 0 010
or k =ky, k, =—k,

Hence, we conclude that the general solution of the system is
1 0 1
X=c|l|e"+c,|1 e +c,|~1]e
0 1 1

St

Eigenvalues of Multiplicity Three
When a matrix 4 has only one eigenvector associated w ith an eigenvalue /11 of
multiplicity three of the coefficient matrix A, we can find a second solution X , and a

third solution X 5 of the following forms

A

X, =Kt + pe’

2

t
X, =K— M+ Pre + Qeﬂlt
2
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The K, P and Q are vectors given by

ky Py q,
k

K=| 2 , P= 1.72 and Q= C].2
k, p, q,

By substituting X into the system X' = AX, we find the column vectors K, P and O
must satisfy the equations

(4-A 1)K =0

(4-A1)P=K

(4-a1jo=P
The solutions of first and second equations ca  n be utilized in the formulation of the
solution X' and X, .

Example
Find the general solution of the following homogeneous system
4 1 0
X'=0 4 1|X
0 0 4
Solution
The coefficient matrix of the system is
4 1 0
A=]0 4 1
0 0 4
4-1 1 0
Then det(A-Al)=| 0 4-1 1
0 0 4—1
Therefore, the characteristic equation is
4—1 1 0
det(A—/H)=O= 0 4—4 1
0 0 4—1

Expanding the determinant in the last equation w.r.to the 3™ row to obtain

(_1)3+3(4_}%4—i 4ii
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or (4-2) [( 44)(4-2)-0]=0

or (4-2) =0=>2=4, , 4 4

Thus, A =4 is an eigenvalue of the coefficient matrix A of multiplicity three. ForA =4,

we solve the following system of algebraic equations

(4- 2K =0
4— ) 1 0 k, 0
or 0 4—1 1 k,|=0
0 0 4—-1 k, 0
0 1 0)k 0
or 0 0 1|k, |=]0
0 0 O)k 0

3

Ok, +1k, +0k; =0 .
or Ok, + 0k, + 1k, =0 :>k2
Ok, + 0k, + 0k, =0]  °

Therefore, the value of £, is arbitrary. If we choose kl =1, then the eigen vector K is

1
K=|0
0
Hence the first solution vector
1
X =Ke" =| 0 |
0
Now for the second solution we solve the system
(A-ADP=K
0 I 0)f p 1
or 0 0 1 p, (=0
0 0 0)\p, 0
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Op, +1p, +0p, =1 p, =1
Op,+0p, +1p,=0r=> P, =1
Op, +0p, +0p, =0 p;=0

Hence, the vector P is given by

P=

o =

Therefore, a second solution is

X, =Kte" + P

1 1
X,=|0|te" +|1 et
0 0
(1 1
X, =[]0+ 1 |]e*
0 0
Finally for the third solution we solve
(A-ADHQ=P
0 I 0)gq 1
or 0 0 Ijg,|=|1
0 0 0/q, 0

0g, +1g, +0g; =1| ¢, =1
or 0g, +0g,+1g, =0,=¢q, =1
0g,+0g,+0g;=0]  ¢5=1

Hence, the vector Q is given by

1
0=|1
1

Therefore, third solution vector is
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2

I 2 A A
Xy=K—e "+ Pre™ + Qe

1 ) 1 1
X3: 0 t—e4t+ 1 |ze® +|1|e¥
0 0 1
1 1 1
r 4¢
X3: 0 E+ 1 {t+] 1] |e
0 0 1

The general solution of the given system is

X=cX +c,X, +cX,

| 1 1 1y, (1 |
X=c|0e"+c,||0t+]|1 [|e"+]|0 %+ 1 |e+| 1] |e"
0 0 0 0 0 1
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Exercise
Find the general solution of the give systems
dx
. —=—-6x+5
d1 g
dy
—=-5x+4
d1 g
dx
2. —=—x+3
d1 g
dy
—=-3x+5
d1 g
dx
3. —=3x-y-—-z
d1 g
dy
——=x+y-z
a7
& x—ytz
a7
5 -4 0
4. X'=({1 0 2|X
0 2 5
I 0 O
5. X'=|0 3 1|X
0 -1 1
1 0 O
6. X'=|12 2 —-1|X
0O 1 O
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Lecture 30

Non-Homogeneous System
Definition

Consider the system of linear first order differential equations

%:a“(t) X +ay; (1) X +--+ay(t) x,+ fi(t)
dx

d—t2=azl(t) X|+8, (1) Xp--+apn(t) X3+ fo(t)
OLlitn:am(t) X+ am (1) X+ +any(t) %+ fq (1)

where a;; are coefficients and f; are continuous on comm on interval | . The system is

said to be non-hom ogeneous when f; (t)#0,Vi =1,2,...,n. Otherwise itis called a

homogeneous system.
Matrix Notation

In the matrix notation we can write the above system of differential can be written as

a,(t) a,(t).. a,(t))(x f,(t)

x; ~ aﬂ.(t) azz(.t) aZn.(t) %, fz.(t)

d
dt| i || : Pl :
X, a, (t) a,(t).. a,(t)/x f. (t)

orX'=AX + F(t)

Method of Solution

To find general solution of the non-hom ogeneous system of linear differential equations,
we need to find:

0 The complementary function X, which is general solu tion of the corresponding
homogeneous system X' = AX .

0 Any particu lar solution X ; of the non-hom ogeneous system X '=AX +F ('[)
by the method of undetermined coefficients and the variation of parameters.

The genera 1 solution X of the system is then given by sum of the com plementary
function and the particular solution.
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X = X¢ + X,

Method of Undetermined Coefficients

The form of F(t)

As mentioned earlier in the analogous case of a single nth order non-homogeneous linear
differential equations. The entries in the matrix F(t) can have one of the following forms:

Constant functions.
Polynomial functions
Exponential functions
sin(f X), cos(f X)

Finite sums and products of these functions.

0O 000D0

Otherwise, we cannot apply the m ethod of undetermined coefficients to find a particular
solution of the non-homogeneous system.

Duplication of Terms

The assumption for the particular solution X, has to be based on the prior knowledge of

the complementary function X to avoid duplication of terms between X and X, .

Example 1

Solve the system on the interval (—oo, oo)

Solution

To find X, , we solve the following homogeneous system
-1 2
X' = X

det (A-Al) =

We find the determinant

-1 1-4
det (A-Al) =(-1-4) (1-1)+2

‘—1—1 2‘

det (A-A1) =22 +2-A-1+2=2%+1
The characteristic equation is

det (A-A1)=0=2%+1
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or A=l A=+i

So that the coefficient matrix of the system has complex eigenvalues 4, =iand A, = —I
with ¢ =0and = +1.

To find the eigenvector corresponding to A;, we must solve the system of linear algebraic

AL

—(1+|) kl + 2k2:0
—k1+(1—i) k2 =0

equations

or

Clearly, the second equation of the s ystem is (1 + i)times the first equation. So that both
of the equations can be reduced to the following single equation

K, :(1 - i)kz

Thus, the value of K, can be chosen arbitrarily. Choosing k2 =1, we get |(1 =1-1i.

Hence, the eigenvector corresponding to /; is

<)

Now we form the matrices B, and B,

B, = Re(k;) =Gj B, =Im (kl)z(_ol}

Then, we obtain the following two linearly independent solutions from:
X, = (B cos ft— B, sin At )e™

X5 =(Bycos ft+B sinﬂt)eat

(1 -1) ot
Therefore X, = | cost— 0 sint |e
i -1 1
X, = cost( j—i—( jsint}em
I o)
cost sint cost+sint
or X = + =
cost 0 cost
—cost sint —cost +sint
XZ = + . = .
0 sint sint

© Copyright Virtual University of Pakistan

298




Advanced Differential Equations (MTH701) VU

Thus the complementary function is given by

X.=¢X, +¢, X,

cost+sint —cost+sint
or XC =C1 +C2 .
cost sint

Now since F(t) is a constant vector, we assume a constant particular solution vector

()
p bl

Substituting this vector into the original system leads to

SN

. (0
Since Xp=
0
0 —ay +2 -8
Thus = 120 +
0 -+ b 3
0 —a; +2b, -8
or =
0 -+ b +3
This leads to the following pair of linear algebraic equations
—a; +2b -8=0
-+ b +3=0

Subtracting, we have
b -11=0=Db =11

Substituting this value of by into the second equation of the above system of algebraic

equations yields
a,=11+3=14

Thus our particular solution is

x_14
P11

Hence, the general solution of the non-homogeneous system is
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cost + sint —cost + sint 14
X =¢ +C, , +
cost sint 11

0 Inthe abov e exam ple the entries o fthe m atrix F (t) were c onstants a nd the

Note that

complementary function X . did not involve any constant vector. Thus there was

no duplication of terms between Xcand X .

o However, if F ('[) were a co nstant vecto r and the coefficient m  atrix had an
eigenvalue A =0. Then X contains a constant vecto r. In such a situation th e

assumption for the particular solution X, would be

X =2l
b, b,

instead of

Example 2
Solve the system

%=6x+ y + 6t
dt

d—y:4x+3y—10t+4

dt
Solution

In the matrix notation

>
Il
7\
B~ AN
('S T
X
+
I

—_ O\
(e

N—
—+
+
7~ N\
~ O
N—

or

Where F (t) = (—610} + (?J

We first solve the homogeneous system

>
I
7\
~
W =
>
+
Tm
—_
~~—'
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(61
X'= X
4 3
Now, we use characteristic equation to find the eigen values

6-1 1
3-4

= (6-24)3-2)-4=0

det(A — Al)= =0

= A-91+14=0
So Ay =2and 4, =7

The eigen vector corresponding to eigen value A = 4, =2, is obtained from

k
(A — ﬂ,I)Kl =0, Where K, = [kl )

2

Or (A -21)K, =0,

AP B M R
(o)

4k, +k, =0
4k, +k, =0

Therefore

or
}:> 4k, +k, =0

we choose K, =1larbitrarily then K, =—4

Hence the related corresponding eigen vector is

Now an eigen vector associated with A =4, =7 is de termined f rom the f ollowing
system

k
(A - ALK, =0, where K, = (kl J
2
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: SR

-k, +k, =0
or ! 2 = -k +k, =0
4k, —4k, =0
1
Therefore K, :LJ

Consequently the complementary function is

1 1
X, = cl(_ A e™ + cz(lje”
6 0
Since F(t)z t+
-10 4

Now we find a particular solution of the system having the same form.

