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LECTURE NO. 1

WHAT IS STATISTICS?

e That science which enables us to draw conclusidimitavarious phenomena on the basis of real data
collected on sample-basis

e Atool for data-based research
e Also known as Quantitative Analysis

* Alot of application in a wide variety of discipéa Agriculture, Anthropology, Astronomy, Biology,
Economic, Engineering, Environment, Geology, GesetVedicine, Physics, Psychology, Sociology,
Zoology .... Virtually every single subject from Amépology to Zoology .... Ato Z!

*  Any scientific enquiry in which you would like tabe your conclusions and decisions on real-lifa,datu
need to employ statistical techniques!

* Now a day, in the developed countries of the wdHdre is an active movement for of Statisticagtacy.
THE NATURE OF THIS DISCIPLINE

DESORIIVE STATISTICS

PROBABILITY

INFERHIAL STATISTICS

MEANINGS OF '‘STATISTICS’

The word “Statistics” which comes from the Latinnd®status meaning a political state, originally meant imfation
useful to the state, for example, information abitvet sizes of population sand armed forces. Bt word has now
acquired different meanings.

« In thefirst place the wordstatisticsrefers to “numerical facts systematically arrariged this sense, the
word statistics is always used in plural. We hdeejnstance, statistics of prices, statisticsa#d accidents,
statistics of crimes, statistics of births, statstof educational institutions, etc. In all theseamples, the
word statistics denotes a set of numerical datdhénrespective fields. This is the meaning the mathe
street gives to the worSitatisticsand most people usually use the wdada instead.

« In thesecond placethe wordstatisticsis defined as a discipline that includes proceslared techniques used
to collect process and analyze numerical data tkenmaferences and to research decisions in the dace
uncertainty. It should of course be borne in mimat tuncertainty does not imply ignorance but ierefto the
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incompleteness and the instability of data avaélabi this sense, the word statistics is used énsthgular.
As it embodies more of less all stages of the gdrmocess of learning, sometimes cabetentific method
statistics is characterized as a science. Thusi/tind statisticsused in the plural refers to a set of numerical
information and in the singular, denotes the s@enfchbasing decision on numerical data. It shoadbted
that statistics as a subject is mathematical imactter.

Thirdly, the word statistics are numerical quantities Wlated from sample observations; a single quantity
that has been so collected is calledtatistic The mean of a sample for instance is a stati$tie word
statistics is plural when used in this sense.

CHARACTERISTICS OF THE SCIENCE OF STATISTICS

Statistics is a discipline in its own right. It wdutherefore be desirable to know the characterfsttures of statistics
in order to appreciate and understand its genettat®. Some of its important characteristics avergbelow:

Statistics deals with the behaviour of aggregatelarge groups of data. It has nothing to do withatvis
happening to a particular individual or objectoé aggregate.

Statistics deals with aggregates of observatiokeo§ame kind rather than isolated figures.

Statistics deals with variability that obscures enying patterns. No two objects in this universe exactly
alike. If they were, there would have been no stiaél problem.

Statistics deals with uncertainties as every pmoggetting observations whether controlled oramimlled,
involves deficiencies or chance variation. Thatliey we have to talk in terms of probability.

Statistics deals with those characteristics or espef things which can be described numericaltiiezi by
counts or by measurements.

Statistics deals with those aggregates which abgesuto a number of random causesy. the heights of
persons are subject to a number of causes suelt@sancestry, age, diet, habits, climate andrh. fo

Statistical laws are validn the averager in the long run. There is n guarantee thatreaelaw will hold in
all cases. Statistical inference is therefore madkee face of uncertainty.

Statistical results might be misleading the incdriesufficient care in collecting, processing anterpreting
the data is not exercised or if the statisticahdat handled by a person who is not well versetdersubject
mater of statistics.

THE WAY IN WHICH STATISTICS WORKS

As it is such an important area of knowledge, iéfinitely useful to have a fairly good idea abthé way in which it
works, and this is exactly the purpose of thisadtrctory course.
The following points indicate some of the main fiioks of this science:

Statistics assists in summarizing the larger sefatd in a form that is easily understandable.
Statistics assists in the efficient design of |albary and field experiments as well as surveys.
Statistics assists in a sound and effective plapimrany field of inquiry.

Statistics assists in drawing general conclusiams ia making predictions of how much of a thing lwil
happen under given conditions.

IMPORTANCE OF STATISTICS IN VARIOUS FIELDS

As stated earlier, Statistics is a discipline tiad finds application in the most diverse fieldsadiivity. It is perhaps a
subject that should be used by everybody. Stadistézhniques being powerful tools for analyzingneuical data are
used in almost every branch of learning. In allagrestatistical techniques are being increasinglgdu and are
developing very rapidly.
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« A modern administrator whether in public or privatetor leans on statistical data to provide autddtasis
for decision.

e A politician uses statistics advantageously to lempport and credence to his arguments while edticigl the
problems he handles.

e A businessman, an industrial and a research watkemploy statistical methods in their work. Banks
Insurance companies and Government all have ttaistics departments.

e A social scientist uses statistical methods inatagiareas of socio-economic life a nation. It imstimes said
that “a social scientist without an adequate urtdeding of statistics, is often like the blind mgnoping in a
dark room for a black cat that is not there”.

THE MEANING OF DATA

The word “data” appears in many contexts and fratiyés used in ordinary conversation. Although therd carries
something of an aura of scientific mystique, itsamag is quite simple and mundane. It is Latin ‘fillose that are
given” (the singular form is “datum”). Data may tefore be thought of as thesults of observatian

EXAMPLES OF DATA

e Data are collected in many aspects of everyday life

e Statements given to a police officer or physiciapsychologist during an interview are data.
e So are the correct and incorrect answers givendiydent on a final examination.

* Almost any athletic event produces data.

e The time required by a runner to complete a margtho

e The number of errors committed by a baseball teanirie innings of play.

e And, of course, data are obtained in the courseiehtific inquiry:
* the positions of artifacts and fossils in an archagical site,
e The number of interactions between two membersi@ramal colony during a period of observation,

e The spectral composition of light emitted by a star

OBSERVATIONS AND VARIABLES

In statistics, arobservationoften means any sort of numerical recording obrimfation, whether it is a physical
measurement such as height or weight; a classditauch as heads or tails, or an answer to aiquesich as yes or
no.

VARIABLES

A characteristic that varies with an individualaor object is called @ariable. For example, age is a variable as it varies
from person to person. A variable can assume a auofovalues. The given set of all possible valivem which the
variable takes on a value is called its Domairforfa given problem, the domain of a variable cost@nly one value,
then the variable is referred to asamstant

QUANTITATIVE AND QUALITATIVE VARIABLES

Variables may be classified into quantitative andliative according to the form of the charactarisf interest. A
variable is called guantitative variablewhen a characteristic can be expressed numerisalth as age, weight,
income or number of children. On the other handhéf characteristic is non-numerical such as edutasex, eye-
colour, quality, intelligence, poverty, satisfactjetc. the variable is referred to agualitative variable A qualitative
characteristic is also called atribute. An individual or an object with such a charactei can be counted or
enumerated after having been assigned to one sktreral mutually exclusive classes or categories.
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DISCRETE AND CONTINUOUS VARIABLES

A quantitative variable may be classified as digcmr continuousA discretevariable is one that can take only a
discrete set of integers or whole numbers, whiclhés values, are taken by jumps or breaks. A discvariable
representgountdata such as the number of persons in a famiégyntimber of rooms in a house, the number of deaths
in an accident, the income of an individual, etc.

A variable is called eontinuousvariable if it can take on any value-fractional integral—within a given
interval, i.e. its domain is an interval with all possible valuesthout gaps. A continuous variable represents
measurement data such as the age of a persoreitiie bf a plant, the weight of a commodity, theperature at a
place, etc.

A variable whether countable or measurailgenerally denoted by some symbol such as X and X or X;
represents the ith of alue of the variable. The subscript i or j islaged by a number such as 1,2,3, ... when referred
to a particular value.

MEASUREMENT SCALES

By measurementwe usually mean the assigning of number to olagiems or objects and scaling is a process of
measuring. The four scales of measurements ariéybrientioned below:

NOMINAL SCALE

The classification or grouping of the observatiam® mutually exclusive qualitative categories taisses is said to
constitute anominal scaleFor example, students are classified as maldemdle. Number 1 and 2 may also be used
to identify these two categories. Similarly, raihfaay be classified as heavy moderate and light. iy use number
1, 2 and 3 to denote the three classes of raififah. numbers when they are used only to identiéydhtegories of the
given scale carry no numerical significance andetle no particular order for the grouping.

ORDINAL OR RANKING SCALE

It includes the characteristic of a nominal scafel an addition has the property afrdering or ranking of
measurements. For example, the performance of rgsider players) is rated as excellent, good faipaor, etc.
Number 1, 2, 3, 4 etc. are also used to indicatkstaThe only relation that holds between any paaategories is that
of “greater than” (or more preferred).

INTERVAL SCALE

A measurement scale possessing a constant ingpea(distance) but not a true zero point, is dadieinterval scale
Temperature measured on either the Celsius ordgheeRheit scale is an outstanding example of inteszale because
the same difference exists betweefl Q68 F) and 30 C (86’ F) as between®%C (41° F) and 18 C (59 F). It cannot
be said that a temperature of 40 degrees is twscho& as a temperature of 20 degree, i.e. the 4820 has no
meaning. The arithmetic operation of addition, sattion, etc. is meaningful.

RATIO SCALE
It is a special kind of an interval scale wheresh& of measurement has a treeopoint as its origin. The ratio scale
is used to measure weight, volume, distance, magtey,The, key to differentiating interval and oasicale is that the

zero point is meaningful for ratio scale.

ERRORS OF MEASUREMENT

Experience has shown that a continuous variablenesar be measured with perfect fineness becausertafin habits
and practices, methods of measurements, instruroset, etc. the measurements are thus always eetomirect to
the nearest units and hence are of limited accurBlog actual or true values are, however, assumed to exist. For
example, if a student’s weight is recorded as 6(ckgrect to the nearest kilogram), his true weighfact lies between
59.5 kg and 60.5 kg, whereas a weight recorded&0&g means the true weight is known to lie betw&9.995 and
60.005 kg. Thus there is a difference, howeverllsimmay be between the measured value and trevalue. This
sort of departure from the true value is technjckiiown as therror of measurementin other words, if the observed
value and the true value of a variable are denloyedand x +€ respectively, then the difference (€} x, i.e.€ is the
error. This error involves the unit of measuremeik and is therefore called @absolute error An absolute error

divided by the true value is called tredative error. Thus the relative errée , which when multiplied by 100,
X+E€
is percentage errarThese errors are independent of the units of oreagent of x. It ought to be noted that an erra ha

both magnitude and direction and that the wemdr in statistics does not mean mistake which is acdanaccuracy.
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BIASED AND RANDOM ERRORS

An error is said to bbiasedwhen the observed value is consistently and cotigthigher or lower than the true value.
Biased errors arise from the personal limitatiohthe observer, the imperfection in the instrumergsd or some other
conditions which control the measurements. Thesgrsare not revealed by repeating the measureméhéey are
cumulative in nature, that is, the greater the nemdf measurements, the greater would be the matgmiof error.
They are thus more troublesome. These errors swecalledcumulativeor systematic errors

An error, on the other hand, is said to be unbiageeh the deviations, i.e. the excesses and defents the true value
tend to occur equally often. Unbiased errors andaked when measurements are repeated and thejoteadcel out
in the long run. These errors are therefmmpensatingnd are also known aandom errorsor accidental errors

Virtual University of Pakistan 5
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LECTURE NO. 2

Steps involved in a Statistical Research-Project
e Collection of Data:
» Primary Data
» Secondary Data
e Sampling:
Concept of Sampling
Non-Random Versus Random Sampling
Simple Random Sampling
Other Types of Random Sampling

YV VYV

STEPS INVOLVED IN ANY STATISTICAL RESEARCH

e Topic and significance of the study
e Obijective of your study
*  Methodology for data-collection
»  Source of your data
» Sampling methodology
» Instrument for collecting data

As far as the objectives of your research are aoeck they should be stated in such a way thatyewabsolutely clear
about the goal of your study --- EXACTLY WHAT IT TBHAT YOU ARE TRYING TO FIND OUT?
As far as thenethodology for DATA-COLLECTION concerned, you need to consider:

e Source of your data (the statistical population)
e Sampling Methodology
e Instrument for collecting data

COLLECTION OF DATA

The most important part of statistical work is @y the collection of data. Statistical data alkecd either by a
COMPLETE enumeration of the whole field, called C®MS, which in many cases would be too costly andtitoe
consuming as it requires large number of enumesatnd supervisory staff, or by a PARTIAL enumematissociated
with a SAMPLE which saves much time and money.

PRIMARY AND SECONDARY DATA

Data that have been originally collected (raw data) have not undergone any sort of statisticatrment, are called
PRIMARY dataData that have undergone any sort of treatmerstdystical methods at least ONCE, i.e. the dada th
have been collected, classified, tabulated or ptesen some form for a certain purpose, are c8EGONDARY data.

COLLECTION OF PRIMARY DATA
One or more of the following methods are employeddlect primary data:
e Direct Personal Investigation
¢ Indirect Investigation
e Collection through Questionnaires
e Collection through Enumerators
e Collection through Local Sources

DIRECT PERSONAL INVESTIGATION

In this method, an investigator collects the infation personally from the individuals concernedc8ihe interviews
the informants himself, the information collectedgenerally considered quite accurate and compiate.method may
prove very costly and time-consuming when the aced&e covered is vast. However, it is useful fdpoia@tory
experiments or localized inquiries. Errors arellike enter the results due to personal bias ofrthestigator.

INDIRECT INVESTIGATION

Sometimes the direct sources do not exist or tfeermants hesitate to respond for some reason er.dthsuch a case,
third parties or witnesses having information anteriviewed. Moreover, due allowance is to be madetfe personal
bias. This method is useful when the informatiosirel is complex or there is reluctance or indéfere on the part of
the informants. It can be adopted for extensiveliimes.
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COLLECTION THROUGH QUESTIONNAIRES

A questionnaire is an inquiry form comprising ohamber of pertinent questions with space for engemformation
asked. The questionnaires are usually sent by amadl the informants are requested to return thetmummaires to the
investigator after doing the needful within a certperiod. This method is cheap, fairly expeditiarsd good for
extensive inquiries. But the difficulty is that theajority of the respondents (i.e. persons whaegeired to answer the
guestions) do not care to fill the questionnaires and to return them to the investigators. Sonegimthe
guestionnaires are returned incomplete and fullewbrs. Students, in spite of these drawbacks, ieshod is
considered as the STANDARD method for routine bessnand administrative inquiries.

It is important to note that the questions shduédfew, brief, very simple, and easy for all resgmnts
answer, clearly worded and not offensive to centagpondents.

COLLECTION THROUGH ENUMERATORS

Under this method, the information is gathered impleying trained enumerators who assist the infoian making
the entries in the schedules or questionnairesecityr This method gives the most reliable inforiomtif the
enumerator is well-trained, experienced and tac8tlidents, it is considered the BEST method whésrge-scale
governmental inquiry is to be conducted. This métban generally not be adopted by a private indaiar institution
as its cost would be prohibitive to them.

COLLECTION THROUGH LOCAL SOURCES

In this method, there is no formal collection aftal but the agents or local correspondents aretedeo collect and
send the required information, using their own juégt as to the best way of obtaining it. This métleocheap and
expeditious, but gives only the estimates.

COLLECTION OF SECONDARY DATA

The secondary data may be obtained from the foligwburces:

e Official, e.g. the publications of the Statisti€iVision, Ministry of Finance, the Federal and Rnwial
Bureaus of Statistics, Ministries of Food, Agricué, Industry, Labour, etc.

*  Semi-Official, e.g., State Bank of Pakistan, RajMéoard, Central Cotton Committee, Boards of Ecoicom
Inquiry, District Councils, Municipalities, etc.

*  Publications of Trade Associations, Chambers of @erce, etc

e Technical and Trade Journals and Newspapers

e Research Organizations such as universities, drat otstitutions

Let us now consider the POPULATION from which wdlwe collecting our data. In this context, thesfimportant
question is: Why do we have to resort to Sampling?

The answer is that: If we have available to usyevatue of the variable under study, then that wdé an ideal and a
perfect situation. But, the problem is that thisabisituation is very rarely available --- veryaigrdo we have access to
the entire population.

The census is an exercise in which an attempt dert@ cover the entire population. But, as you inkglow, even the
most developed countries of the world cannot affordonduct such a huge exercise on an annual basis

More often than not, we have to conduct our reseatady on a sample basis. In fact, the goal ofsitience of
Statistics is to draw conclusions about large paipehs on the basis of information contained inlssamples.

‘POPULATION’

A statistical population is the collection of evemyember of a group possessing the same basic dimkdle
characteristic, but varying in amount or qualityrfr one member to another.

EXAMPLES

e Finite population:
» 1Q’s of all children in a school.
e Infinite population:
» Barometric pressure:
(There are an indefinitely large number of poimslee surface of the earth).
»  Aflight of migrating ducks in Canada
(Many finite pops are so large that they can batéd as effectively infinite). The examples thathave just
considered are those of existent populations.
A hypothetical population can be defined as theeggte of all the conceivable ways in which a dpEtievent can
happen.
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For Example:
e 1)All the possible outcomes from the throw of a-dieowever long we throw the die and record thaltges

we could always continue to do so far a still langeriod in a theoretical concept — one which has n

existence in reality.

e 2) The No. of ways in which a football team of layers can be selected from the 16 possible members
named by the Club Manager.
We also need to differentiate between the samptgalilption and the target population. Sampled pdjmras that
from which a sample is chosen whereas the populatimut which information is sought is called theget population
thus our population will consist of the total néstudents in all the colleges in the Punjab.

Suppose on account of shortage of resources timef we are able to conduct such a survey on 8nly
colleges scattered throughout the province. In thise, the students of all the colleges will coutgtithe target pop
whereas the students of those 5 colleges from wthielsample of students will be selected will cibutst the sampled
population. The above discussion regarding the ljadipn, you must have realized how important itdshave a very
well-defined population.

The next question is: How will we draw a samplerfrour population?

The answer is that: In order to draw a random $arfom a finite population, the first thing thatewneed is the
complete list of all the elements in our population

This list is technically called tHERAME.

SAMPLING FRAME

A sampling frame is a complete list of all the edns in the population. For example:

e The complete list of the BCS students of Virtuaivénsity of Pakistan on February 15, 2003

e Speaking of the sampling frame, it must be kemphiind that, as far as possible, our frame shoulftdeefrom

various types of defects:

» does not contain inaccurate elements

e is not incomplete

e s free from duplication, and

* Is not out of date.
Next, let’s talk about the sample that we are géindraw from this population.
As you all know, a sample is only a part of a statal population, and hence it can represent dpaijation to only to
some extent. Of course, it is intuitively logicddat the larger the sample, the more likely it isrépresent the
population. Obviously, the limiting case is thahem the sample size tends to the population diresample will tend
to be identical to the population. But, of coulisegeneral, the sample is much smaller than theiljadipn.
The point is that, in general, statistical samplssgks to determine how accurate a descriptiohepbpulation the
sample and its properties will provide. We may htoveompromise on accuracy, but there are certath advantages
of sampling because of whidhhas an extremely important place in data-bassdarch studies.

ADVANTAGES OF SAMPLING

1. Savings in time and money.
¢ Although cost per unit in a sample is greater tinaa complete investigation, the total cost will
be less (because the sample will be so much sntlflarthe statistical population from which
it has been drawn).
¢ A sample survey can be completed faster than @nfudistigation so that variations from
sample unit to sample unit over time will largely &iminated.
¢ Also, the results can be processed and analyzédaiteased speed and precision because
there are fewer of them.
2. More detailed information may be obtained fromresample unit.
3. Possibility of follow-up:
(After detailed checking, queries and omissionslmaifollowed up --- a procedure which might prowgpossible in a
complete survey).
4. Sampling is the only feasible possibility wheests to destruction are undertaken or where thalatipn is
effectively infinite.
The next two important concepts that need to beidered are those of sampling and non-samplingserro

SAMPLING & NON-SAMPLING ERRORS

1. SAMPLING ERROR

The difference between the estimate derived froersimple (i.e. the statistic) and the true poputatalue (i.e. the
parameter) is technically called the sampling erffor example,
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Sampling error = X~#4

Sampling error arises due to the fact that a sacgrieot exactly represent the pop, even if it &nirin a correct
manner
2. NON-SAMPLING ERROR

Besides sampling errors, there are certain errbishnare not attributable to sampling but aristhiprocess of data
collection, even if a complete count is carried out
Main sources of non sampling errors are:
e The defect in the sampling frame.
e Faulty reporting of facts due to personal prefeesnc
*  Negligence or indifference of the investigators
e Non-response to mail questionnaires.
These (non-sampling) errors can be avoided through
e Following up the non-response,
e Proper training of the investigators.
e Correct manipulation of the collected information,

Let us now consider exactly what is meant by ‘samgpérror’: We can say that there are two typesasf-response ---
partial non-response and total non-respoti&tial non-responseimplies that the respondent refuses to answer some
of the questions. On the other hanmtal non-responseimplies that the respondent refuses to answercdrthe
guestions. Of course, the problem of late retunts reon-response of the kind that | have just meetiooccurs in the
case of HUMAN populations. Although refusal of sdenpnits to cooperate is encountered in interviewveys, it is
far more of a problem in mail surveys. It is notammon to find the response rate to mail questivesas low as 15
or 20%.The provision of INFORMATION ABOUT THE PURBE OF THE SURVEY helps in stimulating interest,
thus increasing the chances of greater responsaticiarly if it can be shown that the work wilebto the
ADVANTAGE of the respondent IN THE LONG RUN.

Similarly, the respondent will be encouraged tolyepa pre-paid and addressed ENVELOPE is sentvath the
guestionnaire. But in spit& these ways of reducing non-response, we are bioumave some amount of non-response.
Hence, a decision has to be taken about how maBARES should be made.

The term ‘recall’ implies that we approach the mypent more than once in order to persuade hinegpand to our
queries.

Another point worth considering is:

How long the process of data collection should betioued? Obviously, no such process can be caoti¢dor an
indefinite period of time! In fact, the longer ttime period over which the survey is conducted,glreater will be the
potential VARIATIONS in attitudes and opinions dfet respondents. Hence, a well-defined cut-off dggeerally
needs to be established. Let us now look at thewsmways in which we can select a sample frompayulation. We
begin by looking at the difference between non-ceménd RANDOM sampling. First of all, what do weanéyy non-
random sampling?

NONRANDOM SAMPLING

‘Nonrandom sampling’ implies that kind of samplimgwhich the population units are drawn into thenpke by using
one’s personal judgment. This type of samplingl$® &nown as purposive sampling. Within this catggone very
important type of sampling is known as Quota Sangpli

QUOTA SAMPLING

In this type of sampling, the selection of the shngpunit from the population is no longer dictated chance. A
sampling frame is not used at all, and the chofddeactual sample units to be interviewed is tiefthe discretion of
the interviewer. However, the interviewer is regtgd by quota controls. For example, one particularviewer may
be told to interview ten married women betweentyhimd forty years of age living in town X, whosesbands are
professional workers, and five unmarried professiovomen of the same age living in the same to@nota sampling
is often used in commercial surveys such as consomaeket-research. Also, it is often used in publinion polls.

ADVANTAGES OF QUOTA SAMPLING

*  There is no need to construct a frame.
e ltis avery quick form of investigation.
e Cost reduction.
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DISADVANTAGES

» ltis a subjective method. One has to choose betwbgectivity and convenience.

« If random sampling is not employed, it is no longeroretically possible to evaluate the samplimgrer

*  (Since the selection of the elements is not baseprobability theory but on the personal judgmeinthe
interviewer, hence the precision and the reliabiit the estimates can not be determined objegtivel in
terms of probability.)

*  Although the purpose of implementing quota contisl® reduce bias, bias creeps in due to thetfettthe
interviewer is FREE to select particular individualithin the quotas. (Interviewers usually look f@rsons
who either agree with their points of view or asegonally known to them or can easily be contafted.

* Even if the above is not the case, the intervieway still be making unsuitable selection of sampiis.

*  (Although he may put some qualifying questions fmtential respondent in order to determine whetieeor
she is of the type prescribed by the quota contsame features must necessarily be decided ailyitbey
the interviewer, the most difficult of these besuyial class.)

If mistakes are being made, it is almost impossfolethe organizers to detect these, because falijosvare not
possible unless a detailed record of the respoateaies, addresses etc. has been kept.

Falsification of returns is therefore more of aglmin quota sampling than in random sampling.plitesof the above
limitations, it has been shown by F. Edwards thatedl-organized quota survey with well-trained nviewers can
produce quite adequate results.