(o)
o) b,

where @,,a,, b1 and b2 are constants to be determined.

in the matrix terms we must have

(61 6 0
Xp= X+ t +

4 3 -10 4
a 6 1\(a a\l (6 0
2| = 2| |+ t+
b, 4 3)\b, b )] (~10 4
a, 6 l)at+aq N 6t+0
b,) (4 3 bt+b ) \-10t+4

a, 6a,t + 63, + bt + b, 6t +0
+
b, 4a,t +4a, +3b,t + 3D, —10t +4

a, 6a,t + bt+ 6t + 63, + b
b, 4a,t +3b,t —10t + 4a, +3b, +4
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or

(6a, + b, + 6)t + (6, +b —a,) ) (0
(4a, +3b, —10)t + (4a, +3b, —b, +4)) |0
from this last identity we conclude that
6a,+ b, + 6=0 6a,+ b —a,=0
And
4a, +3b, —10=0 4a, +3b, —b, +4=0
Solving the first two equations simultaneously yields

a,=—2and b, =6

Substituting these values into the last two equations and solving for @, andb, gives

It follows therefore that a particular solution vector is

-2 —-4/7
Xp= t+
6 10/7
and so the general solution of the system on (— 0, OO)is

X=X, +X,
1 1 -2 —4/7
=, e +c,)| e+ t -+
—4 1 6 10/7

Determine the form of the particular solution vector X p for

95:5x+3y—2e“t+1
dt

ﬂ:—x+y+e‘t—5t+7

dt

Example 3

Solution

First, we write the system in the matrix form
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S TGO

or X':(S1 TJX+F(t)

, (dx/dt X -2 0 1
where X'= , X= andF(t)=( je‘t+( Jt+( j
dy/dt y 1 -5 7

3
Now we solve the homogeneous system X' = ( JX to determine the eigen values,
we use the characteristic equation
det(A — A1)=0
5-4 3
or =(5-A)1-1)+3=0
-1 1-4

= A2 -61+8=0
—=>A1=2,4
So the eigen values are 4, =2and A, =4

For A = A, =2, an eigen vector corresponding to this eigen value is obtained from

(A-21)K, =0

~ el
2 LM,
R

3K, + 3k, =0
—k, —k, =0

}:>—k1—k2:0

We choose k2 = —1then k1 =1

304

© Copyright Virtual University of Pakistan



Advanced Differential Equations (MTH701) VU

1
Therefore K, 2( ]

Similarly for A =4, =4

SR

k, +3k, =0
=k, +3k, =0
-k, -3k, =0
ChoosingK, =—1, we get k; =3
Therefore [3j

Hence the complementary solution is

ey
R

We assume a particular solution of the form

X = Blet 2o
P b b, b,
Note:

If we repla ce e'in F (t)on et (A =2 an eigen value), then the correct form of the

particular solution is
a a a a
Xp={ e +| e+ 2 +|
b, ). b, b, | b,

Variation of Parameters

Variation of param eters is m ore powerful technique than the m ethod of undetermined
coefficients.

We now de velop a system atic produce fo r finding a solution of the non-hom ogeneous
linear vector differential equation

d)t( = AX + F(t) (1)

Now since

Assuming that we know the corresponding homogeneous vector differential equation
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dX
== = AX @)
dt
Let ¢(’[)be a fundam ental matrix of the hom ogeneous system (2), then we can express
the general solution of (2) in the form
X.=¢(t)C
where C is an arbitrary n-rowed constant v ector. W e replace the cons tant vector C by a
column matrix of functions
u, (t)

u(t)= Uzz(t)
Uy (1)

so that X =¢(’[)U(t) (3)

is particular solution of the non-homogeneous system (1).
The derivative of (3) by the product rule is

Xy =¢(t) U'(t)+4' U () (4)
Now we substitute equation (3) and (4) in the equation (1) then we have
#(t) U'(t)+¢'(t)U(t)= Ap(t) U (t) + F (1) (5)

Since ¢'(t) = A¢(t)

On substituting this value of ¢'(’[)into (5),

We have
)U'(t)+ Agt)U (1) = Ag(t)U (1) + F(t)

Thus, equation (5) become s

or p(t) U'(t)=F(t) (6)

Multiplying ¢_1 (t)on both sides of equation (6), we get

67 () pt) U't)=4" () F(t)

or U'(t)=¢"'(t) F(t)
or U(t)=[¢"(t) F(t)dt
Hence by equation (3)
xp=¢ﬁﬂ¢*a)FGMt (7)

is particular solution of the non-homogeneous system (1).
To calculate the indefinite integral of the column matrix ¢5—1 (t) F (t) in (7), we integrate
each entry. Thus the general solution of the system (1) is

X=X+ X,

or
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X =g(t)IC+4(t)[ ¢ (t) F(t)dt
Example
Find the general solution of the non-homogeneous system

-3 1 3t
X'= X+
2 -4 e

on the interval (— 0, oo)

Solution
We first solve the corresponding homogeneous system

-3 1
X'= X
2 4
The characteristic equation of the coefficient matrix is

-3-1 1
det(A — AI)= ) 470

or (-3-A)(-4-1)-2=0
S +41+431+12-2=0
=2 +71+10=0

= +51+24+10=0
= AUA+5)+2(1+5)=0
=(1+5)1+2)=0
=>A4=-2, A, =-5

So the eigen values are 4, =—2and A4, =5

Now we find the eigen vectors corresponding to 4, and A, respectively,

Therefore
(A - /1112 )Kl =0
(A—-21,)K, =0
-3+2 1 k1 0
SO =
2 —4+2 k2 0
-k +k, ) (O
2k, -2k, ) L0
or

®)
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We choose K, =1arbitrarily then k; =1
Hence the eigen vector is
1
K, = i

Now an eigen vector associated with 4, = 4 =—5 is dete rmined from the f ollowing

system

-3+ 5
or
—-445
2k1 + k2 0
j— =
2k, +k, 0

2k, +k, =0
2k, +k, =0

We choose arbitrarily K; =1then k, =—-2

1
Therefore K, :L 2)

The solution vectors of the homogeneous system are

1 1
X, = e 2 And X, = e
1 -2

X, and X, can be written as

The complementary solution

a2t _9pSt

and the inverse of this fundamental matrix is
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2.2t 1 a0t
ce -€

“1(+Y_| 3 3
3

3

e5t
Now we find X , by

X, =¢(t)] ¢~ (t) F(t)dt

a2t ot 202t 1t V3t
X p = ot 3 3 dt
e 2t —2e || 1eSt st e
3

3

1 1!
) (eﬂ - J 2te?t +§et dt-(en o5t ]IZtetht+J.§e dt

[teStdt — jl e*dt
- 3

2t 2t
2 o S e
€ € 2
Xp= (eZt _e St gt oSt 1
t—— [ —dt ——e"
5 3.4
2t 2t
2t st 2te__e_ let
€ € 2 2 3
Xo=| —st
N R
5 25 12
PONLIR P S S I g
X = 2 3 5 25 12
Pl 1 2t 2
t——+-e ' -+ —+—¢"
2 3 5 25 6
6,27, 1,
X, = 5 50 4
3, 021 1
p— __+_
5 50 2
Hence the general solution of the non-homogeneous system on the interval (— 0, oo)is
X=X.+X 0
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=¢(1)C+g(t)[¢7' (1) F(t)a

+
or 1 1
_ e_2t+C2 oSty 5 50 4
1 -2 3. 21 1
+—€
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Exercise
Use the method of undetermined coefficients to solve the given system on (— 0, oo)
1.95:5x+9y+2
dt
gx:—-x+-11y+6
dt
2. 95:x+3y—2t2
dt
ax IX+y+t+5
dx
3'6__X 4y+M+9e
Y —4x+y—t+e”
dt
4. X'=

4 1/3 -3 t
X + e
9 6 10
-1 5 sint
5. X'= X +
-1 1 —2cost
Use variation of parameters to solve the given system

dx

6. —=3Xx-3y+4
dt Y
dy
—Z=2x-2y -1
dt Y
-1 sn12t
7. X'= X +
2cost

J
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Lecture 31

Definition of a Partial Differential Equation (PDE)

A partial differential equation (PDE) is an equation that contains the dependent variable (the
unknown function), and its partial derivatives. As in the ordinary differential equations (ODEs),
the dependent variable u = u(x) depends only on one independent variable x. However in the PDEs,
the dependent variable, such as u = u(x, ) or u = u(x, y, t), must depend on more than one
independent variable.

If u = u(x, t), then the function u depends on the independent variable x, and on the time variable
t. However, if u = u(x, y, ?), then the function u# depends on the space variables x, y, and on the
time variable ¢.

Examples
1. The heat equation

u, =ku_,
u, =k(u_ + uyy),

in one dimensional space and two dimensional space respectively. The dependent variable
u = u(x, t) in first equation depends on the position x and on the time variable . However,
in second equation u = u(x, y, t) depends on three independent variables, the space variables
x, vy and the time variable ¢.

2. The wave equations
2
u, =c (u, +u,),
2
u, =c (u, +u, +u_),

in two dimensional space and three dimensional space respectively.

3. The Laplace equation is
u,+u, =0,

u, +u, +u_=0.
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Order of a PDE

The order of a PDE represents the order of the highest partial derivative that appears in the
equation. For example, the following equations

u =u_,
u, —uu, =0,
are PDEs of second order, and third order respectively.
Example 1. Find the order of the following PDEs:
a. u,=u, +u,
b. w'u, +u,, =0
Solution

a. The highest partial derivative in this equation is uxx or uyy. The PDE is therefore of order
two.

b. The highest partial derivative in this equation is uxy. The PDE is therefore of order three.

Linear and Nonlinear PDEs
Partial differential equations are classified as linear or nonlinear.

e A partial differential equation is called linear if
1. the power of the dependent variable u# and each partial derivative contained in the
equation is one, and

2. the coefficients of the dependent variable and the coefficients of each partial derivative
are constants or independent variables.

e However, if any of these conditions is not satisfied, the equation is called nonlinear PDE.

Example 2. Classify the following PDEs as linear or nonlinear
a. xu_+yu, =
b. u +Vu=x

c. uu,+xu, =0
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Solution

a. Here the power of each partial derivative ux and uyy is one. Also, the coefficients of the
partial derivatives are the independent variables x and y respectively. Hence, the PDE is
linear.

b. The equation is nonlinear because of the term~/u , as its power is Y%.

C. In this case the power of each partial derivative is one, but u; has the dependent variable u
as its coefficient. Therefore, the PDE is nonlinear.

Homogeneous and Inhomogeneous PDEs

A partial differential equation of any order is called homogeneous if every term of the PDE
contains the dependent variable u or one of its derivatives, otherwise, it is called an inhomogeneous
PDE.

You can also say that a PDE is called homogeneous if the equation does not contain a term
independent of the unknown function and its derivatives.

Example 3. Classify the following partial differential equations as homogeneous or
inhomogeneous.

a. u,+4u =0
b. u=u_+x

2
C. uu, +(uy) =0

Solution.

a. The terms of the equation contain partial derivatives of u only, therefore it is a linear,
homogeneous, 1st order PDE.
The equation is an inhomogeneous PDE, as one term contains the independent variable x.
c. This is nonlinear, 2nd order, homogeneous PDE.