Next, let us consider the concept of random samgplin

RANDOM SAMPLING

The theory of statistical sampling rests on theiaggion that the selection of the sample unitsbeen carried out in a
random manner.
By random sampling we mean sampling that has beee by adopting the lottery method.

TYPES OF RANDOM SAMPLING

¢ Simple Random Sampling

e  Stratified Random Sampling
¢ Systematic Sampling

¢ Cluster Sampling

¢ Multi-stage Sampling, etc.

In this course, | will discuss with you the singtléype of random sampling i.e. simple random sargpl

SIMPLE RANDOM SAMPLING

In this type of sampling, the chance of any omeneint of the parent pop being included in the sangthe same as
for any other element. By extension, it followsttha simple random sampling, the chance of anysameple
appearing is the same as for any other. Theresexiste a lot of misconception regarding the cohoépandom
sampling. Many a time, haphazard selection is clemsi to be equivalent to simple random sampling.

For example, a market research interviewer mayselemen shoppers to find their attitude to branadf’é product by
stopping one and then another as they pass albngyashopping area --- and he may think that heabesmplished
simple random sampling!

Actually, there is a strong possibility of biasths interviewer may tend to ask his questionsooing
attractive women rather than older housewivesgamhy stop women who have packets of brand X premtiy on
show in their shopping bags!.

In this example, there is no suggestion of INTENNKL. bias! From experience, it is known that the lamibeing is a
poor random selector --- one who is very subjedttids.

Fundamental psychological traits prevent compléjedtivity, and no amount of training or consci@ffort can
eradicate them. As stated earlier, random samitigat in which population units are selectedhsylbttery method.

As you know, the traditional method of writing pé&s names on small pieces of paper, folding thrsees
of paper and shuffling them is very cumbersome!

A much more convenient alternative is the usBRANDOM NUMBERSABLES.
A random number table is a page full of digits freemo to 9. These digits are printed on the page TOTALLY
random manner i.e. there is no systematic pattepnirating these digits on the page.
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231575485901837259937624970886952303617434
0554555043105374350890611837441096221343
14871603503240436223500510032211543802834
3897674951940517585378805901943242871629¢5
973126171899 7553087094251258415488210513
1174269381443393087232797331182264706850
4336128859110164562393009004994364074036
9380620478382680449155751189325847552571
4954013181084298418769538296617773809527
36768726333794821569419596867045274838¢82D0
0709252392246271260706558453446733845320
43310010814486380307525551614889742946147
6157006360061 7363775631489512335017469293
3135283799107 791894131579764486258486191029
570488652627 7959368290529565463506%532254
0924344200687 210713730729757360929827650
979553501840894883295223082521225326152817
937325957043 78198885560671606182695996445¢629
726211122500922682643566605943471687518¢67
610207 4418453712079 4959173786¢69 9536193738
9783985474330559171845473541442203423000
891609719222232906373505545489884381613¢61
2596688220628 7179265028235286284919548283
8144331719050495480674690075676501716H545
11322549314236234386086249760674224523245

Actually, Random Number Tables are constructed raiog to certain mathematical principles so thatedigit has

the same chance of selection. Of course, nowadaygbmness may be achieved electronically. Comphters all

those programmes by which we can generate randombens.
The following frequency table of distribution givike ages of a population of 1000 teen-age cobéggents in a

particular country.
Select a sample of 10 students using the randonbexsntable. Find the sample mean age and comptrehei

population mean age.

STA301 - Statistics and Probability
ONE THOUSAND RANDOM DIGITS

EXAMPLE

Student-Population of a College
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How will we proceed to select our sample of sizdrbéh this population of size 1000?

11
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Y,

The first step is to allocate to each studentim population a sampling number. For this purpesewill begin by
constructing a column of cumulative frequencies.

AGE | No. of Students| Cumulative Frequency

X f cf

13 6 6

14 61 67

15 270 337

16 491 828

17 153 981

18 15 996

19 4 1000

1000

Now that we have the cumulative frequency of edabs; we are in a position to allocate the samptingibers to all
the values in a class. As the frequency as wethasumulative frequency of the first class is @, allocate numbers
000 to 005 to the six students who belong to tlissc

No. of .
AGE Students| cf Sampling

X f Numbers
13 6 6 000 — 00"
14 61 67
15 270 337
16 491 828
17 153 981
18 15 996
19 4 1000

1000

As the cumulative frequency of the second cla§§ iwhile that of the first class was 6, therefoallocate sampling
numbers 006 to 066 to the 61 students who belotigtalass.

No. of .
AGE Students| cf Sampling

X f Numbers
13 6 6 000 — 005
14 61 67 006 — 064
15 270 337
16 491 828
17 153 981
18 15 996
19 4 1000

1000

Virtual University of Pakistan
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As the cumulative frequency of the third class33 8vhile that of the second class was 67, thereferallocate
sampling numbers 067 to 336 to the 270 studentshelang to this class.

No. of :
AGE Sampling
X Stu?ents cf Numbers
13 6 6 000 — 005
14 61 67 006 — 064

15 270 337 067 — 33¢
16 491 828

7

17 153 981
18 15 996
19 4 1000|
1000
Proceeding in this manner, we obtain the columseafipling numbers.
No. of .
AGE Students| cf Sampling
X f Numbers
13 6 6 000 — 005
14 61 67 006 — 064
15 270 337 067 — 336
16 491 828 337 — 827
17 153 981 828 — 980
18 15 996 981 — 99%
19 4 1000] 996 - 999
1000

The column implies that the first student of thestficlass has been allocated the sampling numb&r t8é second
student has been allocated the sampling 001, aadegding in this fashion, the last student i.e.1800th student has
been allocated the sampling number 999.

The question is: Why did we not allot the numbedDeo the first student and the number 1000 tdlf@0th student?
The answer is that we could do that but that wiialde meant that every student would have beenaadida four-digit
number, whereas by shifting the number backwartl,lwe are able to allocate to every student a ttiigienumber ---

which is obviously simpler.

The next step is to SELECT 10 RANDOM NUMBERS frdme random number table. This is accomplished bsimgp
one’s eyes and letting one’s finger land anywher¢he random number table. In this example, salteur sampling

numbers are three-digit numbers, hence we will thagk digits that are adjacent to each otheraitphsition where
our finger landed. Suppose that we adopt this phaeeand our random numbers come out to be 041,308 171,

508, 652, 880, 066, 715, 471

Selected Random Numbers:

041, 103, 374, 171, 508, 652, 880, 066, 715, 471

Thus the corresponding ages are:

14, 15, 16, 15, 16, 16, 17, 15, 16, 16

EXPLANATION
Our first selected random number is 041 which miahwe have to pick up the 42nd student. The cativel

frequency of the first class is 6 whereas the cativd frequency of the second class is 67. Thisnsiézat definitely
the 42nd student does not belong to the first ddassloes belong to the second class.
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No. of
AGE Students cf
X f
13 6 6
14 61 67
15 270 337
16 491 828
17 153 981
18 15 996
19 4 1000
1000

The age of each student in this class is 14 ybars;e, obviously, the age of the 42nd studensis B years. This is

how we are able to ascertain the ages of all dests who have been selected in our sampling.wWilbwecall that in

this examplepur aim was to draw a sample from the populatiocotiege students, and to compare the sample’s mean
age with the population mean age. The populaticamage comes out to be 15.785 years.

AGE No. of Students
X
X f
13 6 78
14 61 854
15 270 4050
16 491 7856
17 153 2601
18 15 270
19 4 76
1000 15785
The population mean age is :
_ > fx _15785
~ > f 1000

= 15785 years

The above formula is a slightly modified form oéthasic formula that you have done ever-since el i.e. the
mean is equal to the sum of all the observatiovisield by the total number of observations.

Next, we compute the sample mean age.

Adding the 10 values and dividing by 10, we obtain:

Ages of students selected in the sample (in years):

14, 15, 16, 15, 16, 16, 17, 15, 16, 16

Hence the sample mean age is: 15.6, comparingithple mean age of 15.6 years with the populaticamage of
15.785 years, we note that the difference is replite slight, and hence the sampling error is efgua

Sampling Error

X =1%158
=—(QL8%ea
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And the reason for such a small error is that weslelopted the RANDOM sampling method. The basiamidge of
random sampling is that the probability is verythtgat the sample will be a good representativia@fpopulation from
which it has been drawn, and any quantity compfreed the sample will be a good estimate of theesponding
guantity computed from the population! Actuallysample is supposed to be a MINIATURE REPLICA of the
population. As stated earlier, there are variobgmotypes of random sampling.

OTHER TYPES OF RANDOM SAMPLING

«  Stratified sampling (if the population is heterngeus)

e Systematic sampling (practically, more convenibantsimple random sampling)

e Cluster sampling (sometimes the sampling unitst éxisatural clusters)

e Multi-stage sampling
All these designs rest upon random or quasi-ransimpling. They are various forms of PROBABILITY gaing ---
that in which each sampling unit has a known (lmitnecessarily equal) probability of being selected
Because of this knowledge, there exist methodstigiwthe precision and the reliability of the esttes can be
calculated OBJECTIVELY.
It should be realized that in practice, several@amg techniques are incorporated into each sudesygn, and only
rarely will simple random sample be used, or a rstitge design be employed, without stratification.
The point to remember is that whatever method lopted, care should be exercised at every step woragke the
results as reliable as possible.
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Tabulation

Simple bar chart

Component bar chart

Multiple bar chart

Pie chart

LECTURE NO. 3

As indicated in the last lecture, there are twabroategories of data ... qualitative data and qtaaiveéé data. A variety
of methods exist for summarizing and describingé¢hivo types of data. The tree-diagram below ptesamoutline of
the various techniques

TYPES OF DATA

Qualitative

N

T

Quantitative

AN

Univariate Bivariate Discrete Continuou
Frequency Frequency !
Table Table Frequency|| Frequency
! / Distribution| | Distribution
Percentage : il
I Component |Multiple Line Histogran
Pie Chat Bar Chart|| Bar Chart !
Chart
v Frequency
Bar Char Polygon
Frequency
Curve
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In today’s lecture, we will be dealing with varioieshniques for summarizing and describing qualitadata.

Qualitative
Univariate Bivariate
Frequency Frequency

Table Table

A 4

Percentage

Componen| | Multiple
Pie Cha Bar Chart| | Bar Chart

Bar Char

We will begin with the univariate situation, andproceed to the bivariate situation.

EXAMPLE

Suppose that we are carrying out a survey of theesits of first year studying in a co-educatioralege of Lahore.
Suppose that in all there are 1200 students dfyfear in this large college. We wish to determiviet proportion of
these students have come from Urdu medium schadlsvaat proportion has come from English mediunostsh So
we will interview the students and we will inquiidm each one of them about their schooling. Aesult, we will
obtain a set of data as you can now see on therscre

We will have an array of observations as follows:

UUEUEEEWU, ...

(U : URDU MEDIUM)
(E : ENGLISH MEDIUM)

Now, the question is what should we do with thita@a
Obviously, the first thing that comes to mind istunt the number of students who said “Urdu mediasnwell as the
number of students who said “English medium”. Tils result in the following table:

Medium of No. of Students
Institution ()
Urdu 719
English 481
1200

The technical term for the numbers given in theoedacolumn of this table is “frequency”. It mear®otv frequently
something happens?” Out of the 1200 students, #t8dsthat they had come from Urdu medium schddsin this
example, the frequency of the first category ofpmses is 719 whereas the frequency of the secatedyary of
responses is 481.
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It is evident that this information is not as usefs if we compute the proportion or percentagstofients falling in
each category. Dividing the cell frequencies byttital frequency and multiplying by 100 we obtédie following:

Medium of

Institution f %

Urdu 719 59.9 = 60%

English 481 40.1 = 40%
1200

What we have just accomplished is an example ofivadate frequency table pertaining to qualitatiaa.

Let us now see how we can represent this informatidche form of a diagram.

One good way of representing the above informatian the form of a pie chart.

A pie chart consists of a circle which is dividedoi two or more parts in accordance with the nuntdfedistinct
categories that we have in our data.

For the example that we have just considered,itbkeds divided into two sectors, the larger segertaining to
students coming from Urdu medium schools and thelsemsector pertaining to students coming fromlBhgmedium
schools.

How do we decide where to cut the circle?

The answer is very simple! All we have to do isltade the cell frequency by the total frequency anultiply by 360.
This process will give us the exact value of thglamt which we should cut the circle.

PIE CHART
Medium of
Institution f Angle
Urdu 719 215.9
English 481 144.8
1200
Urdu
215.70
English
144.30
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SIMPLE BAR CHART:

The next diagram to be considered is the simpiehart.

A simple bar chart consists of horizontal or \a&atibars of equal width and lengths proportionavatues

they represent.

As the basis of comparison is one-dimensional viliths of these bars have no mathematical sigmifie
but are taken in order to make the chart look etitra.

Let us consider an example.

Suppose we have available to us information reggrihe turnover of a company for 5 years as givnethe

table below:
Years 1965 1966 1967 1968 1969
Turnover (Rupees) 35,000 42,000 43,500 48,000 08,50

In order to represent the above information inftren of a bar chart, all we have to do is to tdke year along the x-
axis and construct a scale for turnover along thgiy.

50,000

40,000

30,000

20,000

10,000

Oﬁ

1965

1966

1967 1968

1969

Next, against each year, we will draw verticalsbafrequal width and different heights in accoragawah the
turn-over figures that we have in our table.

As a result we obtain a simple and attractive diagas shown below.
When our values do not relate to time, they shbelérranged in ascending or descending order befaing.

BIVARIATE FREQUENCY TABLE

50,0001
40,0001
30,0001
20,0001
10,0001

01

1965

1966 1967 1968

1969

What we have just considered was the univariat@sin. In each of the two examples, we were dgakitth one
single variable. In the example of the first yeardents of a college, our lone variable of inteneas ‘medium of
schooling’. And in the second example, our one Isin@riable of interest was turnover. Now let ugpand the
discussion a little, and consider the bivariateation.

Virtual University of Pakistan

19




STA301 - Statistics and Probability Y

Going back to the example of the first year stuslestippose that alongwith the enquiry about the itviedof
Institution, you are also recording the sex ofghelent.

Suppose that our survey results in the followirfgrimation:

Student No. Medium Gender

OIN|O|ABD|W|N| -
‘|mic|m|mic|m|c|c
IEIEMIEIMIZIET

Now this is a bivariate situation; we have two ahtes, medium of schooling and sex of the student.

In order to summarize the above information, we @dhstruct a table containing a box head and aasushown
below:

M
Sex A
Med. L Female Total
E
Urdu
English
Total

The top row of this kind of a table is known as tiexhead and the first column of the table is knasrstub.
Next, we will count the number of students fallingeach of the following four categories:

Male student coming from an Urdu medium school.
Female student coming from an Urdu medium school.
Male student coming from an English medium school.
Female student coming from an English medium school

PwdPE

As a result, suppose we obtain the following figure

M
Sex A
Med. L Female Total
E|
Urdu 202 517 719
English 350 131 481
Total 552 648 1200

What we have just accomplished is an example @faxibte frequency table pertaining to two qualtatvariables.
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COMPONENT BAR CHAR:

Let us now consider how we will depict the abovelimation diagrammatically.
This can be accomplished by constructing the compbbar chart (also known as the subdivided bartcha shown
below:

O Urdu
800 - B English
700 1
600 1
500 1
400 1
300 1
200 1
100 1 -
0 v ' ]
Male Female

In the above figure, each bar has been dividedtimboparts. The first bar represents the total Imemof male students
whereas the second bar represents the total nushbemale students.

As far as the medium of schooling is concerned |dlver part of each bar represents the studentgngo
from English medium schools. Whereas the uppergiaach bar represents the students coming frentbu
medium schools. The advantage of this kind of grdia is that we are able to ascertain the situatidooth the
variables at a glance.
We can compare the number of male stisda the college with the number of female stsleaind at the same
time we can compare the number of English mediwmestts among the males with the number of Englistiom
students among the females.

MULTIPLE BAR CHARTS

The next diagram to be considered is the multipledharts. Let us consider an example.
Suppose we have information regarding the impaortsexports of Pakistan for the years 1970-71 tal1B¥ as shown
in the table below:

Years Imports Exports
(Crores of Rs.) (Crores of Rs.)

1970-71 370 200

1971-72 350 337

1972-73 840 855

1973-74 1438 1016

1974-75 2092 1029

Source: State Bank of Pakistan

A multiple bar chart is a very useful and effectivay of presenting this kind of information.

This kind of a chart consists of a set of groupadshthe lengths of which are proportionate to thkies of our
variables, and each of which is shaded or coloiferently in order to aid identification. With refence to the above
example, we obtain the multiple bar chart showmwel
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Multiple Bar Chart Showing
Imports & Exports
of Pakistan 1970-71 to 1974-75
This is a very good device for the comparisonnaf tifferent kinds of information.

If, in addition to information regarding importsdaexports, we also had information regarding préida¢ we could
25007
20001
15007

10001 O Imports
B Exports

5007

0
N ’ ny .

o V »
A A A A A
2 2 I 2 2

have compared them from year to year by groupieghtee bars together.
The question is, what is the basic difference betwee component bar chart and a multiple bar chart?
The component bar chart should be used when we hws#able to us information regarding totals aheirt

components.

For example, the total number of male studentsobuthich some are Urdu medium and some are English
medium. The number of Urdu medium male studentstamahumber of English medium male students adthgive
us the total number of male students.
On the contrary, in the example of exports and inspdhe imports and exports do not add up to givéhe totality of
some one thing!
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LECTURE NO. 4

In THIS Lecture, we will discuss the frequency dimition of a continuous variable & the graphieealys of
representing data pertaining to a continuous végia®. histogram, frequency polygon and frequeraye.

You will recall that in Lecture No. 1, it was manted that a continuous variable takes values awamtinuous
interval (e.g. a normal Pakistani adult male’s heigay lie anywhere between 5.25 feet and 6.5.feet)

Hence, in such a situation, the method of constrga frequency distribution is somewhat differfotn the one that
was discussed in the last lecture.

EXAMPLE:

Suppose that the Environmental Rtaie Agency of a developed country performs extentests on all new
car models in order to determine their mileagengatSuppose that the following 30 measurementslategned by
conducting such tests on a particular new car model

EPA MILEAGE RATINGS ON 30 CARS
(MILES PER GALLON)
36.3 42.1 44.9
30.1 37.5 32.9
40.5 40.0 40.2
36.2 35.6 35.9
38.5 38.8 38.6
36.3 38.4 40.5
41.0 39.0 37.0
37.0 36.7 37.1
37.1 34.8 33.9
39.9 38.1 39.8

EPA: Environmental Protection Agency

There are a few steps in the construction of afeaqy distribution for this type of a variable.

CONSTRUCTION OF A FREQUENCY DISTRIBUTION

Step-1

Identify the smallest and the largest measuremiarite data set.
In our example:

Smallest value (X0) =30.1,

Largest Value (Xm) =449,

Step-2

Find the range which is defined as the differeretevben the largest value and the smallest value
In our example:
Range =Xm - X0
=449-30.1
=14.8
Let us now look at the graphical picture of whathese just computed.
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30.1 44.9
: H : : H » R

30 35 40 45

< >
14.8

(Range)

Step-3

Decide on the number of classes into which the ded to be grouped.
(By classes, we mean small sub-intervals of thal faterval which, in this example, is 14.8 unitad.)There are no
hard and fast rules for this purpose. The decigithdepend on the size of the data. When the dagasufficiently
large, the number of classes is usually taken iwi® and 20.In this example, suppose that we edoidorm 5
classes (as there are only 30 observations).

Step-4
Divide the range by the chosen number of classesrder to obtain the approximate value of the slas
interval i.e. the width of our classes.
Class interval is usually denoted by Hence, in this example
Class interval=h =14.8/5 =2.96
Rounding the number 2.96, we obtain 3, and henctakesh = 3.
This means that our big interval will be dividedirsmall sub-intervals, each of which will be 3tarong.

Step-5

Decide the lower class limit of the lowest clashai¢ should we start from?

The answer is that we should start constructingatesses from a number equal to or slightly less tthe smallest
value in the data.

In this example, smallest value = 30.1

So we may choose the lower class limit of the Idwésss to be 30.0.

Step-6

Determine the lower class limits of the successlasses by adding h = 3 successively. Hence, waarotite following
table:

Class Lower Class Limit
Number
1 30.0
2 30.0 + 3 = 33.0
3 33.0 + 3 = 36.¢
4 36.0 + 3 =39.9
5 39.0 + 3 =42.¢

Step-7

Determine the upper class limit of every class. Gpper class limit of the highest class should cdie largest value
in the data. It should be noted that the uppersclasits will also have a difference of h betwe&erh. Hence, we
obtain the upper class limits that are visiblehi@ third column of the following table.

Class Lower Class Upper Class
Number Limit Limit
1 30.0 32.9
2 30.0+3 =33.p329+3=359
3 33.0+3 =36.p 35.9+ 3 =389
4 36.0+3 =39.0 38.9+3=41.9
5 39.0+3 =42.p 41.9+3=44.9
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Hence we obtain the following classes:

Classes
30.0-32.9
33.0-35.9
36.0 — 38.9
39.0-41.9
42.0 —44.9

The question arises: why did we not write 33 indteb32.9? Why did we not write 36 instead of 358d so on.

The reason is that if we wrotet8®3 and then 33 to 36, we would have trouble wiaélying our data into
these classes. Where should | put the value 33@I&hput it in the first class, or should | puiritthe second class? By
writing 30.0 to 32.9 and 33.0 to 35.9, we avoid tmioblem. And the point to be noted is that tles<interval is still 3,
and not 2.9 as it appears to be. This point wilbbter understood when we discuss the concepasé boundaries ...
which will come a little later in today’s lecture.

Step-8

After forming the classes, distribute the data thappropriate classes and find the frequeneach class, in this
example:

Class Tally | Frequency
30.0 - 32.9 2
33.0 - 35.9 4
36.0-38.9 M Yl |l 14
39.0-419 § Il 8
42.0 - 44.9 | 2
Total 30

This is a simple example of the frequency distidrubf a continuous or, in other words, measurahkéable.

CLASS BOUNDARIES:

The true class limits of a class are known asléss boundaries. In this example:

Class Limit Class Boundaries Frequency
30.0 — 32.9 29.95 — 32.95 2
33.0—-35.9 32.95 — 35.95 4
36.0 — 38.9 35.95 — 38.95 14
39.0-41.9 38.95 — 41.95 8
42.0 —44.9 41.95 — 44,95 2
Total 30
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It should be noted that the difference betweenuhger class boundary and the lower class boundaayy class is
equal to the class interval h = 3.

32.95 minus 29.95 is equal to 3, 35.95 minus 3B @ual to 3, and so on.

A key point in this entire discussionis that the class boundaries should be taken opéalecimal place more than the
given data. In this way, the possibility of an alvadéion falling exactly on the boundary is avoid€the observed value
will either be greater than or less than a paricioundary and hence will conveniently fall in @ppropriate
class).Next, we consider the concept of the redafiequency distribution and the percentage frequelistribution.
Next, we consider the concept of the relative festy distribution and the percentage frequencyidigton.

This concept has already been discussed when veideoed the frequency distribution of a discretealde.

Dividing each frequency of a frequency distributiby the total number of observations, we obtain thlative
frequency distribution.

Multiplying each relative frequency by 100, we abtéhe percentage of frequency distribution.

In this way, we obtain the relative frequencies thedpercentage frequencies shown below

Class Erequenc Relative %age
Limit a Y Frequency Frequency
30.0 — 32.9 2 2/30 = 0.067 6.7
33.0 — 35.9 4 4/30 = 0.133 13.3
36.0 — 38.9 14 14/30 = 0.467 4.67
39.0 —41.9 8 8/30 = 0.267 26.7
42.0 — 44 .9 2 2/30 = 0.067 6.7
30

The term'relative frequencies’ simply means that we are considering the freqasnef the various classes relative to
the total number of observations.

The advantage of constructing a relative frequetistribution is that comparison is possible betweeo sets of data
having similar classes.

For example, suppose that the Environment Prote&gency perform tests on two car models A andrig], ebtains
the frequency distributions shown below:

MILEAGE FREQUENCY
Model A Model B
30.0-32.9 2 7
33.0-35.9 4 10
36.0 — 38.9 14 16
39.0-41.9 8 9
42.0-44.9 2 8
30 50

In order to be able to compare the performancé®two car models, we construct the relative frequelistributions
in the percentage form:
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MILEAGE Model A Model B
30.0-32.9 2/30 x 100 = 6.7 7/50 x 100 = 14
33.0-35.9 4/30 x 100 = 13.3 10/50 x 100 = 20
36.0-38.9 14/30 x 100 = 46.7 16/50 x 100 = 32
39.0-41.9 8/30 x 100 = 26.7 9/50 x 100 = 18
42.0-44.9 2/30 x 100 = 6.7 8/50 x 100 = 16

From the table it is clear that whereas 6.7% ofdwes of model A fall in the mileage group 42.04th9, as many as
16% of the cars of model B fall in this group. Qthemparisons can similarly be made.