Solution of a PDE

A solution of a PDE is a function such that it satisfies the equation under discussion and satisfies
the given conditions as well. In other words, for u to satisfy the equation, the left hand side of the
PDE and the right hand side should be the same upon substituting the resulting solution.
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Example 4. Show that u(x, ) = sin xsin y + x” is a solution of the following PDE

U, =u, +2.

Solution.

As

u, =-—cosxsiny+2x

u, =-sinxsiny+2=_LH.S
Now

u, =sinxcos y

u, =-—sinxsiny

u, +2=-sinxsiny+2=RH.S

Hence L.H.S=R.H.S

Example 5. Show that u(x,t) =sin xe " is a solution of the following PDE

u, =4u_.

Solution.

u, =—4sinxe™ = L.H.S
du_ =-4sinxe =RH.S

Boundary Conditions

For a given PDE that controls the mathematical behavior of physical phenomenon in a bounded
domain D, the dependent variable u is usually prescribed at the boundary of the domain D. The
boundary data is called boundary conditions. There are three types of boundary conditions (BCs)

that can occur for heat flow problems. They are

e Dirichlet Boundary Conditions
Consider heat flow problem in a rod (0 <x < L). The specification of the temperatures

u(0, t) and u(L, t) at the ends are classified as Dirichlet type BC. In this case, the function

u 1s usually prescribed on the boundary of the bounded domain.

e Neumann Boundary Conditions

: : ... 0 :
The specification of the normal derivative (i.e., a—u, where 7 is the outward normal to the
n

boundary) on the boundary is classified as Neumann type BCs. For a rod of length L,
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Neumann boundary conditions are of the form u (0,¢) = a,u _(L,?) = B, where o and S are

constants.

e Mixed Boundary Conditions
If the condition on the boundary is a mixture of both Dirichlet and Neumann types

i.e., a linear combination of the dependent variable u and the normal forma—u , then it is
n

called Mixed BCs.
It is not always necessary for the domain to be bounded, however one or more parts of the
boundary may be at infinity.

Initial Conditions

PDEs mostly arise to govern physical phenomenon such as heat distribution, wave propagation
and quantum mechanics. Most of the PDEs, such as the diffusion equation and the wave equation,
depend on the time 7. Accordingly, the initial values of the dependent variable u at the starting time
t = 0 should be prescribed. For the heat case, the initial value u (¢ = 0), that defines the temperature
at the starting time, should be prescribed. For the wave equation, the initial conditions u (¢ = 0) and
ut (¢ = 0) should also be prescribed.

Well-posed PDEs
A partial differential equation is said to be well-posed

e if a unique solution that satisfies the equation and the prescribed conditions exists, and

e Provided that the unique solution obtained is stable. The solution of a PDE is said to be
stable if a small change in the conditions or the coefficients of the PDE results in a small
change in the solution.

Exercises
1. Find the order of the following PDEs.
a. u, +2xu,+u, =€
b. u, =u, +u+l
C. u,, +xu,+8u=7y

d u+u_, =u

xxyy
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2. Classify the following PDEs as linear or nonlinear.
a. yu,+2xyu, +u=1
b. u, =u,-u’
c. u+uu +u. =0
1

1
d. u, +—u, +—u,=0
r r

3. Classify the following PDEs as homogeneous or inhomogeneous.
a. u, =u_+x
b wu+u,, =u
u +u, =u+4

d u,=u_ +tu, tu,

4. Verify that the functions

u(xay) :x2 _yza
u(x,y)=e"siny,
u(x,y)=2xy

are the solutions of the equation u, +u , =0.

5. Show thatu = f(xy), where fis an arbitrary differentiable function satisfies xu, — yu, =0.

Also verify that the functions sin(xy), cos(xy),log(xy),e” and (xy)’ are solutions.
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Classifications of Second-order PDEs

Classification of PDEs is an important concept because the general theory and methods of solution
usually apply only to a given class of equations. Let us first discuss the classification of PDEs
involving two independent variables.

1. Classification with two independent variables

Consider the following general second order linear partial differential equation in two independent
variables

Au, +Bu  +Cu,+Du +FEu +F, =G, )

where 4, B, C, D, E, F, and G are constants or functions of the independent variables x and y. The
classification of partial differential equations is suggested by the classification of the quadratic
equation of conic sections in analytic geometry. The equation

Ax’ +Bxy+Cy* +Dx+Ey+F = 0,

represents hyperbola, parabola, or ellipse accordingly as the discriminant (B> — 44C) is positive,
Zero, or negative.

Similarly the nature of the second order partial differential equation (1) is determined by the
principal part containing the highest partial derivatives, that is,

Lu=Au, +Bu, +Cu,

Now depending on the sign of the discriminant PDE (1) is usually classified into three basic classes
of equations,

1. Parabolic equation is an equation which satisfies the property

B> —44C =0,

2. Hyperbolic equation is an equation which satisfies the property
B*-44C >0,

3. Elliptic equation is an equation which satisfies the property
B*—4A4C<0.

Note. The classification of eq (1) as parabolic, hyperbolic or elliptic depends only on the
coefficients of the second derivatives. It has nothing to do with the first derivative terms, the term
in u, or the non-homogeneous term.
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Example 1. Classify the following equations as parabolic, hyperbolic or elliptic.
a. u,+u, =0 (Laplace equation)
b. u

c. u,—u_ =0 (Wave equation)

=u_ (Heat equation)

t XX

d. u,+xu,=0;x=0(Tricomi equation).
Solution.

a. HereA=1,B=0,C=1and B> —4A4C =-4<0. Therefore, it is an elliptic equation.
b. HereA=-1,B=0,C=0and B> —4A4C =0. Thus, it is parabolic type equation.

c. HeredA=-1,B=0,C=1and B> -4A4C =4> 0. Hence, it is of hyperbolic type.

d. HereA=1,B=0,C=xand B* —4AC = —4x.Therefore, the equation is parabolic if x = 0,
hyperbolic if x < 0, and elliptic if x > 0. This example shows that equations with variable
coefficients can change form in the different regions of the domain.

2. Classification with more than two independent variables

Consider the second-order PDE in general form

D%u du
ZZ(:;(); D7 Zb,——l—(u%—ff—()

=1 j=! ' @)

where the coefficients ai;, b;, ¢ and d are functions of x = (x7,x2, ..., x») alone and
u=u(x1, x2,..., Xn).
Its principal part is
n n 82
L= a; (3)
o o Ox0x,

: : . _ 1 :
It is enough to assume that 4 = [a;] is symmetric if not, let a; = E(aif + aﬁ) and rewrite

L= ZZ i 6x8x ®

i=l j=1

o’u o0’u . ) . . .
Note that = . As in two-space dimension, let us attach a quadratic form P with

ox,0x,  Ox,0x,

(4) (i.e., replacing o by xi).
ox

i
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P(xy,z9, -+ ) = Z Z QijTiT ()

i=1 j=1

Since A4 is a real valued symmetric (a;j = @) matrix, it is diagonalizable with real
eigenvalues 4;, A2, ..., 4». In other words, there exists a corresponding set of orthonormal set

of n eigenvectors, say o,,0,,...,0, With R = [01,02,...,an] as column vectors such that
A1

Ao O
RTAR = ' —D (6)

O
AH

We now classify (2) depending on sign of eigenvalues of 4:
e If one or more of the A =0 then PDE (2) is of parabolic type.

e Ifone ofthe4 >0 or A <0, and all the remaining have opposite sign then PDE

(2) is of hyperbolic type.
o If A >0Vior A <0 Vi then PDE (2) is said to be of elliptic type.

Example 2. Classify the following equation as parabolic, hyperbolic or elliptic.
u, +2(1+ex)u, =0.

Solution. The equation can be rewritten as

u, + (1+cx, )uw3 +(1+cx, )uw2 =0

For i, j=1, 2, 3 the eq(3) becomes

i=l j=1 i
o0u 0’u 0u 0u ou 0u
a, +a, +a; +a, +a,, +a,;
Ox,0x, Ox,0x, Ox,0x, 0Ox,0x, 0Ox,0x, 0x,0x,
ou 0u o0u
+a,, +a;, +a;; (7)
Ox,0x, 0x,0x, Ox,0x,
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On comparison of given PDE with eq(7),
a,=La,=0,a,=0,
a,, =0,a,,=0,a,, =(1+cx,),
a,, =0,a,, =(1+cx,),a,, =0.
1 0 0
Hence 4=|0 0 (1+cx,)
0 (I+cx,) 0
Now the Eigen values of matrix A are
det(4—-A1)=0
=>A=1,1+cx,),—(1+cx,).
0)(O
The corresponding FEigen vector and normalized vectors are |[O[,|1[,|—1| and
1 1

| 0 0
01, L , L respectively.
NN
1L
V2) U2
0 0 0
1 1
=R=|0 ﬁ _ﬁ
p L
V2 2]
i 0 0

R'AR=|0 (1+cx,) 0

0 0 —(1+cx,)

Which is a diagonal matrix. Now we classify the given PDE depending on the sign of Eigen values

of matrix 4.
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For ¢=0, the equation is hyperbolic type.

Forc #0, equation is
.. 1
e parabolic if x, =——,
c

e hyperbolic if x, > 1 and x, < —l.
C C

Exercises

1. Classify the following equations into hyperbolic, elliptic or parabolic type.
a. Su, —3u,+(cosx)u te'u, +u=0.

) -2 2 _
b. sin” xu, +sin” xu , +cos” xu , = x.
X y =
c. eu,+eu,-u=0.
2
d. 8u,+u, —u +[log(2+x")ju=0.

e. xu,tu, =0.

2. Classify the following equations into elliptic, parabolic, or hyperbolic type.
a. eu,-u, = log[x* +y* + 27 +1].

2
y —
b. wu, +2u +(cosx)u, —e’ u=coshz.

C. wu,+2u,+u,+2u_—(1+xy)u=0.

3. Determine the regions where u_ —2x’u_ +u,, +u, =0 is of hyperbolic, elliptic and

parabolic.
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Lecture 32

Adomian Decomposition Method

The Adomian decomposition method was introduced and developed by George Adomian and is
well addressed in the literature. The Adomian decomposition method has been receiving much
attention in recent years in applied mathematics in general, and in the area of series solutions in
particular. The method proved to be powerful, effective, and can easily handle a wide class of
linear or nonlinear, ordinary or partial differential equations, and linear and nonlinear integral
equations. The decomposition method demonstrates fast convergence of the solution and therefore
provides several significant advantages.