Let us now turn to the visual representation opatinuous frequency distribution. In this contexé will discuss three
different types of graphs i.e. the histogram, tlegi@iency polygon, and the frequency curve.

HISTOGRAM:

A histogram consists of a set of adjacent rectangleose bases are marked off by class boundapag &te X-axis,
and whose heights are proportional to the freqesnassociated with the respective classes.

It will be recalled that, in the last lecture, wene considering the mileage ratings of the carstthd been inspected by
the Environment Protection Agency. Our frequendye@ame out as shown below:

C_Ia_ss Class_ Frequency
Limit Boundaries
30.0-32.9 29.95 — 32.95 2
33.0-35.9 32.95 - 35.95 4
36.0 — 38.9 35.95 — 38.95 14
39.0-41.9 38.95 — 41.95 8
42.0-44.9 41.95 —44.95 2
Total 30

In accordance with the procedure that | just metity we need to take the class boundaries alonyg ¢hés
We obtain

Y
14 A
12 A
10 A

8

6 -

4 4

2 4

0 T T T T T T : x
29.95 32.95 35.95 38.95 41.95 44.95

Miles per gallon

Number of Cars
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Now, as seen
equal to 2 unit

14 ¥

RSN
1 1 1 1

o o Numbgrolc

The frequency of the second class |SM'|?-FeH %mv

-/

in the frequency table, the frequefdiie first class is 2. As such, we will draw a&teangle of height
s and obtain the following figure:

T _g )

o) o) o) o) o) o)
& & ) 3 q 3

> oV ? o

8rrectangle of height equal to 4 units agaimstsecond class,

and thus obtain the following situation:

Number of Cars

Y
14¢
12 -
10 -
8 4
6

4 4
”j
0 - : — =X

B S ) S

Miles per gallon

The frequency of the third class is 14. Hence vesvdi rectangle of height equal to 14 units agafesthird class, and
thus obtain the following picture:

Y
144
12 -
2
g 10 A
8)
5 8]
o 6
o]
E 4
>
Z 24
0 . —PX
$ &

Miles per gallon
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Continuing in this fashion, we obtain the followiatiractive diagram:

16 X
14
b2 -

=

&o -

g
6
%6 |

24 1

- ] 1]

0 T T :|><

» ) o ) \) »
& o & S S o
P> i 5 o » e
Miles per gallon
This diagram is known as the histogram, and itgee indication of the overall pattern of our freqay distribution.

FREQUENCY POLYGON:

A frequency polygon is obtained by plotting thessldrequencies against the mid-points of the ctass®d connecting
the points so obtained by straight line segmehtsur example of the EPA mileage ratings, thesdasare

Class Boundaries
29.95 — 32.95
32.95 - 35.95
35.95 - 38.95
38.95 - 41.95
41.95 — 44.95

These mid-points are denoted by X.
Now let us add two classes to my frequency taie,class in the very beginning, and one cladseatéry end.

Class Mid-Point Frequency
Boundaries X) )

26.95 — 29.95 28.45

29.95 — 32.95 31.45 2
32.95 - 35.95 34.45 4
35.95 — 38.95 37.45 14
38.95-41.95 40.45 8
41.95 — 44.95 43.45 2
44,95 — 47.95 46.45

The frequency of each of these two classes is i, asr data set, no value falls in these classes.
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Class Mid-Point | Frequency
Boundaries (X) ()

2695-29.9 2845
299-32.9 3L45
3295-35.9 345
35.9-38.% 3145 U
38.95-41.% 045
4195-44.% 4345
44.95-47.% 445

DI | oo

Now, in order to construct the frequency polygdre tnid-points of the classes are taken along thexiX-and the
frequencies along the Y-axis, as shown below:

Y
14 4
12 4

10 -

Number of Cars

2145 gp 8D o7AS 404D 34D

Miles per gallon

Next, we plot points on our graph paper accordimghe frequencies of the various classes, andtf@npoints so

obtained by stréight line segments. In this wayolin the following frequency polygon:

16

14 1

12 -

10 A
8 .
6 4
4 4
2 .
0 > X

Number of Cars

Miles per gallon
It is well-known that the term ‘polygon’ impliesraany-sided closed figure. As such, we want ourdeagy polygon
to be a closed figure. This is exactly the reastwy we added two classes to our table, each hawng fzequency.
Because of the frequency being zero, the line sagtoaches the X-axis both at the beginning anttheend, and our
figure becomes a closed figure.
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Had we not carried out this step, our graph wiialde been as follows:

16 X
14
2
&o -
g
()

£6 -
=]

Z4_
2_
0 > )

L »
Miles per gallon

And since this graph is touching the X-axis, heit@@nnot be called a frequency polygon (becaugenbt a closed
figure)!

FREQUENCY CURVE:

When the frequency polygonssnoothed we obtain what may be called the frequency curve.

In our example:

Y
16 ~

14 +
12 +
10 A

Number of Cars
oo

% b5 o 5 » © %
N N N N N N N
T S AR SN A

Miles per gallon
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LECTURE NO. 5

Today’s lecture is in continuation with the lasttlee, and today we will begin with various typédrequency curves
that are encountered in practice. Also, we wilcdss the cumulative frequency distribution and datiee frequency
polygon for a continuous variable.

FREQUENCY POLYGON:

A frequency polygon is obtained by plotting thessldrequencies against the mid-points of the ctass®d connecting
the points so obtained by straight line segmentsul example of the EPA mileage ratings, the essgere:

Class Mid-Point Frequency
Boundaries (X) Q)
26.95 — 29.95 28.45
29.95 — 32.95 31.45 2
32.95 — 35.95 34.45 4
35.95 — 38.95 37.45 14
38.95 - 41.95 40.45 8
41.95 —44.95 43.45 2
44,95 — 47.95 46.45
And our frequency polygon came out to be:
Y
164
w 144
g 12 4
© 104
o 81
S 64
£ 4]
z 2
0 » X
ﬁ?’g) ’b'\’b(p fb“éo fé\b(p @&o bibbio &"g}

Miles per gallon

Also, it was mentioned that, when the frequencygoh is smoothed, we obtain what may be called the

FREQUENCY CURVE

In our example:

Y
16 -
14 +
12 -

Number of Cars
(o))
1

Miles per gallon
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In the above figure, the dotted line representsfitaguency curve. It should be noted that it is metessary that our
frequency curve must touch all the points. The psepof the frequency curve is simply to displaydkerall pattern of

the distribution. Hence we draw the curve by tleefhand method, and hence it does not have to tdutie plotted

points. It should be realized that the frequenayeiis actually a theoretical concept.

If the class interval of a histogram is made vanal, and the number of classes is very large rélotangles of the
histogram will be narrow as shown below:

The smaller the class interval and the larger timaber of classes, the narrower the rectanglesbeilln this way, the
histogram approaches a smooth curve as shown below:

RN
-
‘A

7

In spite of the fact that the frequency curve iheoretical concept, it is useful in analyzing reakld problems. The
reason is that very close approximations to themketurves are often generated in the real wooldlsse that it is
quite valid to utilize the properties of varioupég of mathematical curves in order to aid analgéithe real-world
problem at hand.

VARIOUS TYPES OF FREQUENCY CURVES

. the symmetrical frequency curve

. the moderately skewed frequency curve
. the extremely skewed frequency curve
. the U-shaped frequency curve

Let us discuss them one by one. First of all, §irersetrical frequency curve is of the following skap

THE SYMI}/IETRIC CURVE

a
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If we place a vertical mirror in the centre of thigph, the left hand side will be the mirror image¢he right hand side.

f [
I

> X

»
L

Next, we consider the moderately skewed frequencyec We have the positively skewed curve and tgatively
skewed curve. The positively skewed curve is tingt whose right tail is longer than its left ta8, shown below

THE POSITIVELY SKEWED
CURVE

A

/N

On the other hand, the negatively skewed frequencye is the one for which the left tail is longlean the right tail.

f
A

!

Both of these that we have just considered are ratelg positively and negatively skewed.
Sometimes, we have the extreme case when we othit@iEXTREMELY skewed frequency curve. An extremely
negatively skewed curve is of the type shown below:
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THE EXTREMELY
NEGATIVELY SKEWED
(J-SHAPED) CURVE

—y

> X

This is the case when the maximum frequency ocauttse end of the frequency table.
For example, if we think of the death rates of adudles of various age groups starting from ager going up to
age 79 years, we might obtain something like this:

DEATH RATES BY AGE GROUP

No. of deaths

Age Group per thousand
20 —-29 2.1
30-39 4.3
40 — 49 5.7
50 — 59 8.9
60 — 69 12.4
70-79 16.7

This will result in a J-shaped distribution simitarthe one shown above.
Similarly, the extremely positively skewed distrilon is known as the REVERSE J-shaped distribution.

THE EXTREMELY POSITIVELY
SEEWED (REVERSE J-SHAPED)
CURVE
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A relatively LESS frequently encountered frequedisgribution is the U-shaped distribution.

= X

If we consider the example of the death rates aroofly the adult population but for the populatafrALL the age
groups, we will obtain th&J-shaped distribution.

Out of all these curves, the MOST frequently entexed frequency distribution is the moderately sé@virequency
distribution. There are thousands of natural anclasgpphenomena which yield the moderately skewreduency
distribution. Suppose that we walk into a schodll @ollect data of the weights, heights, marks, kfetlengths,
finger-lengths or any other such variable pertajrimthe children of any one class.

If we construct a frequency distribution of thigalaand draw its histogram and its frequency cunewill find that
our data will generate a moderately skewed distiobu Until now, we have discussed the various ipsshapes of
the frequency distribution of a continuous varialfiémilar shapes are possible for the frequencriligion of a

discrete variable.

VARIOUS TYPES OF DISCRETE FREQUENCY DISTRIBUTION

|. Positively Skewed Distribution

il

|

> X
7 8 9 1IC
II. Negatively Skewed Distribution
L1 L T ‘ ] >
o 1 2 3 4 5 T 8 9 10
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III. Symmetric Distribution

Ll

2 3 4 5 6 7 8 910

Let us now consider another aspect of the frequdistsibution i.e.

CUMULATIVE FREQUENCY DISTRIBUTION

As in the case of the frequency distribution ofigcokete variable, if we start adding the freques@éour frequency
table column-wise, we obtain the column of cumukafrequencies.
In our example, we obtain the cumulative frequeschown below:

CUMULATIVE FREQUENCY

DISTRIBUTION

Class Frequenc Cumulative
Boundaries q y Frequency
29.95 — 32.95 2 2
32.95 — 35,95 4 2+4=6
35.95 — 38.95 14 6+14 = 2(
38.95 — 41.95 8 20+8 = 2§
41,95 — 44 95 2 28+2 = 3(

30

In the above table, 2+4 gives 6, 6+14 gives 20,sman.
The question arises: “What is the purpose of makimgcolumn?”
You will recall that, when we were discussing theqgfiency distribution of a discrete variable, argrtipular
cumulative frequency meant that we were countirgrthmber of observations starting from the verst fimlue of X
and going up to THAT particular value of X againdtich that particular cumulative frequency wasifejl

In case of a the distribution of a continuous afale, each of these cumulative frequencies repiesea
total frequency of a frequency distribution frome tltower class boundary of the lowest class to tRPER class
boundary of THAT class whose cumulative frequeneyare considering.

In the above table, the total number of cars shgwnileage less than 35.95 miles per gallon ihé, t
total number of car showing mileage less than 4inBé&s per gallon is 28, etc.

CUMULATIVE FREQUENCY DISTRIBUTION

Class Frequency Cumulative
Boundaries Frequency
29.95 — 32.95 2 2
32.95 — 35.95 4 2+4 =6
35.95 — 38.95 14 6+14 = 2(
38.95 — 41.95 8 20+8 = 2§
41.95 — 44.95 2 28+2 = 3(

30

Such a cumulative frequency distribution is caietless thari type of a cumulative frequency distribution. Témaph
of a cumulative frequency distribution is called a
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CUMULATIVE FREQUENCY POLYGON or OGIVE

A “less than” type ogive is obtained by marking tfe upper class boundaries of the various
classes along the X-axis and the cumulative fregjesralong the y-axis, as shown below:

cf
304
25
20
15
10 4
5_

0 o &

<4
4

4

2
¢
L 2
v

o o ) o
: S S S 3 S
QR s P o > N

Upper Class Boundaries

The cumulative frequencies are plotted on the gmagper against the upper class boundaries, anghdims so
obtained are joined by means of straight line segsne
Hence we obtain the cumulative frequency polygawshbelow:

Cumulative Frequency Polygoror OGIVE

35 4
30 1
25 1
20 1
15 ~
10 ~
5 -

It should be noted that this graph is touching Xh&xis on the left-hand side. This is achieved bRPING a class
having zero frequency in the beginning of our freey distribution, as shown below:

Class Erequenc Cumulative
Boundaries a Yy Frequency

26.95 — 29.95
29.95 — 32.95 o+2 =2
32.95 — 35.95 2+4 = 6

(@) (@]
2
A

35.95 — 38.95 14 6+14 = 20
8
2

38.95 — 41.95 20+8 = 28
41.95 — 44.95 28+2 = 30

30

Since the frequency of the first class is zero,cheiile cumulative frequency of the first class walio be zero, and
hence, automatically, the cumulative frequency goilywill touch the X-Axis from the left hand sidéwe want our
cumulative frequency polygon to be closed from filglt-hand side also, we can achieve this by caimgcthe last
point on our graph paper with the X-axis by meafe eertical line, as shown below:
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OGIVE
35 -
30 A
25
20
15
10
5 .
0l—e
'19%6 fﬁ/& %‘9& qu’éo &\/q(o v“cgo

In the example of EPA mileage ratings, all the datlues were correct to one decimal place. Lehas consider
another example:

EXAMPLE:
For a sample of 40 pizza products, the followintadapresent cost
of a slice in dollars (S Cost).

PRODUCT S cost
Pizza Hut Hand Tossed 1.51
Domino’s Deep Dish 1.53
Pizza Hut Pan Pizza 1.51
Domino’s Hand Tossed 1.90
Little Caesars Pan! Pizza! 1.23
PRODUCT S Cost
Boboli crust with Boboli sauce 1.00
Jack’'s Super Cheese 0.69
Pappalo’'s Three Cheese 0.75
Tombstone Original Extra Cheese 0.81
Master Choice Gourmet Four Cheese 0.90
Celeste Pizza For One 0.92
Totino’s Party 0.64
The New Weight Watchers Extra Cheese 1.54
Jeno’s Crisp’N Tasty 0.72
Stouffer’'s French Bread 2-Cheese 1.15
PRODUCT S Cost
Ellio’s 9-slice 0.52
Kroger 0.72
Healthy Choice French Bread 1.50
Lean Cuisine French Bread 1.49
DiGiorno Rising Crust 0.87
Tombstone Special Order 0.81
Pappalo’s 0.73
Jack’s New More Cheese! 0.64
Tombstone Original 0.77
Red Baron Premium 0.80
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PRODUCT Scost
Tony's Italian Style Pastry Cruse 0.83
Red Baron Deep Dish Singles 1.13
Totino's Party 0.62
The New Weight Watchers 1.52
Jeno's Crisp'N Tasty 0.71
Stouffer's French Bread 1.14
Celeste Pizza For One 1.11
Tombstone For One French Bread 111
Healthy Choice French Bread 1.46
Lean Cuisine French Bread 171

PRODUCT Scost

Little Caesars Pizza! Pizza! 1.28
Pizza Hut Stuffed Crust 1.23
DiGiorno Rising Crust Four Cheese 0.90
Tombstone Speical Order Four Cheese 0.8"
Red Baron Premium 4-Cheese 0.80

Source: “Pizza,” Copyright 1997 by Consumers Uniorof United States, Inc., Yonkers, N.Y. 10703.

Example taken from

“Business Statistics — A First Course” by Mark LerBnson & David M.
Levine (International Edition), Prentice-Hall Inteational, Inc.,
Copyright © 1998.

In order to construct the frequency distributiortteé above data, the first thing to note is thathis example, all our
data values are correct to two decimal places.ukf,swe should construct the class limits correcT¥WO decimal
places, and the class boundaries correct to tleeiend! places.

As in the last example, first of all, let us fitte maximum and the minimum values in our
data, and compute the RANGE.
Minimum value X0 = 0.52
Maximum value Xm = 1.90
Hence:

Range =1.90-0.52=1.38

Desired number of classes = 8
Hence:

Class interval h = RANGE/No. of classes

=1.38/8=0.17256.20

Lower limit of the first class = 0.51
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Hence, our successive class limits come out to be:

Class Limits
0.51-0.70
0.71 -0.90
0.91-1.10
1.11-1.30
1.31-1.50
1.51-1.70
1.71-1.90

Stretching the class limits to the left and tofiight, we obtain class boundaries as shown below:

Class Limits Class Boundaries
0.51-0.70 0.505 -0.705
0.71-0.90 0.705 - 0.905
0.91-1.10 0.905 - 1.105
1.11-1.30 1.105 - 1.305
1.31-1.50 1.305 - 1.505
151-1.70 1.505-1.705
1.71-1.90 1.705 - 1.905

By tallying the data-values in the appropriate s#ss we will obtain a frequency distribution simila the one that we
obtained in the examples of the EPA mileage ratings

By constructing the histogram of this data-set, wi# be able to decide whether our distribution sSgmmetric,
positively skewed or negatively skewed. This maapk be attempted as an exercise.
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LECTURE NO. 6

This plot was introduced by the famous statistidiahn Tukey in 1977A frequency table has the disadvantage that the
identity of individual observations is lost in gmog process. To overcome this drawback, John TUul&Y7)
introduced this particular techniguenpwn as the Stem-and-Leaf Display).

This technique offers a quick and novel way fondtaneously sorting and displaying data sets wkearh
number in the data set is divided into two partStem and a Leaf.
A stem is the leading digit(s) of each number andsied in sorting, while a leaf is the rest ofihenber or the trailing
digit(s) and shown in display. A vertical line segtas the leaf (or leaves) from the stem.

For example, the number 243 could be split in two ways:

Leading
Digit

Trailing
Digits

OR

Leading
Digit

Trailing
Digit

2

43

24

3

Stem

Leaf

Stem

Leaf

How do we construct a stem and leaf display wherhasxe a whole set of values? This is explained by of the
following example:

EXAMPLE:

The ages of 30 patients admitted to a certain badsghiring a particular week were as follows:
48, 31, 54, 37, 18, 64, 61, 43, 40,5M,,12, 52, 65, 53, 42, 39, 62, 74, 48, 29, 67480 68, 35, 57, 26, 27, 58.
Construct a stem-and-leaf display from the datalishthe data in an array.
A scan of the data indicates that the observatiange (in age) from 12 to 74. We use the firsti¢ading)
digit as the stem and the second (or trailing)tdigi the leaf. The first observation is 48, whiels la stem of 4 and a
leaf of 8, the second a stem of 3 and a leaf etd.,Placing the leaves in the order in which tA&yPEAR in the data,
we get the stem-and-leaf display as shown below:

Stem Leaf
(Leading Digit) (Trailing Digit)
1 82
2 967
3 17905
4 830289
5 412378
6 415278
7 14

But it is a common practice to ARRANGE the trailidigits in each row from smallest to highest. Iis tbxample, in
order to obtain an array, we associate the leavesder of size with the stems as shown below:

DATA IN THE FORM OF AN ARRAY _(in ascending order):

12, 18, 26, 27, 29, 30, 31, 35, 37, 39, 40, 4248348, 49, 51, 52, 53, 54, 57, 58, 61, 62,664 67, 68, 71, 74.
Hence we obtain the stem and leaf plot shown below:
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STEM AND LEAF DISPLAY

Stem

(Leading Digit)

Leaf
(Trailing Digit)

hWW|O|©

gh|o|N

N[N (0O

mimnin
WW

N|{O[OAWIN|F

R(F[F|O|O|O(N
DINININ|R N0

The stem-and-leaf table provides a useful desoripdf the data set and, if we so desire, can ehsilgonverted to a
frequency table. In this example, the frequencyhefclass 10-19 is 2, the frequency of the cl&22is 3, and the

frequency of the class 30-39 is 5, and so on.

STEM AND LEAF DISPLAY

Stem
(Leading Digit)

Leaf
(Trailing Digit)

28

679

01579

023889

123478

124578

N[OOI~ [WIN|F

14

Hence, this stem and leaf plot conveniently corsviitio the frequency distribution shown below:

FREQUENCY DISTRIBUTION

Class Class Tally Frequency
Limits | Boundaries| Marks

10-19| 9.5-19.5 /l 2
20—-29| 19.5-29.% 1 3
30-39| 29.5-39.% /I 5

40 — 49| 39.5-49.5| HI 6
50-59| 49.5-59.% —lI 6
60-69| 59.5-69.% 6
70-79| 69.5-79.5% I/ 2
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Converting this frequenayistribution into a histogram, we obtain:

7 nY
6 -
B -
c
Q
& i
g
5
2 i
1 4
O -
0% P P @R P2 2% P 9P
If we rotate this histogram by 90 degrees, We obliain:
T T T T o X
0 6 8

Nur%ber of Patieﬁts
Let us re-consider the stem and leaf plot that btained a short while ago.

STEM AND LEAF DISPLAY
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Stem Leaf
Leading Dig) (Taing Digd)

7

§

5

4

3

2

1

It is noteworthy that the shape of the stem and désplay is exactly like the shape of our histagreLet us now
consider another example.

EXAMPLE

Construct a stem-and-leaf display for the datme®n annual death rates per thousand at ages @i0esbbelow:
75,82,7.2,8.9,7.8,54,9.4,9.9,6 10.9, 10.8,9.7, 11.6, 12.6, 5.0, 10.2, 9.2, 12.0, 9.3, 7.3, 8.4, 10.3, 10.1, 10.0,
11.1, 6.5, 12.5, 7.8, 6.5, 8.7, 9.3, 12.4, 10.6, 9.7, 9.3, 6.2, 10.3, 6.6, 7.4, 8.6, 7.7, 9.4, 12.8, 8.7, 5.5, 8.6, 9.6,
11.9,10.4,7.8,7.6, 12.1, 4.6, 14.0, 8.1, 11046,111.6, 10.4, 8.1, 4.6, 6.6, 12.8, 6.8, 7.1, 8.8, 8.8, 10.7, 10.8, 6.0,
7.9,7.3,9.3,9.3,89,10.1, 3.9,6.0,6.9,9.8,9.4,11.4, 10.9

Using the decimal part in each number as the ledfthe rest of the digits as the stem, we get thered
stem-and-leaf display shown below:

STEM AND LEAF DISPLAY

Stem Leaf

3 19

4 |66

5 045

6 100225566689

7 |113334456778889
8 [1124667788899

9 [012333344467799
10 1 011233446678899
11 | 144669

12 10145688

14 10

EXERCISE

e The above data may be converted into a stem aridpleta(so as to verify that the one shown above is
correct).
e Various variations of the stem and leaf display reystudied on your own.
The next concept that we are going to considenescbncept of the central tendency of a data-sehi$ context, the
first thing to note is that in any data-based study data is always going to be variable, and égficst of all, we will
need to describe the data that is available to us.
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DESCRIPTION OF VARIABLE DATA:

Regarding any statistical enquiry, primarily we chesme means of describing the situation with
which we are confronted. A concise numerical desiom is often preferable to a lengthy tabulatiand if this form of
description also enables us to form a mental intdglee data and interpret its significance, so mihehbetter.

MEASURES OF CENTRAL TENDENCY
AND
MEASURES OF DISPERSION

e Averages enable us to measure the central tendency of
variable data

e Measures of dispersion enable us to measure its
variability.

AVERAGES (L.E. MEASURES OF CENTRAL TENDENCY)

An average is a single value which is intendedefresent a set of data or a distribution as a wittole more or less
CENTRAL value ROUND which the observations in tle¢ af data or distribution usually tend to cluster.

As a measure of central tendency (i.e. an aveliag&ates the location or general position of tigribution on the X-
axis, it is also known as a measure of locatiopasition.

Let us consider an example: Suppose that we haviellowing two frequency distributions:

EXAMPLE:

Looking at these two frequency distributions, wewdtl ask ourselves what exactly is the distinguigheature?
If we draw the frequency polygon of the two freqesedistributions, we obtain

35
30
25
20
15
10

5

0

== Suburb A
== Suburb B

4 5 6 7 8 9 10

Inspection of these frequency polygons shows tiey have exactly the same shape. It is their posiglative to the
horizontal axis (X-axis) which distinguishes them.
If we compute the mean number of rooms per housedoh of the two suburbs, we will find that therage number
of rooms per house in A is 6.67 while in B it i§7.
This difference of 1 is equivalent to the differenn position of the two frequency polygons.