The Adomian decomposition method consists of decomposing the unknown function u(X, y) of
any equation into a sum of an infinite number of components defined by the decomposition series

b y) =Y U, (x. ).

where the components U, (X, Y),n=0 are to be determined in a recursive manner. The decomposition

method concerns itself with finding the components Uy,U,U,,... individually.
To have a clear overview of Adomian decomposition method, first consider
Fu=g(),

where F is a nonlinear ordinary differential operator with linear and nonlinear terms. We could
represent the linear term by Lu+Ru where L is the linear operator. We choose L as the highest
ordered derivative, which is assumed to be invertible. The remainder of the linear operator is R.
The nonlinear term is represented by f (u). Thus

Lu+Ru+f(u) =g Q)
Lu=g—-Ru—f(u) (2)

After applying the inverse operator L™! to both sides of above equation, we have

L'lu=u=L"g-L"'Ru—-L"f(u) (3)

The decomposition method consists in looking for the solution in the series formU = Z U, . The
n=0

nonlinear operator is decomposed as

fW=Y A,
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Where An depends on Uy,U;,U,,.. ..U, called the Adomian polynomials that are obtained by writing

W) =SuA% fu)=3 AL, @)

Where A is a parameter. From eq(4), An’s are deduced as

_1d NITPL
ATy [f (;Un;t ﬂm v

The first few Adomian polynomials are

Ao = f(uo)a
A1 :ulf'(uo)a

2
%Z%W%H%WW&

3

) y u
A =uf'(u)+uu,f (u0)+3—1' fu,), (6)

By substituting eq(4) into (3), The decomposition method consists in identifying the un’s by means
of the formulae

du,=L'g-L'RYu,-L'OA)
n=0 n=0 n=0
Through using Adomian decomposition method, the components Un(X) can be determined as
u,=L"g
' N N 7
u,, =-L"Ru, —L"A,
Hence the series solution of u(x) can be obtained by using above equations.

For numerical purposes, the n-term approximant

n-1
l//n = Z uk

n=0

can be used to approximate the exact solution.
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A REFERENCE LIST OF THE ADOMI.AN POLYNOMIALS

AO = f(uo)a
A :ulf'(uo)a

Az =u, f l(uo)"'% f"(uo),

3
A =, f'(Uy) + U, T "(uo)% £9(u,),

2

, u ) u’u u?
A =u,f (uo){z—lﬁu qu (u0)+—12!2 f(3)(u0)+4—1!f(4)(u0),

A =uf'(uy) +[u Uy +uu, ]f”(uo)j{uu! u; j|f(3)( u,)

uyu, o ﬁ )
3 f (u0)+5!f (uo),

2 3

+U,U, +UU }f”(uo){u

A =u,f (uO)J{ +U,U,U +u1;4}f(3)( u,)

ﬁﬁ Uy | e U'U, o) ﬁ (6)
+{2! o T | W TR+ TR ),

, . usu,  uul u’u
A =u,f (u0)+[u3u4+u2u5+u1u6]f (uo){ 22'3 + 12'3 +u1u2u4+#} fO,)
uu;  uuu, Ly U, | ) u; uy AT U | )
J{ 3 2 31 O 3021 41 )

5,2 9 y) 4 Y 10 w)

2
+U,Ug +U,U, + U1U7} f"(u,)

A =u8f,(u0)+|:%

B 2 2
+ u,u; + uu,
2! 2!

u
+U,U,U, +U,U,Ug + ‘Zﬁ}f‘”( u,)

[, 4 2 2.2 2
u uusu u-u u-u,u uu
2+123+13+124+ }(4)(0)

4! 2! 212! 2! 3!

+

2.3 3 4 2 5 6 8
u- u u;u,u U, U u u usu u-u u
+{ 2 L T172ms }f(S)( 0) { L2 4 3} f(6)(u0)+ 16'2 f(7)(u0)+ 81' f(S)(uo),

172
PARKY 3! 4! 4121 5!
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A, =Uy f'(u,) +[U,Us +Uug +u,u, +uug ] £"(uy)

'u3 uz 2 2
+| = +uuu, + 22+ g U, +uuu+ 21 f 9,
| 3! 2! 2
2 2 2 2 3
[wu, uwuu? uulu, uluu, uvuu, dlu
+ 2 3+ 17273 + 172 4+ 173 4+ 172 5+ 1-6 f(4)(u0)
3! 2! 2! 2! 2! 3!

B 4 2,2 3,2 3
N uu, +u_1u2u3 +u_1u_3+u1u2u U U f(5)( 0)
41 20 21 312! 3! 4'

ul u?

U Uy uju,ug LW u; uy ALY ‘u, £
’ 3!3!+ 4! sz}f R TR
b AU 0)+ f(”(uo)

"
+U,U, +U,U, +U,U, +u1u9} f"(u,)

Ay =Uy, f (uo)"‘{

2 2
uju, u;u u; 3
+ 22+ A2 huuu, + 22 +uuu+uuu+uuu+ f(u,)
2! 2! 2
3 3 2 2 ,,2 2 2 3
+ u_2u_3_|_ u2u4 i < u1u3 +U U U U 41275 u1u2u u_lu_4+ ul u3u5 + u1 u2u6 + u1u7 f(4)(u0)
2121 3! 3! 2! 21 2! 2! 2! 3!
. £+uluju3 uﬁuzﬁ u; usu, u'uu,  uuU, LU ‘U, F9 )
! 3! 2021 21 21 3! 3! 41 Ho
Juu we ue e, g
141 31 21 412! 4! 51 to
4 .3 5 6
U U  Uuus &) u Uy Uy 0
HTET FO) +| 2+ (u,)
3! 5! 6 6!2! 7!
u8 10
2 f(9)( )+ (10)(u )
8! Ho 1ot ‘
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Examples: Calculate the Adomian polynomials for following non-linear functions

1. fu=u’
Solution

The Adomian polynomials are determined by using the above reference list of formulas, as

A =U,
A= Sugul
A, =5ugu, +10u.u’
4 3 203
A, =5u,u; +20u,u,u, +10ugu;
A, =5Ugu, +5U;'u, +10usu; +20u;u,u, +30usu’u
4 0-4 10 0~2 0~1+3 01 >2
A =U’ +5ugu, +20u,u,u, +20u.u,U, +20U’U U, +30u.usu, +30usu’u,
A, =5U3u, +5u'u, +10u.u; +10ugu; +20u.u,U, + 20U u,u, +20u’u,u,
+30u;u’u, +30u/uiu, +60u.u,u,u,
A =5uju, +5uu; +10u’us +20u;u,u, + 20U u,u, +20u.u,U, +20usu,U,
+20u’u,u, +30uiusu, +30usuiu, +30usu’u +60Usu,U,U, +60u’u,u,u,

Remark
Notice that for u™ each individual term is the product of m factors. Each term of A, has

five factors--- the sum of superscripts is m (or 5 in this case). The sum of subscripts is n.
The second term of A, , as an example, is 5U,U,U,u,U, and the sum of subscripts is 4. A very
convenient check on the numerical coefficients in each term is the following. Each
coefficient is m! divided by the product of factorials of the superscripts for a given term.
Thus, the second term of A, (u”) has the coefficient5!(2!)(2!)(1!) = 30.
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2. fw=u’
Solution
A =U,
A =2uyu,
A =ul+2u,u,
A, =2uu, +2u,u,
A, =UJ +2u,u, +2u,u,
A =2u,u, +2u,u, +2U,U;
3. f(O)=sind
Solution
A, =sing,
A =0, cosb,
62
A :—( Y%, jsinl90+92 cos 6,
93
A = —( %]cos@o —06,0,sin 6, + 0, cos b,
Remark:

The essential features of the decomposition method for linear and nonlinear equations,
homogeneous and inhomogeneous, can be outlined as follows:

>
>
>

Express the partial differential equation, linear or nonlinear, in an operator form.
Apply the inverse operator to both sides of the equation written in an operator form.
Set the unknown function u(X, y) into a decomposition series

u= iun
n=0

whose components are elegantly determined. We next substitute the above series into both
sides of the resulting equation.

Identify the zeroth component Uo(X, Y) as the terms arising from the given conditions and
from integrating the source term g(X, Y), both are assumed to be known.
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» Determine the successive components of the series solution Uk, kK > 1 by applying the
recursive scheme (6), where each component Uk can be completely determined by using the

previous component Uk-1.

» Substitute the determined components into U = Zun to obtain the solution in a series

n=0

form. An exact solution can be easily obtained in many equations if such a closed form

solution exists.

It is to be noted that Adomian decomposition method approaches any equation, homogeneous
or inhomogeneous, and linear or nonlinear in a straightforward manner without any need to
restrictive assumptions such as linearization, discretization or perturbation. There is no need
in using this method to convert inhomogeneous conditions to homogeneous conditions as

required by other techniques.

Example 4:

Solve the following homogeneous differential equation by using Adomian decomposition method.

u'(x)=u(x), u(0)=A. (8)
Solution

In an operator form the given equation becomes
Lu=u, 9)

where L is the differential operator given by

d
L=—, 10
dx o)
and therefore the inverse operator L™! is defined by
L'() = J'(.)dx. 11)
0
Applying L™ to both sides of (9) and using the initial condition we obtain
L'(Lu)=L"(u)
= u(x)-u(0)= L")
=u(x)=A+L"(u) (12)
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Substituting the series assumption, U = Z U, into both sides of above equation
n=0

iun(x) =A+L" (iun(x)j (13)

In view of (13), we have the following recursive relation

W(x) = A
U, (X) = L (U (x)); k=0. (14)
Consequently, we obtain
0(x) = A,
0,00 = L (u, () = AX,
00 = L () = 22, (15)
0, () = L (u,(x)) = A6X ,

00
Hence U = Z U, gives the solution in a series form as
n=0

3!

2 3
u(x):A{1+x+%+X—+---J

u(x) = Ae*.

Example 5:

Solve the following homogeneous differential equation by using Adomian decomposition method.
u"(xX)=xu; u(0)=A, u'(0)=B. (16)

Solution

In an operator form the given equation becomes

Lu = xu, 17)
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where L is the differential operator given by

L()= %(.), (18)

and therefore the inverse operator L™! is defined by
L' () = [ [ ()dxdx. (19)
00
Applying L™! to both sides of (17) and using the initial condition we obtain
L' (Lu) = L' (xu)

So that

u(x)—xu’(0)—u(0) = L' (xu)
= u(x)= A+Bx+L"(xu) (20)

Substituting the series assumption, U = Z U, into both sides of above equation

n=0
DU, () =A+Bx+ L‘(xZun(x)j (21)
n=0 n=0
Following the decomposition method we obtain the following recursive relation
u,(x)=A+Bx,
U (00 = L ()0, (0)); k0. (22)

Consequently, we obtain

u.(x)=A+Bx,

Ax* Bx*
u(X)=L"(xu)= + ,
1(X) (xu,) T

Ax®  Bx’
u,(X)=L"'(xu)=—+ , 23
»(X) (xu,) 80 304 (23)

Thus the solution in series form is

3 6 4 7
ux)=A 1+X—+X—+--~ +B x+X—+ X e |
6 180 12 504
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Example 6:

Solve the following homogeneous partial differential equation by using Adomian decomposition
method.

u,+u, =X+Y, (24)
u(x,0)=0, u(0,y) = 0.

Solution

In an operator form PDE becomes
LU y)=x+y-Lu(xy), (25)

where the operators are defined as

9
“oxT Y ey’

and there inverse operators are as
X y
L'O=[Od,  L'O=[0dy.
0 0

The x-solution:

This solution can be obtained by applying Lx ' to both sides of (25),
-1 -1 -1
Lx LXU(X, y) = Lx (X + y) - Lx LyU(X, y);

1 _
=u(x,y)=u(0,y) +§x2 +xy—L/'Lu,
= u(x, y):%x2 +xy—L'Lu, (26)

obtained on using the given condition u(0, y) = 0, by integrating f (X, y) = X+ y with respect to X
and using L 'L u(x,y)=u(x,y)-u(0,y).

Substituting the unknown function u(x, y) as an infinite number of components un (X, y), n>0 given

by U(X,Y)=D_U,(X,Y)in (26),

n=0
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> Uy(%,Y) =%x2 +xy-LlL, {Zuxx, y)}, 27)
n=0 n=0
u0+u1+u2+u3+...=%x2+xy—L;1(Ly(u0+u1+u2+...))

Consequently, the recursive scheme that will enable us to completely determine the successive
components is thus constructed by

U, (X, Y) =%x2 +XY,
U, (X, y)=—L/( L, (u)); k=0. (28)

Which gives

u, (X, y)=%x2 +XY,

uis Y>=—LJ<Ly<uo)>=—Lx‘[Ly (%xuxvn:‘%xz,

u, (X, Y)=—|-§1(Ly(ul))=—|-;1(Ly(—%xzj}ﬂ (29)

Accordingly, Uk (X, y) = 0, k >2. Having determined the components of u(x, y), we find
1 1 >
u:u0+u1+u2+u3+...:5x +xy—§x =Xy (30)

the exact solution of the equation.
The y-solution:

It is important to note that the exact solution can also be obtained by finding the y-solution. In an
operator form we can write the given equation as

Lu=x+y-Lu, (31
By applying Ly to both sides of (31),
L Lu(x, y) = L' (x+y) = L'Lu(x,y),

= U(X,y)=Uu(x,0)+ xy+%y2 -L'Lu,

= Uu(x,y)=Xxy +% y’-L'Lu, (32)

333



Advanced Differential Equations (MTH701) VU

Using U(X, ) = D_U, (X, Y) on both sides of (32),

n=0

o0 1 B o0
2O =X+ y - L, {Zun(x, y)}, (33)
n=0 n=0

Uy +U, +U, + U, +...= xy+%y2 — L (L, (Uy +U, +U, +...))
The recursive scheme will be defined as

1,
uo(X’ y) = Xy+5y 9
uk+1(X> y) = _L;I(Lx (uk))> k>0. (34)

So we have
1,
u(x,y)= XY+§y ,
- _ 1
U, (% y>=—L;<Lx<uo>>=—Ly‘(Lx(Xy+§v2D:‘—y2,

_ _ 1
U, (X, Y)=—Ly1(|-x(U1))=—|-yl(|—x (—5 y2D=0- 35)
Consequently, Uk (X, Y) = 0, k >2. Having determined the components of u(x, y), we find
L, 1o,
u:u0+u1+u2+u3+...:xy+5y —Ey =Xy (36)

the exact solution of the equation.
Note:

The exact solution of the given PDE can be obtained by determining the x-solution or y-solution
only as discussed above, depending upon the given equation.
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Exercises

1. Calculate the Adomian polynomials for the following non-linear functions

a. fu)=u’,
. X
b. f(x)=sinh (Ej,

c. f(w=u""m>0.

2. Use the Adomian decomposition method to show that the exact solution can be obtained
by determining the X-solution or the y-solution:

a. u,—u,=0; u(x,0)=x, u0,y) =y.
b. xu,+u, =3u; u(x,0)=x* u(0,y) = 0.
c. u—-yu=0; u,y) =1

3. Solve the following homogeneous partial differential equation by using Adomian
decomposition method
U, +U, +U, =U;
u@0,y,z)=1+e’ +e*, u(x,0,z)=1+e"+e*, u(x,y,0)=1+e"+e’,
where u =u(x,y,2).
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Lecture 33

Applications of Adomian Decomposition Method

In this lecture the singular initial value problems, linear and nonlinear, homogeneous and
nonhomogeneous, generalized Emden-Fowler equation and Bratu-type equations are investigated
by using Adomian decomposition method. The solutions are constructed in the form of a
convergent series.

ADOMIAN METHOD FOR SINGULAR INITIAL VALUE PROBLEMS IN SECOND-
ORDER ODES

The studies of singular initial value problems in the second order ordinary differential equations
(ODEs) have attracted the attention of many mathematicians and physicists. One of the equations
describing this type is the Lane—Emden-type equations formulated as

y"+2y'+f(y)=0, 0<x<l,
X
»(0)=4, y'(0)=B. D

On the other hand, studies have been carried out on another class of singular initial value problems
of the form

Al 2 1
Y +;y+f(x,y)=g(x), 0<x<l, (2)

y©0)=4,  »y'(0)=B5,

where 4 and B are constants, f{x, y) is a continuous real valued function, and g (x) eC [O, 1] .Eq(2)

differs from the classical Lane—Emden-type equations (1) for the function fx, y) and for the
inhomogeneous term g(x).

Eq.(1) with specializing f{)) was used to model several phenomena in mathematical physics and
astrophysics such as the theory of stellar structure, the thermal behavior of a spherical cloud of
gas, isothermal gas spheres, and theory of thermionic currents. Due to the significant applications
of Lane—Emden-type equations in the scientific community, various forms of f{y) have been
investigated in many research works.

In recent years a large amount of literature developed concerning Adomian decomposition method,
and the related modification to investigate various scientific models. The Adomian decomposition
method provides the solution in a rapidly convergent series with components that are elegantly
computed. A reliable part of this approach is how this method can be modified to address the
concept of singular points. To properly address this question, we may require slight variation of
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the decomposition algorithm as described in previous lecture. An alternate framework can be
designed to overcome the difficulty of the singular point at x=0.

The Adomian decomposition method usually defines the equation in an operator form by
considering the highest-ordered derivative in the problem. To overcome the singularity behavior,
we define the differential operator L in terms of the two derivatives contained in the problem. We
rewrite (2) in the form

Ly=—f(x,y)+g(x), (3)

. . . .. 2 .
where the differential operator L in terms of two derivatives, y"+= ", is defined by
X

L=x" i(xz ij (4)
dx\ dx
The inverse operator L is therefore considered a two-fold integral operator defined by
LI'()= j X7 j x> ()dxdx. (5)
0 0

Operating with L™ on (3), it follows

y(x)=A+Bx+L'g(x)-L"f(x,y). (6)

As the Adomian decomposition method introduces the solution y(x) by an infinite series of
components

y() =33, (7)
and the nonlinear function f{(x, y) by an infinite series of polynomials

f50=2 4, ®
where the components yx(x) of solution y(x) will be determined recurrently, and A4, are Adomian
polynomials constructed for non-linear function defined as 4, = %j—;n[ £ ((x, y)/i)L:O .
Substituting (7) and (8) into (6) gives

iyn (x)= A+B(x)+L_1g(x)—L_liAn. 9)

n=0 n=0
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To determine the components yn(x), we use Adomian decomposition method that suggests the use
of the recursive relation

Vo(x)= A+ B(x)+ L'g(x),
Vi (X) = _Lil(Ak )9 k2 0, (1 0)

which gives

Vo(x)=A+Bx+ L_lg(x),

»(x)==L"(4),
¥, (x)==L"(4),

y;(x)=-L"(4,), (11)

The series solution of y(x) defined by (7) follows immediately.

The main advantage of using this choice for the operator L is that it tackles the differential equation
directly without any need for a transformation formula.

Example 1:

Solve the following linear singular initial value problem by using Adomian decomposition method.

y"+gy'+y =6+12x+x" +x°,
x
y(0)=0,  »'(0)=0. (12)
Solution

Firstly we have to re-write the given DE in an operator form as
Ly=6+12x+x"+x"—y. (13)

Applying L™! to both sides of (13) and using the initial condition we obtain
L'Ly=L"6)+12L"'(x)+ L' () + L' (X)) - L' (p). (14)

As,
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— — " 2 ’
L'L(y)=L l(y +;yj

x_z.[x2 (y" + gy'] dxdx
o x

X7 [xzy' - j 2xy'dx + I 2xy’a’x] dx
0 0

Il
Sl Ok O

y'dx = y(x) = y(0) = y(x),

L'(6)= j.xzjf)f (6)dxdx

0

= 6I X (g]dx = ZI- xdx = x7,
0 0

1207 (x) = IZJ.x_ZIxZ (x)dxdx
0

0

= 12} x2 (ﬁjdx = 3} xidx =x°,
0 4 0

(=]

4 5
X

~ L' (x? =x—andL"1 =,
(x7) 0 (x) 30

Putting all these values in Eq.(14),

y:x2+x3+%x4+%x5—[1y. (15)

Proceeding as before we obtain the recursive relationship

1 1
X)=x"+x +—x"+—x°
Yo (x) 20 30
Vi (X) = _L_l(yk): k=>0. (16)

Consequently, the first few components are as
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=L'(y)=——x'—x" ——x* ———x',
‘ D) ==30% "30% 820" Teg0
1 1 1 1
= —L_l = — x6 + x7 + x8 + x9 5
72 D) =~220" TTes0” T60480" 151200
) 1 |
yy=—L"(y,)=- ’ S (17)

X — X
60480 151200

Other components can be evaluated in a similar manner. Substituting these values in Eq.(7) and
after cancellation, we have

y(x)=x>+x, (18)

Which is the exact solution.

Example 2:
Solve the following nonlinear singular initial value problem by using Adomian decomposition
method.
y"+%y'— 6y=4ylny,
»0)=1, y'(0)=0. (19)
Solution
Re-write the given DE in an operator form as
Ly=4ylny+6y (20)
Applying L™! to both sides of (20) and using the initial condition we obtain
L'Ly=4L" (y In y) +6L" (y )
y(x)=1+4L_l(ylny)+6L_l(y ) (21)
Proceeding as previous example we obtain the recursive relationship

yo(x) = 17
Ve (X)=6L"(y,)+4L " (4,), k=0. (22)
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The Adomian polynomials for the nonlinear term F(y)=y Iny are computed as follows:

Ao =)o ll’l(yo),
A =nF'(y,) =y (1+1ny,),
» »
A4, =y, F'(y)+—F"(y)) = y,(A+In )+,
2 2y,
3 3
A3:J’3F'(yo)+y1y2F"()"o)+%Fm(yo):y3(1+lnyo)+%_6y_;za (23)
0 0

which are obtained by using reference list of the Adomian polynomials given in lecture 32.