Our interpretation of the above situatieould be that there are LARGER houses in subuthaB in suburb A,
to the extent that there are on theerage.

VARIOUS TYPES OF AVERAGES:

There are several types of averages each of whiska huse in specifically defined circumstances.
The most common types of averages are:

*  The arithmetic mean,

¢ The geometric mean,
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¢ The harmonic mean
¢  The median, and
¢ The mode

The Arithmetic, Geometric and Harmonic meanare averages that are mathematical in character,gave an
indication of the magnitude of the observed values.

The Median indicates the middle position while the mode pdesi information about the most frequent value @ th
distribution or the set of data. THE MODE:

TheModeis defined as that value which occurs most fretjy@ma set of data i.e. it indicates the most own result.

EXAMPLE:
Suppose that the marks of eight students in acpdati test are as follows:
2,7,9,5,8,9, 20

Obviously, the most common mark is 9. In other vgpidode = 9.

MODE IN CASE OF RAW DATA PERTAINING TO A CONTINUOUS VARIABLE

In case of a set of values (pertaining to a cootiswariable) that have not been grouped intoguémacy distribution
(i.e. in case of raw data pertaining to a contirsugariable), the mode is obtained by counting tmlmer of times each
value occurs.

EXAMPLE:

Suppose that the government of a country colledtgd regarding the percentages of revenues spaResearch and
Development by 49 different companies, and obtathedollowing figures:

Percentage of RevenugmeBt on Research and Development

Cor;pan Percentagd Cor;pan Percentage
1 13.5 14 9.5
2 8.4 15 8.1
3 10.5 16 13.5
4 9.0 17 9.9
5 9.2 18 6.9
6 9.7 19 7.5
7 6.6 20 11.1
) 10.6 21 8.2
9 10.1 22 8.0
10 7.1 23 7.7
11 8.0 24 7.4
12 7.9 25 6.5
13 6.8 26 9.5

Cor;pan Percentagq Cor;\pan Percentage
27 8.2 39 6.5
28 6.9 40 7.5
29 7.2 41 r1
30 8.2 42 13.2
31 9.6 43 l.7
32 7.2 a4 .9
33 8.8 45 5.2
34 11.3 46 5.6
35 8.5 47 11.7
36 9.4 48 6.0
37 10.5 49 7.8
38 6.9
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We can represent this data by means of a plofsteatled dot plot.
DOT PLOT:

The horizontal axis of a dot plohtains a scale for the quantitative variable thatwant to represent. The
numerical value of each measurement in the datésdetated on the horizontal scale by a dot. WHata values
repeat, the dots are placed above one anotherifgarpile at that particular numerical location.

In this example

Dot Plot
=TT Tr--=-"-" | B | l Ei T=-~-==" I 'm:l
6 7.5 9 10.5 12 13.5

The above material bas been takes from

“Statichcs fhr Business and Boopopgeos ™ by James T AeClave, P Gaorge Bensor and Tervy
Sircich (Seventh Bdition), © I 008 Prentice-Hal kitprreational, Inc.

As is obvious from the above diagram, the valued®®urs 3 times whereas all the other values acerdng either
once or twice.
Hence the modal value is 6.9.

[ ] o000 00 0O [ ] [ ] [ ]
[ J o oo 00 00 00 G0 C00000 00 © © O 0000 © ©° [ J oo [ J o ©o
- - bl - - - T - - - == - - - T - - - - - - - b | -R&D
6 7.5 9 10.5 12 13.5
Dot Plot
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Also, this dot plot shows that
. almost all of the R&D percentages are falling etw 6% and 12%,
. most of the percentages are falling between 78086.

THE MODE IN CASE OF A DISCRETE FREQUENCY DISTRIBUTI ON:

In case of a discrete frequency distribution, ideation of the mode is immediate; one simply ntthat value which
has the highest frequency.

EXAMPLE :

An airline found the following numbers of passengs in fifty flights of a forty-seated plane

No. of Passengers No. of Flights
X
28
33
34
35
36
37
38
39
40

Total 50

mg'a‘\lmwmn—\p'“

Highest Frequency fm = 13

Occurs against the X value 39

Hence: Mode = x= 39

The mode is obviously 39 passengers and the comglamyld be quite satisfied that a 40 seater isctveect-size
aircraft for this particular route.

THE MODE IN CASE OF THE FREQUENCY DISTRIBUTION OF A CONTINUOUS VARIABLE

In case of grouped data, the modal group is eesilggnizable (the one that has the highest fregienc
At what point within the modal group does the mbee
The answer is contained in the following formula:

Mode:
X=+—m L _xh
(fm_f]) +(fm_fz)
Where
| = lower class boundary of the modal class,
fm = frequency of the modal class,
fi = frequency of the class precedihg
modal class
fs = frequency of the class followirgodal
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class

h = length of class interval of the modal class

Going back to the example of EPA mileage ratings have:

EPA MILEAGE RATINGS
Mileage Class No. of
Rating | Boundaries | Cars

300-32929.95-329§ 2
330-3593295-35.95 4=f
36.0-38.9 35.95-38.95 14 5f
39.0-41938.95-4195 8=f
420-44.94195-4495 2

It is evident that the third class is the modaéslarhe mode lies somewhere between 35.95 and.38.95
In order to apply the formula for the mode, we rtbgg fm = 14, f1 = 4 and f2 = 8.
Hence we obtain:

X = 35 95 + 14 - 4 x 3
s - 4)+ (14 -8)
3595 + 10
10 + 6
= 35 95 + 1.875
= 37 .82¢F

Let us now perceive the mode by considering ttamlycal representation of our frequency distriutiYou will
recall that, for the example of EPA Mileage Ratirthe histogram was as shown below:

Y
16 4
14 1
0 121
S 10 -
5 g
g

£ 67
> 4
2 4
0 4

o) o) o) o) o) o)

Oy Oy ) ) ) )

(LQ¢ (bfl/‘ (bc:¢ (b%‘ b‘x‘ b‘b‘.

Miles per gallon
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The frequency polygon of the same distribution was:
Y
164

14 1

12 A
10 A

Number of Cars
(00}

N N N N N
I N P Q’\‘ © el o

s
kO
kO

Miles per gallon

And the frequency curve was as indicated by th&eddine in the following figure:

16 ¥

14

Miles per gallon

Virtual University of Pakistan 51



STA301 - Statistics and Probability Y

In this example, the mode is 37.825, and if weti®this value on the X-axis, we obtain the follogvjicture:

16 Y
14 1

&2 1
%o

Miles per gallon
X =37.825

Since, in most of the situations the mode existsesehere in the middle of our data-values, hengethought of as a
measure of central tendency.
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LECTURE NO. 7
In general, it was noted that, for most of the fiemacy distributions, the mode lies somewhere inntigdle of our
frequency distribution, and hence is eligible tach#ed a measure of central tendency.
The mode has some very desirable properties.

DESIRABLE PROPERTIES OF THE MODE:

e The mode is easily understood and easily ascedamease of a discrete frequency distribution.

e ltis not affected by a few very high or low values
The question arises, “When should we use the mod&®@” answer to this question is that the mode valaable
concept in certain situations such as the one itestbelow:

Suppose the manager of a men'’s clothing storekisdaabout the average size of hats sold. He wolbably
think not of the arithmetic or geometric mean saeindeed the median size. Instead, he will itiledllihood quote that
particular size which is solehost often This average is of far more use to him as a basman than the arithmetic
mean, geometric mean or the median. The modabs$iak clothing is the size which the businessmarsnstock in the
greatest quantity and variety in comparison witheotsizes. Indeed, in most inventory (stock leyetjblems, one
needs the mode more often than any other measwenofal tendency. It should be noted that in seiu&tions there
may be no mode in a simple series where no valoersenore than once.

On the other hand, sometimes a frequency distobwaontains two modes in which case it is called
a bi-modal distribution as shown below:

THE BI-MODAL FREQUENCY DISTRIBUTION

X

0

The next measure of central tendency to be disdusgbe arithmetic mean.

THE ARITHMETIC MEAN

The arithmetic mean is the statistician’s termvidrat the layman knows as the average. It can hagthioof as that
value of the variable series whichrismericallyMOST representative of the whole series. Certaittlis is the most
widely used average in statistics. Easiest In aidiit is probably the to calculate.

Its formal definition is:

“The arithmetic mean or simply the mean is a vadbéained by dividing the sum of all the observagidoy their
number.”
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X Sum of all the observations
= Number of the observations
n

2 X,
X = _i=1
n
Where n represents the number of observationsisdmple that has been the ith observation inatmle (i = 1, 2, 3,

..., n), and represents the mean of the sample.
For simplicity, the above formula can be writen

Y X
X = &
n
In other words, it is not necessary to insert titessript ‘i’.)

EXAMPLE:

Information regarding the receipts of a news af@nseven days of a particular week are given below

Day Receipt of News Agenl
Monday £9.90
Tuesday £7.75
Wednesday £ 19.50
Thursday £ 32.75
Friday £63.75
Saturday £ 75.50
Sunday £50.70
Week Total £ 259.85

Mean sales per day in this week:
= £ 259.85/7 = £ 37.12 (To the nearest pgnny

INTERPRETATION:

The mean, £ 37.12, represents the amount (in posteding) that would have been obtained on eaghifdhe same
amount were to be obtained on each day. The abampme pertained to the computation of the aritlicnetean in
case of ungrouped data i.e. raw data.

Let us now consider the case of datahhatbeen grouped into a frequency distribution. Wegta pertaining to
a continuous variable has been grouped into a émgudistribution, the frequency distribution isedgo calculate the
approximate values of descriptive measures --hasdentity of the observations is lost.
To calculate the approximate value of the meanpbservations in each class are assumed to beadkewntith the class
midpoint Xi.
The mid-point of every class is known as its classk. In other words, the midpoint of a class ‘ngithat class. As
was just mentioned, the observations in each @essassumed to be identical with the midpointthe. class-mark
(This is based on the assumption that the obsenstn the group are evenly scattered betweemthextremes of the
class interval).
As was just mentioned, the observations in eag$schre assumed to be identical with the midpanthie class-mark
(This is based on the assumption that the obsenstn the group are evenly scattered betweentbextremes of the
class interval).
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FREQUENCY DISTRIBUTION

Mid Point | Frequency
X f
X1 fl
XZ f2
X3 f3
Xk fic

In case of a frequency distribution, the arithmetiean is defined as:
ARITHMETIC MEAN

k k
DX 26X
Vv — i=1 — i=1
X =1L ==

21

i=1
For simplicity, the above formula can be written as

Y — fo - ZfX (The subscript ‘i’ can be dropped.)

_Zf n

Let us understand this point with the help of aameple:
Going back to the example of EPA mileage ratinigat te dealt with when discussing the formatioa éfequency
distribution. The frequency distribution that weaihed was:

EPA MILEAGE RATINGS OF 30 CARS OF A CERTAIN MODEL

Class Frequency

(Mileage Rating)[ (No. of Cars)
30.0-32.9 2
33.0-359 4
36.0-38.9 14
39.0-419 8
42.0-44.9 2
Total 30

The first step is to compute the mid-point of evelgss.
(You will recall that the concept of the mid-pohds already been discussed in an earlier lecture.)

CLASS-MARK (MID-POINT):

The mid-point of each class is obtained by addiegsum of the two limits of the class and dividing?2.
Hence, in this example, our mid-points are compiretis manner:

30.0 plus 32.9 divided by 2 is equal to 31.45,

33.0 plus 35.9 divided by 2 is equal to 34.45,

And so on.
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Class Class-mark
(Mileage Rating) (Midpoint)
X
30.0 — 32.9 31.45
33.0—35.9 34.45
36.0 — 38.9 37.45
39.0-41.9 40.45
42.0 —44.9 43.45

In order to compute the arithmetic mean, we fiestdhto construct the column of fX, as shown below:

Class-mark Frequency
(Midpoint) f X
X
31.45 2 62.9
34.45 4 137.8
37.45 14 524.3
40.45 8 323.6
43.45 2 86.9
30 1135.5
Applying the formula
3 X
X = &=——,
> f
We obtain
X = 11355 =37.85

INTERPRETATION:

The average mileage rating of the 30 cars testethdyEnvironmental Protection Agency is 37.85 -tlom average,
these cars run 37.85 miles per gallon. An importamtcept to be discussed at this point is the qunoegrouping
error.