By putting (23) into (22), we get the following components

Yo =1
Yy =6L"(y)+4L"(4) =X,

_ _ 1
v, =6L 1(y1)+4L l(Al)zax“,

¥y = 6L (3,) + 4L (4,) =%x6,

V= 6L’1(y3)+4L’1(A3) :%xg,

Vs = 6L (y,)+ 4L (4,) = %x (24)

and so on. In view of above equation, the solution in a series form is given by

J/(x)=1+x2+%x4+lx6+ix8+ix1°+ ...... , (25)

3! 4! 5!

and in the closed form

y(x)= e (26)

341



Advanced Differential Equations (MTH701) VU

GENERALIZATION:

Replace the standard coefficient of )' in (2) by n/x, for real n; n>0. In other words, a general
equation

n
y"+;y'+f(x,y)=g(x), n>0, (27)
with initial conditions
y(0)=A4, v'(0) =B, (28)

can be formulated.

Here, the differential operator is defined as

L =x" i(x” ij, (29)
dx dx

for which the inverse operator L™ is expressed by

L'()= jix’"jx” (.)dxdx. (30)

Applying L, to both sides of (27) yields
y(x)= A+Bx+L;1g(x)—L;1f(x,y). (31)
Proceeding as before we obtain

Vo(x)=A+ Bx+ L;lg(x),
Va0 =-L'4,, k>0, (32)

where Ak are Adomian polynomials that represent the nonlinear term f(x, y). In view of (32), the
components of the function y(x) can be elegantly determined. The slight change we imposed on
defining the operator L. in (29), in terms of the first two derivatives, was successful to overcome
the singularity issue for n>0. To illustrate the generalization discussed above, we discuss an
example:
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Example 3:
Solve the following nonlinear singular initial value problem by using Adomian decomposition
method.
6
y'+—y'+l4y=—4ylny,
X
y0)=1, y'(©0)=0. (33)
Solution

In an operator form, given differential equation becomes

L(y)=-14y-4ylny. (34)
Recall that the operator L» is defined by
L :x_(’i[x(’ i), (35)
dx\ dx

for which the inverse operator L, is expressed by

L'()= jx_éjxﬁ(.)dxdx. (36)

Operating L, on both sides of (34) we have
y=1-14L"(y)-4L'(yIny). (37)
Proceeding as before we obtain the recursive relationship

yo(x) = 1:
Ve (¥) =—14L " (y,) - 4L (4,), k=0. (38)

The Adomian polynomials for the nonlinear term F(y)= y Iny are computed before in (23).

Substituting (23) into (38) gives the components
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Yo =1,
= —14L;1(y0)—4L;1(A0) = _xz,
¥, =—14L ()~ 4L (4) =%x4,

¥y =141 (v,)~ 4L (4,) =—%x6,

_ . 1
y,=—14L"(y,)-4L'(4,) :ng,

_ _ 1
ys=—14L'(y,)-4L(4,) = —;x”i (39)

so that other components can be evaluated in a similar manner. In view of (39), the solution in a
series form is given by

1 1 1 1
B R IV VL VL VL
y(x)=1-x"+ !x 3!x + !x S!x +oeees (40)

and in closed form

y(x)= e, (41)

ADOMIAN DECOMPOSITION METHOD FOR EMDEN-FOWLER EQUATION

Many problems in the literature of mathematical physics can be distinctively formulated as
equations of Emden—Fowler type defined in the form

y”+%y'+af(x)g(y)=0, YO)=y,,  ¥(0)=0, (42)

where f(x) and g(y) are some given functions of x and y respectively. For f(x)=1 and g(y)=)",
Eq.(42) becomes the standard Lane—Emden equation.

The standard coefficient of y'in Emden—Fowler equation is 2/x. However, if we replace 2/x by r/x,
for real r, ¥>0, then we write down Emden—Fowler equation in general as

Y+ vaf(0g()=0, 20 (43)
X

with boundary conditions given by

yO0)=a, y'(0)=0. (44)
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Introducing the differential operator

L=x" i(xr ij, (45)
dx dx

for which the inverse operator L™ is expressed by

()= jx-’jx"(.)dxdx. (46)

In an operator form, Eq. (43) may be rewritten as

Ly =—af (x)g(y). (47)
Operating with L on (47), we have
y=a-al (f(x)g(»)) (48)

The slight change we imposed in defining the operator L in (45), in terms of the first two
derivatives, was successful to overcome the singularity issue for 7#0.

As discussed above, Adomian decomposition method introduces the decomposition series

y(x)= Z »,(x) and the infinite series of polynomials

n=0

F0)= X 4,007, (49)

where the components y»(x) of the solution y(x) will be determined recurrently, and 4» are Adomian
polynomials. Substituting the value of y(x) and (49) into (48) gives

:E:)%(X):: CZ__al‘1(}f(x):E:‘4n(}%’Jﬁ""%yn) j‘ (50)
n=0 n=0
Identifying yo(x)=a, the recursive relation
.yo(xj ::CZ,
Vi (X) = —al” (f(x)Ak)a k=0 (51

or equivalently

yo (X) =a,
Vi () = —ajix"’jﬁx" (f(x)Ak )dxdx, k>0 (52)
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will lead to the complete determination of the components y»(x) of y(x). The series solution of y(x)

follows immediately.

Example 4:

Solve the following equation by using Adomian decomposition method.
14 8 ’
V'+—y' +18ay =—4ayln y,
X

where the boundary conditions are given by
y(0)=1,  y'(0)=0.
Solution

Using the recursive relation (52) yields

yo(x) =1
Vi () = ~18aL’ (Vo) —4al’ (4p)s k=0

The first few Adomian polynomials for g(y)=ylny are given by

A4y =y,Iny,,
A4 = y1(1+1nyo):

2
Ay = (I yy) + 2

Yo

Using (53) yields

y0:17
v, ==18aL(y,)—4al'(4,) = —ax’,

2

v, =-18aL’ () ~4aL" (4) =",

3

y3:—1&uﬂ(%)—4aL*@g)=%;x?

Consequently, the series solution is

2 3
y(x)=1-ax’ +%x4 4

e
3!

and in a closed form by y(x) = e

(53)

(34)

(35)

(56)
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ADOMIAN DECOMPOSITION METHOD FOR BRATU-TYPE EQUATIONS

The standard Bratu’s boundary value problem in one-dimensional planar coordinates is of the form

u"+Ae" =0, 0<x<l,
u(0)=u(1)=0.

The Bratu model appears in a number of applications such as the fuel ignition of the thermal
combustion theory. It stimulates a thermal reaction process in a rigid material where the process
depends on the balance between chemically generated heat and heat transfer by conduction.

Example 5:

Solve the following Bratu-type model equation by using Adomian decomposition method.

u"-7'e" =0, O<x<l, (57)
u(0)=u(1)=0.

Solution
The given problem can be written in an operator form as

Lu=r’e" =0, 0<x<l1, (58)
u(0)=u(1)=0,

where L is the differential operator given by

82

_y.

L

The inverse L is assumed to be a two-fold integral operator given by
LI'()= j j (.)dxdx.
00

Applying the inverse operator L™ on both sides of (58) and using the initial condition u (0) = 0, we
find

u(x)=ax+ L' (7%e"), (59)

where a=u'(0). Substituting (7) and (8) into the functional equation (59) gives

iun(x) zax+L1[7zziAnj, (60)

n=0
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where A, are the so-called Adomian polynomials. Identifying the zeroth component uo(x) by ax,
the remaining components ux(x), n>1 can be determined by using the recurrence relation

u,(x) = ax,

u,, (x)=nL"(4,), k>0 (61)
where Ak are Adomian polynomials that represent the nonlinear term e* and given by

A4, =e",

A =ue",

1 u
A2 = u2+5u12]e",

u

L s
A4, = u3+uluz+gul e,

1 1 1 ‘
A4, = u4+u1u3+5u§+5u3u2+aufje", (62)

Other polynomials can be generated in a similar way to enhance the accuracy of approximation.
Combining (61) and (62) yields

uy(x) = ax,
7[2

u (x)=——(—e” +ax+1),
a

4
T
u,(x) = _4_a4 (—e

2ax

+4axe™ —4e™ +2ax+5),

6
uy(x)= 1;26 (€ + 6 (1—ax)+3e“ (2a’x* —6ax +5)—6ax—22),

(63)

In view of (63), the solution u(x) is readily obtained in a series form by

2 4
u(x) = ax — 5 (=e* +ax +1) - (=¢** + daxe” — 4™ +2ax +5)
a a
6
+ 1722 — (& +6€™ (1-ax) +3e™(2a’x’ — 6ax +5) — 6ax —22)
a
+...,

or equivalently
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 , ma 5 (rma*+xt) , (7Pa’+4rta)
u(x)=ax+—x"+ X+ X'+ X

2! 3! 4! 5!
\z'a* +7*a* +4n° )  (267'a® + n°a’ +34x°a) |
+ o x° + o X

+...,

= u(x) =—ln(l+cos((%+xjﬁn.

Solve the following problems by using Adomian decomposition method.

Exercises

y"+£y'z2(2x2 +3)y,
X

1.
»(0)=1, »'(0)=0.
n 5 [ y y/2
5 y+;y+8a(e +2e"7)=0,
»(0)=0, »'(0)=0.
3 u"+ e =0, O<x<l,
" u(0)=u(l)=0.
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Lecture 34

Convergence of Adomian Decomposition Method

In this lecture the rate of convergence of Adomian decomposition method will be discussed.
Cherruault, proposed a new definition of the technique to prove the convergence, of this method,
under suitable and reasonable hypothesis. We used Cherruault’s definition and consider the order
of convergence of the method.

THE ADOMIAN DECOMPOSITION METHOD FOR FUNCTIONAL EQUATIONS
Consider the functional equation
y-Ny=71, @

where N is a non-linear operator from a Hilbert space H into H, fis a given function in H and we
are looking for yeH satisfying (1).

As the initial Adomian technique considers of representing y as a series
y= Zy i (2)
i=0
and the non-linear operator as the sum of the series

Ny = ZAn 2
n=0
The method consist of the scheme:

o o)

Vit = A, (Vo> Vise 5 V)5

where 4,’s are polynomials in yo, y1, . . . , y» called Adomian polynomials, obtained by

1 d” o0 .
A=L 9 INS 2l cn=o2,.
" n!di”{ (Z y’ﬂ“

i=0

The Adomian technique is equivalent to determining the sequence

S =y +y,+...+y,
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by using the iterative scheme

o-? (4
Sn+1 = N(yO +Sn)

Associated with the functional equation
S=N(y, +9). (5)

For the study of the numerical resolution of (4) Cherruault used fixed point theorem.

Theorem.

Let N be an operator from a Hilbert space H into H and y be the exact solution of (1). z Vis

i=0

which is obtained by (3), converges to y when I0<a <1, yk+1|| < a”yk , Vke Nu {0}
Proof.
We have

S, =0,

S =01,

S, =Y+

S =y +y,+..+y,
and we show that, {S,}™ is a Cauchy sequence in the Hilbert space H . For this reason, consider,

<..<a™

Sy =S, =yl < ely )<y, Yol
But for every n,m € N,n>m, we have
IS, =S, =[(S, =5,2)+ (S, = 8,2) + - 4(S,0 = S,)|
SK&—SHN+K&4—QQN+W+W%H—&jka"yo+aH)@+m+aW1%
S(a"”l +0{"”2+...) v, :% V-

Hence, lim ||Sn =S, || =0, ie., {Sn }Z:) is a Cauchy sequence in the Hilbert space /4 and it implies

n,m—>+0

that 35,5 H, 1limS =8,

n—>+o0
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Le., S= Z v,. But, to solve Eq. (1) is equivalent to solving Eq. (5) and it implies that if N be a

n=0
continuous operator then

N(vy +8) = N( lim (3, +5,)) = lim N(y, +S,)= lim S, =,

n—>+w

i.e., S'is a solution of Eq. (1), too.

Definition. For every i € N\U{0} we define

[yl
a; = ”yi
o o

.l

(6)

Corollary.

In above theorem, Z ¥, converges to exact solution y , when 0<¢; <1, i=1,2,3,.... O
i=0

The standard Adomian decomposition method usually defines the equation in an operator form by
considering the highest-ordered derivative in the problem

=4
dx"
So
L) = [ [ Oddx...dx
00 0
Example 1.

Consider the initial value problem

Y A+A+x7)y? =xt+2x7 +2x7 +2x+2,
y(0)=1. (7)
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Solution:

In an operator form, (7) becomes
Ly = (x4 +2x° +2x° +2x+2)—(l+x2)y2,

where

and
LI'()= j ()dx.

By applying L' on the both sides of (8), we obtain

y= L (x4 +2x° +2x7 +2x+2)—L_1 ((l+x2)y2)+y(0).

So, we have
Yo =L (x" +20" +2x7 +2x +2)+ p(0),
Yuu ==L (A+x)4,), n=0

where 4,’s are Adomian polynomials for the nonlinear term 12, as
A=,
A4 =2y,
4,=2y,y, +y129
A =2y,y3 25,3,

@®)

)

which are obtained by using a reference list of the Adomian polynomials given in lecture 32.

Hence

5 4 3
X X

X 2
=—+—+—+x" +2x+],
PSS

n==L'(+xM)y; ) ==L (1+x)y;)

X X o167x" 19x" B 497x° 3 3x® 3 311x7 3 68x° 3 32x° 3 7xt 71X

325 60 3300 150 1620 5 315 45

3

—2x* —x,
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By computing ai’s for this problem, we have

a, il 5750015 >1,
[l

_|

= =2.9244392 > 1,
[l

o

Here, a.’s are not less than one and thus standard Adomian decomposition method is not
convergent. So, the standard Adomian decomposition method may be divergent, even, to solve a
simple nonsingular initial value problem.

Now we focus on singular ODEs. For this reason, consider the Lane—Emden equation formulated
as

y“_l_gy'_{_F(x’y):g(x)’ O<XS1, (11)
X
y0)=4,  y'(0)=85,

where 4 and B are constants, F(x, y) is a continuous real valued function, and g(x) eC [0,1].

Usually, the standard Adomian decomposition method may be divergent to solve singular Lane—
Emden equations. To overcome the singularity behavior, Wazwaz defined the differential operator
L in terms of two derivatives contained in the problem. He rewrote (11) in the form

Ly ==F(x,y)+g(x),

where the differential operator L is defined by

L=x" i(xz ij
dx dx )

There is an example of the form (11) that both standard and modified Adomian decomposition
methods are convergent.

Example 2.

Consider the linear singular initial value problem

y"+%y'+y =x" +30x°,
x
y(0)=0,  »'(0)=0. (12)
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Solution:

Standard Adomian method.:

In the operator form, (12) becomes

Ly:x5+30x3—y—%y', (13)
where
2
L
dx
SO

.Ek):jj(ykdn
00
By applying L™ on the both sides of (13), we obtain
y=L" (x5 +30x° ) +(0)+xy'(0)- L' (qu_ yj.
X

We obtain the recursive relationship

y,=L" (x5 +30x3)+y(0)+xy'(0),
Y=L |=y+y|, n=0
x

Consequently, the first few components are as

_3 X
N =TT
__3x5 _llx7 _ x’
< 4 252 3024’
3x° Ix 25x° x!
Y= (14)

+—+ + ,
8 216 36288 332640

and
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o, =0.5178432480 <1,
a, =0.5118817363 <1,
a, =0.5079364636 <1,

Hence the standard Adomian decomposition method is convergent.

Modified Adomian method:

In an operator form Eq. (12) becomes

Ly=x"+30x" -y, (15)

L=x" i(xz ij
dx dx

The inverse operator L' is therefore expresses as

where

L'()= j‘.x’z I x*(.)dxdx.

0

Operating with L on (15), it follows
y(x)=p(0)+ L (x* +30x° )= L7 (),
Proceeding as in previous lecture, we obtain
Vo(x)=y(0)+ L™ (x5 +30x° ),
Yo ()==L"(y,),  n20.

This gives the first few components

—x5+x—7
o 56°
x7 x9
17756 5040°
x9 xll
— + , 16
7275040 T 665280 16)
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and

a, =0.01521198194 <1,
a, =0.009843639085 <1, A7)

The obtained results in (14) and (16) show that the rate of convergence of modified Adomian
method is higher than standard Adomian method for this problem.

Exercises

1. Check the convergence of linear nonsingular initial value problem,

Y'+y =2x+2,
¥(0)=0, y'(0)=0.

2. Check the convergence of linear singular initial value problem

y"+£y'+y:6+12x+x2 +x°,
X

»(0)=0,  »'(0)=0.
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Lecture 35

Adomian Method for Higher-Order Ordinary Differential
Equations

It is possible to model many o fthe physical e vents that take place in nature using linear and
nonlinear di fferential e quations. T his m odelling e nables us to unde rstand a nd i nterpret t he
particular event in a much better manner. Thus, finding the analytical and approximate solutions

of such models with initial and boundary conditions gain importance. Differential equations have
had a n i mportant pl ace i n e ngineering s ince m any years. S cientists an d en gineers generally
examine systems that undergo changes.

Many m ethods have been de veloped to determine the analytical and approximate s olutions of
linear and nonlinear differential equations with initial and boundary value conditions and among
these m ethods, t he Adomian de composition m ethod ( ADM), h omotopy pe rturbation m ethod,
variational iteration method, and homotopy analysis method can be listed.

Recall that in previous lectures solving differential equations, solutions are usually obtained as
exact solutions defined in closed form expressions, or as series solutions normally obtained from
concrete problems.

To a pply t he A domian de composition m ethod for s olving nonl inear or dinary differential
equations, we consider the equation

Ly +R(y)+F(y) <9 x), M)

where the differential operator L may be considered as the highest order derivative in the equation,
R is the remainder of the differential operator, F(y) expresses the nonlinear terms, and g(X) is an
inhomogeneous term. If L is a first order operator defined by

L=—,
dx
then, we assume that L is invertible and the inverse operator L' is given by
L' () =] ()dx
0

= L(Ly) = y(0) - y(0).

358



Advanced Differential Equations (MTH701) VU

However, if L is a second order differential operator given by

L()= ( )s
and therefore the inverse operator L ™! is defined by
L () =] [ (-)dxdx
00
= L'L(y) = y(x) = y(0) ~ xy'(0)
In a parallel manner, if L is a third order differential operator, we can easily show that
LL(Y) = y(0) = ¥(0) = xy'(0) - - Xy"(0)

For higher order operators we can easily define the related inverse operators in a similar way.

Applying L! to both sides of (1) gives

y(X) =y, +L'g(x)-L'R(y)-L'F(y), (2)
Where
y(0), forL = i,
dx
d 2
y(0)+xy'(0), forL=—,
dx
d 3
Wy =1 y(0)+xy'(0) + X2y"(0), forl=—v. ()
d 4
y(0)+xy'(0) + X *y"(0) + X *y"(0), forL = o
5
y(0)+ Xy'(0)+ X’ ”(O)+ X’ ’"(0)+ X *y*(0), for L —;j—
X
and so on.
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The A domian decomposition m ethod a dmits t he de composition of Yy into an in finite s eries o f
components

Y09 =3 Y, @)

and the nonlinear term F(y) be equated to an infinite series of polynomials

F(y)=Y A, )

where An are the Adomian polynomials. Substituting (4) and (5) into (2) gives

o0

Zyn=l//o+L_lg(X)—L‘IR(iyn]—U(iij- (6)

n=0

The various components yn of the solution y can be easily determined by using the recursive
relation

{w=%+vmw
Yo =—L'R(Y,)-L"(A,), n=0. (7)

Consequently, the first few components can be written as

Yo =W, +L'9(x),

y, =—L"R(y,)-L"(A),

¥, =-L"R(y,)-L"(A),

Y, =—L"R(y,)-L"(A). ®)

Having determined the components Yn, N>0, the solution Yy in a series form follows immediately.
As stated before, the series may be summed to provide the solution in a closed form. However, for
concrete problems, the n—term partial sum

may be used to give the approximate solution.
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Example 1:

Use the A domian de composition m ethod to find t he s olution of t he following s econd order
nonlinear ordinary differential equation

yrr_l_(yy)z +y2 Il—SiHX; y(O)IO, yr(o):l (9)
Solution

In an operator form, the given equation can be written as
Ly =1-sinx—(y') —y?, (10)

where L is a second order differential operator. It is clear that L ™! is invertible and given by

L'() = j j (.)dxdx.
00
Applying L™! to both sides of (10) and using the initial condition we obtain

L'Ly =L (1-sinx)—L" ((y')2 +y2), (11)
= y(x) = y(0)+ Xy’(O)+X72+sin X—x—L" ((y')2 + yz),

x> . e
:x+?+smx—x—L 1((y)2+y2),
2

y(x)=%+sinx—L‘1 ((y’)2 + y2). (12)

The de composition m ethod suggests that the solution y(X) be expressed by the de composition
series

y(x) =Y ¥, (%), (13)
n=0
and the nonlinear terms (y’)2 +Yy? be equated to

(V) +y =D A, (14)

where Yn(X), >0 are the components of y(X) that will be determined recursively, and An, N>0 are

the Adomian polynomials that represent the nonlinear term (y’)2 +y>.
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Inserting equations (13) and (14) into (12), gives

Zyn(x):xéJrsinx—L‘l(iAJ

n=0

8

The zeroth component Yo is usually defined by all terms that are not included under the operator
L~!. The remaining components can be determined recurrently such that each term is determined
by us ing t he pr evious component. Consequently, t he components of Yy(X) can be el egantly
determined by using the recursive relation

X2
Yo (X) = ?+ sin X,

yk+1(X):_L71(Ak)a k >0, (15)

Note that the Adomian polynomials An for the nonlinear term (y’)2 +Yy* were determined before

by using Adomian algorithm and are calculated as
A=)+,
A= 2(yéy.’ +YoY, )
A =2(vay + vy )+ (%) + 1, (16)

and s o on. U sing t hese pol ynomials into ( 15), the first f ew ¢ omponents ¢ an be determined
recursively by

S
yO :7+sm X,

2 3 4 6
(g Pay) o XXX X
Y ()" +%;) 2 3 12 120
. L x> xto2x’
2 =—L1(2(y0y1 +yoy1))=?+7+g+---a (17)

Consequently, the solution in a series form is given by

2 2 X3 X4 X6 X3 X4 2X5

y(x):sinx+X——X— ————— —
2 2 3 12 120 3 3 15

After cancellation of terms, we have

y(X) =sin X.
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Example 2:

Find the solution of the following third order nonlinear ordinary differential equation by using the
Adomian decomposition method.

yO00+(y"(0)) +(Y'(¥) =2+cosx;
y(0)=0,y'(0)=2,y"(0)=0. (13)

Solution

In an operator form, the given equation becomes

Ly =2+cosx—(y') —(y"), 19)

where L is a third order differential operator. It is clear that L™! is invertible and given by

L) = | [ | (.)dxdxdx

O G <
O© C— <
O L X

— ! 1 "
L'L(Y) = y(X) — y(0) — xy'(0) —5X2y (0).
So by applying L' on both sides of (19), we have

y(x)— y(0) — xy'(0) —%xzy”(O) =L"(2+cosx)—L" ((y')2 +(y"Y’ )
y(x)—2x=§+x+sinx— L ((y')2 +(y”)2),

y(X)=X?+3X+sinX—L_] ((y’)2 +(y”)2), (20)

We next represent the linear term y(X) by the de composition s eries of components yn(X), N>0,

equate the nonlinear term y'> by the Adomian polynomials An, N>0, and equate the nonlinear term

y"? by the series of Adomian polynomials Bn, n>0, to find

© 3 0 ©
Zyn(x)zx?+3x+sinx—Ll [Zﬂ +Zan’
n=0

n=0 n=0
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Identifying the zeroth component Yo, and following the decomposition method we set the recursive

relation

X3
Y, (X) :?+3X+sin X,

Yin () =—L" (A +By), k=0, (21)
Consequently, for finding the first few components of the solution proceeds as

%00 =-L"(A +B,)

As

A=Y7 =(X2+3—c0sx)2

A, =X +6X> +9—6c0s X—2X’ cos X+ cos” X

and

=y,> =(2x+sin X) =4x* +4xsin X +sin” X

y, =—L"(A +B,)=— (X4+10X2+10—6COSX—2X2COSX+4XSinX)
Y| :_£X3 —ix5 —LX7
3 15 210

Similarly you can find A and B by using Adomian algorithm, as

A =2Yy,y,
:—ixg—éx6 8X4—12X2+Lxécosx+ix4cosx+4xzcosx
15 15 15 3

B =2yly A e 325 6% —8xsin x— 2 X’ sin X—2 X' sin x
L st 3 5 3

2. 26, 17 o 1
X + X + X + X
57 315 3780 14850

Consequently, the solution in a series form is given by

X’ 2 2 501 5, 0202, 17 VI

Y(X) =—+3X+sinX—=X ——xX ———xX + =X+ X'+ X +
3 3 15 210 5 315 3780 14850

:sinX+3X—lX3+iX5+...
3 15
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Example 3:
Consider the linear boundary value problem

YO =y-3e,
y'(0)=0, y1)=0, y(0)=1. (22)
Find its approximate solution by using Adomian decomposition method.
Solution
In operator form the given differential equation becomes
Ly=y-3e",

where L is a third order differential operator. It is clear that L™! is invertible and given by

L'()= .Xf (.)dxdxdx

O Sy <
S e <

So by applying L ! on both sides of above equation, we have

y:1+%Ax2—L‘1(3ex)+ L'(y), (23)

where A=y"(0). Using y(x)= 3y, (x), in (23)

n=0

i Y, (X) :1+%sz —L'(3e)+ L (i yn(x)j,

= Y,(X) =1+%AX2 - L' (3e"),
Yo )=L"(y,); n=0

The constant A in the reduction formula will be determined using boundary conditions (22) after
finding the decomposition series. From the reduction relation, we can obtain the solution terms of
the decomposition series as
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Yo (X) =4+3x—3e" +%(A+ 3)x°,

) 3., 2 (A+3)
X)=L" 3+3x-3e + =X += x3+ X,
%) (%)= 27 3 8 120
3 x xt x xSt
X)=L"(y,)=1+3x=-3e" + =X* + —+—+ —+—
¥ (%) () 2 2 8 40 180
(A+3) &
1680 40320

Consequently, the approximate solution obtained by using Adomian decomposition method using
the first three terms of the given problem in a series form is given by

;
(A+6) XL X +(A+3)x8.
120 180 1680 40320

Yy(X)=8+9x—-9¢" +— (A+9)x +Zx +— 4

Example 4:

Consider the fourth order linear nonhomogeneous differential equation

y? —2y"+y=-8e
with the boundary conditions
y(0)=y"(0)=0, ') =y"(1) = -e. (24)

Solution

In operator form the given differential equation becomes

Here,

are the derivative and integral operators.
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Apply the inverse operator and initial conditions are taken, we find

y(X) = Ax+% Bx' — L' (8e*)+2L" (y")-L(y), (25)

where A=y'(0) and B =y"(0). Using y(x)= > y,(x), in (25)

n=0

i y. (X) = AX +% Bx’ — L' (8¢*)+2L" (i yn"(x)j —L! (2 yn(x)), (26)

n=0 n=0
whereas the reduction formula given below can be written using (26),
Lo o1 fgax
Vo) = Ax+—BX L (8e").
yn+1(X)=2L‘l(yn")— L' (¥, );n 20
The A and B constants in the reduction formula will be determined using boundary conditions (24)

after finding the decomposition series. From the reduction relation, we can obtain the solution
terms of the decomposition series as

Y,(X) =8—8e* +(8+ A)X+4x’ +%(8+ B)x’,

yl(X)=2L*l(yo")— L ()

3 4
_g-8e 4 8x4 a2 X L g as2B)x
33 120
X _@®+B)
90 5040
V.00 =2L" (3" )-L" (v,)
3 4 5 6
_R-8e 1 gx+ A 4 X X X L AoBoayy
3 3 15 90 2520
X (A4B2) X 84B)
1680 362880 453600 39916800
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Consequently, the approximate solution obtained by using Adomian decomposition method
using the first three terms of the given problem in a series form is given by

4
Y(X) =24 —24e" + (24 + A)x+12x° +%(24+ B)x’ +2%+%(16— A+2B)X’

_QA-3B) ;X (A-4B-24) o X (8+B)
5040 1680 362880 453600 39916800

Example 5:
Consider the linear boundary value problem
yO(x)=y—15e*—10xe*, 0<x<l
subject to the boundary conditions
y(0)=y"(0)=0, y'(0)=1 yd)=0, y@)=-e (27)

Find out the recursive relation for it, by using Adomian decomposition method from which the
various components Y of the solution y can be determined.

Solution

In operator form the given differential equation becomes
Ly =y—15e* —10xe*.

Here,

L4 L‘l(.)=ﬁ

, Xx.ddddd,
Ve _([!()xxxxx

are the derivative and integral o perators. Apply the inverse operator and initial c onditions are
taken, we find

L'Ly(x) =—L" (15e*) - L (10xe* )+ L' (y)

= )/(X)=—35—24X—1?5X2 J{%—%)ﬁ +(2_i+;_4jx4
+(35-10x)e* + L' (y), (28)

where the constants A=y"(0) and B =y (0). Using y(x)=>_y,(X), in (28)

n=0
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Zyn(x) :—35—24X—1—5X2 +(é_§jx3 +(E+i]x4
" 2 6 6 24 24

+(35-10x)e* + L' [i yn(x)j, (29)

whereas the recursive relation given below can be written using (29),

yo(x)=—35—24x—1—5x2 +(A—§jx3 +(E+ijx4+(35—10x)ex,
2 6 6 24 24

yn+l(X): L_l(yn);nzo

The A and B constants in the reduction formula will be determined using boundary conditions (27)
after finding the decomposition series.

Example 6:

Consider the nonlinear boundary value problem
yOx)=e'y*(x), 0<x<l

subject to the boundary conditions

yO =1L y@O=-1 y(0)=1,
yh=e', yh=-e, y'(h=e". (30)

Find out the recursive relation for it, by using Adomian decomposition method from which the
various components Yn of the solution y can be determined.

Solution

In operator form the given differential equation becomes

Here,

L= d—i L'()= ﬁﬁﬁ() dxdxdxdxdxdx,
dX 000000

are the derivative and integral operators.
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Apply the inverse operator and initial conditions are taken, we find
ULy =L" (e*y* ()

1 A B C
= VX)) =1-X+=X+—xX +—Xx' +—x’ + L' (e*y*(x)), 31
y(x) SX X X (e'y’ (%) (31)

where A= y"(0),B =y (0) and C = y*”(0) are the constants that will be determined later. Using

) =3 y,(x) and y2(x)=3 A in (31)

< 1 A B C <

X)=1-X+=X+—X +—x' +—x+L"| e* , 32

;y“() 2 6 24 120 ( Z;A‘ (32)
where An are Adomian polynomials. Hence the recursive relation is as

3 5

B, C
+—x'+—=x,
24 120

WEEE N

1 A
X)=1-X+—=x>+—X
Yo (X) > 6
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Exercises

Use the A domian de composition method to find the series solution of the following nonlinear
ordinary differential equations:

L y'(x)-y'(x)=0; y0)=1 y'(0)=0.

2. y'(x)-ye’=0; y(0)=1,y'(0)=0.

3 vy (%) +(y”(x))2 +(y’(x))2 =1-sinX;
y(0)=Y'(0)=0, y"(0)=1.

. vy (%) —(y”(x))2 +(y’(x))2 =1+coshx;
y(0)=0, y'(0)=1, y"(0)=0.

s Y0018y () +81y(x) = 0;

y(0)=0, y'(0)=-1, y"(0)= y"(0) = 0.
Find out the recursive relation for the following ordinary differential equations, by using Adomian
decomposition method from which the various components Yyn of the solution y can be determined.
Yy (x) :ex(y)4; 0<x<l

1

' __l " :l — -1/3 ' —| —_ -1/3
YO=1, YO0 =3 YO =, Y =&, Y () (3} |

7. yOX)=e*y*(x), 0<x<l

y(0)=y"(0)=y“(0) =1,
y) =y" ) =y?1)=e.
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