GROUPING ERROR:

“Grouping error” refers to the error that is intumetd by the assumption that all the values failing class are equal to
the mid-point of the class interval. In realityjsthighly improbable to have a class for whichtladl values lying in that
class are equal to the mid-point of that classs Thivhy the mean that we calculate from a frequelstribution does
not give exactly the same answer as what we weetléhg computing the mean of our raw data.

As indicated earlier, a frequency distribution ised to calculate the approximate values of varidescriptive
measures.(The word ‘approximate’ is being used lmzaf the grouping error that was just discussEuig grouping
error arises in the computation of many descriptiveasures such as the geometric mean, harmonic, mesan
deviation and standard deviation. But, experiera $hown that in the calculation of the arithmei&an, this error is
usually small and never serious. Only a slightediéhce occurs between the true answer that we vgetlifom the raw
data, and the answer that we get from the datehtisabeen grouped in the form of a frequency distion.

In this example, if we calculate the arithmetic méaectly from the 30 EPA mileage ratings, we afta

Arithmetic mean computed from raw data of the EPfeage ratings:

363+ 30L+....+ 3B+-3B
3C

X=

11347
30

= 3782
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The difference between the true value of i.e. 3A8d the value obtained from the frequency digtidin i.e. 37.85 is
indeed very slight. The arithmetic mean is pred@mntly used as a measure of central tendency.

The question is, “Why is it that the arithmetic mésknown as a measure of central tendency?”

The answer to this question is that we have jutiiobd i.e. 37.85 falls more or less in the ceofreur frequency
distribution.

Number of Cars

\2) \2) \a} \a} \a} \2) \2)
X ™ W W W~ X X
D S Y Y W S S

Miles per gallon

Mean = 37.85

As indicated earlier, the arithmetic mean is preamily used as a measure of central tendency.
It has many desirable properties:

DESIRABLE PROPERTIES OF THE ARITHMETIC MEAN

e Best understood average in statistics.
* Relatively easy to calculate
e Takes into account every value in the series.

But there is one limitation to the use of the amighic mean:

As we are aware, every value in a data-set is declun the calculation of the mean, whether thee/dle high or low.
Where there are a few very high or very low valinethe series, their effect can bediag the arithmetic mean towards
them. This may make the mean unrepresentative.

EXAMPLE:

Example of the Case Where the Arithmetic Meands &Proper Representative of the Data:
Suppose one walks down the main street of a latgeentre and counts the number of floors in dagitding.
Suppose, the following answers are obtained:
5,4,3,4,5,4,3,4,5, 20, 5, 6, 32, 8, 27
The mean number of floors is 9 even though 12 bubmf the buildings have 6 floors or less.
The three skyscraper blocks are having a disprigmarte effect on the arithmetic mean (Some otheramge in this
case would be more representative). The concepiviagust considered was the concept of the simptametic mean.
Let us now discuss the concept of the weightetimetic mean.
Consider the following example:

EXAMPLE:
Suppose that in a particular high school, theee ar
100 - freshmen
80 - sophomores
70 - juniors
50 - seniors

And suppose that on a given day, 15% of freshm@npbsophomores, 10% of juniors, 2% of seniorsadsent.
The problem is that: What percentage of studerdbsent for the school as a whole on that particlds?

Now a student is likely to attempt to find the apsWwy adding the percentages and dividing by 4

ie.

15+5+10+2 _32_
4 4

8

Virtual University of Pakistan 57



STA301 - Statistics and Probability Y

But the fact of the matter is that the above caloih gives a wrong answer. In order to figure why this is a wrong
calculation, consider the following: As we haveeally noted, 15% of the freshmen are absent orp#hntgcular day.
Since, in all, there are 100 freshmen in the schumice the total number of freshmen who are alisafto 15.

But as far as the sophomores are concerned, tddlentanber of them in the school is 80, and if 526 o
them are absent on this particular day, this méaatshe total number of sophomores who are alisemtly 4.
Proceeding in this manner, we obtain the followtimigje.

Number of Students in thg Number of Students who are
Category of Student
school absent

Freshman 100 15
Sophomore 80 4
Junior 70 7
Senior 50 1

TOTAL 300 27

Dividing the total number of students who are abd®nthe total number of students enrolled in tobosl, and
multiplying by 100, we obtain:

Exloo =9
30C

Thus its very clear that previous result was notemi. This situation leads us to a very importagervation, i.e. here
our figures pertaining to absenteeism in variodsgiaies of students cannot be regarded as hagumj @eightage.

When we have such a situation, the concept of “megj applies i.e. every data value in the dataisetssigned a
certain weight according to a suitable criteriamthis way, we will have a weighted series of datiead of an un-
weighted one. In this example, the number of sttedenrolled in each category acts as the weightiemumber of
absences pertaining to that category i.e.

Number of students
Percentage of ;
enrolled in the
Students who are WiX;
Category of Studert absent school (Weighted X)
X (Weights) 9
| Wi

Freshman 15 100 100x 15 = 1500

Sophomore 5 80 80x 5 =400

Junior 10 70 70x 10 =700

Senior 2 50 50x 2 =100

Total 2W; =300 >W;X; = 2700

The formula for the weighted arithmetic mean is:

WEIGHTED MEAN

% =2
2W

And, in this example, the weighted mean is equal to
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Xw - 2 WiX;
2 W

_ 2700
300

Thus we note that, in this ex§ngp|e, the weightedmmgelds exactly the same as the answer that veénal earlier.
As obvious, the weighing process leads us to eecbanswer under the situation where we have tthatia
cannot be regarded as being such that each vabuédgbe given equal weightage.
An important point to note here is tbaterion for assigning weights. Weights can be assignea mumber of ways
depending on the situation and the problem domain.
The next measure of central tendency that we vatiubs is the median.
Let us understand this concept with the help aféxample.
Let us return to the problem of the ‘average’ numtdefloors in the buildings at the centre of aychiVe saw that the
arithmetic mean was distorted towards the few exdfg high values in this series and became unreptatve.
We could more appropriately and easily employrtieglian as the ‘average’ in these circumstances.

MEDIAN
The median is the middle value of the series whervariable values are placed in order of magnitude

The median is defined as a “value which dividestads data into two halves, one half comprisingobervations
greater than and the other half smaller than itreMwecisely, the median is a value at or belowcwtti0% of the data
lie.”

The median value can be ascertained by inspeatiomainy series. For instance, in this very exantpke data that we
obtained was:

EXAMPLE-1

The average number of floors in the buildings atdbntre of a city:
5,4,3,4,5,4,3,4,5, 20, 5, 6, 32, 8, 27

Arranging these values in ascending order, weilmbta
3,3,4,4,4,4,5,5,5,5, 6, 8, 20, 27, 32
Picking up the middlealue, we obtain the median equal to 5.

INTERPRETATION

The median number of floors is 5. Out of those WL8dings, 7 have unto 5 floors and 7 have 5 flomrsnore. We
noticed earlier that the arithmetic mean was distbtoward the few extremely high values in théeseand hence
became unrepresentative. The median = 5 is much mpresentative of this series.

Height of buildings (number of floors)

3

3

4

4 7 lower
4

5

5

5 = median height
5

5

6

8 7 higher
20

27

32
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EXAMPLE 2

Retail price of motor-car (£)
(several makes and sizes)

415
480
525
608

719 = median price
1,090
2,059
4,000
6,000
A slight complication arises when there are evemimers of observations in the series, for now tleeestwo middle

values.
The expedient of taking the arithmetic mean oftthe is adopted as explained below:

4 above

4 above

EXAMPLE-3

Number of passengers travelling on a
bus at six Different times during the day
4
9
14
18
23
47

= median value

+
Median :%3: 16 passengers

EXAMPLE -4:

The number of passengers traveling on a bus diféecent times during a day is as follows:
5, 14, 47, 34, 18, 23
Find the median.

Solution:

Arranging the values in ascending order, we obtain

5, 14, 18, 23, 34, 47

As before, a slight complication has arisen becafiskee fact that there are even numbers of obtiensin the series
and, as such, there are two middle values. As bgfee take the arithmetic mean of the two middlees

Hence we obtain:

Median:
=~ +
% = 18 + 23 -

2

20.

A very important point to be noted here is thatmust arrange the data in ascending order be&aeching for the two
middle values. All the above examples pertainedodata. Let us now consider the case of groupéa d

We begin by discussing the case of discrete datapgd into a frequency table.

As stated earlier, a discrete frequency distribui®ono more than a concise representation of plsiseries pertaining
to a discrete variable, so that the same appraoatiesone discussed just now would seem relevant.
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EXAMPLE OF A DISCRETE FREQUENCY DISTRIBUTION

Comprehensive School

Number of pupils per class Number of Classes
23 1
24
25
26
27
28
29
30
31

@\ngootomwn—\o

In order to locate the middle value, the best théng first of all construct a column of cumulaifrequencies:

Comprehensive School

Number of Number of Cumulative
pupils per class  Classes Frequency

X f cf
23 1 1
24 0 1
25 1 2
26 3 5
27 6 11
28 9 20
29 8 28
30 10 38
31 7 45
45

In this school, there are 45 classes in all, st Werequire as the median that class-size belowhwthere are 22
classes and above which also there are 22 classes.

In other words, we must find the 23rd class in etered list. We could simply count down noticingttthere is 1 class
of 23 children, 2 classes with up to 25 childrec)dsses with up to 26 children. Proceeding inttésiner, we find that
20 classes contain up to 28 children whereas &&eb contain up to 29 children. This means tea23d class --- the
one that we are looking for --- is the one whichtains exactly 29 children.

Comprehensive School

Number of Number of Cumulative
pupils per class  Classes Frequency

X f cf
23 1 1
24 0 1
25 1 2
26 3 5
27 6 11
28 9 20
29 8 28
30 10 38
31 7 45
45

Median number of pupils per class:
X=29

This means that 29 is the middle size of the clmssther words, 22 classes are such which cor@iar less than 29
children, and 22 classes are such which contaior 28ore than 29 children.
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LECTURE NO. 8

e Median in case of a frequency distribution of atoarous variable
e Median in case of an open-ended frequency distabut

. Empirical relation between the mean, median andrtbde

*  Quantiles (quartiles, deciles & percentiles)

e Graphic location of quantiles.

MEDIAN IN CASE OF A FREQUENCY DISTRIBUTION OF A CON TINUOUS VARIABLE:

In case of a frequency distribution, the mediagiven by the formula

5(-:| +h(n_ J
fl2
Where

| =lower class boundary of the median class (hat tlass for which the cumulative frequency is jogexcess of n/2).
h=class interval size of the median class

f =frequency of the median class

n=f (the total number of observations)

¢ =cumulative frequency of the class precedingtledian class

Note:
This formula is based on the assumption that tiseations in each class are evenly distributedidest the two class
limits.

EXAMPLE:

Going back to the example of the EPA mileage ratimge have

Mileage '\(I)?' Class Cumulative
Rating cars Boundaries| Frequency

30.0-32.9 2 |29.95-32.9% 2
33.0-359 4 |32.95-35.9% 6
36.0-38.9 14 | 35.95—-38.9p 20
39.0-41.9 8 |38.95-41.9% 28
42.0—-44.9 2 |41.95-44.9% 30

In this example, n = 30 and n/2 = 15.
Thus the third class is the median class. The melits somewhere between 35.95 and 38.95. Appliliegabove
formula, we obtain 3

X = 3595+ (15-6)
14
= 3595+ 193
= 3788

=379
INTERPRETATION

This result implies that half of the cars have atje less than or up to 37.88 miles per gallon vésetiee other half of
the cars has mileage greater than 37.88 milesgleng As discussed earlier, the median is preferabthe arithmetic
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mean when there are a few very high or low figunea series. It is also exceedingly valuable whee encounters a
frequency distribution having open-ended classvals.
The concept of open-ended frequency distributionbmunderstood with the help of the following epden

Example:
WAGES OF WORKERS
IN A FACTORY
Monthly Income No. of
(in Rupees) Workers
Less than 2000/- 100
2000/- to 2999/- 300
3000/- to 3999/- 500
4000/- to 4999/- 250
5000/- and above| 50
Total 1200

In this example, both the first class and the tdests are open-ended classes. This is so becatise faict that we do
not have exact figures to begin the first clastoa@nd the last class. The advantage of computi@griedian in the case
of an open-ended frequency distribution is thateet in the unlikely event of the median fallinghin an open-ended
group occurring in the beginning of our frequendgtribution, there is no need to estimate the upmetower
boundary. This is so because of the fact thahafrhedian is falling in an intermediate class, thwviously, the first
class is not being involved in its computation. Tiext concept that we will discuss is the empiriegtion between
the mean, median and the mode. This is a concaphvwgnot based on a rigid mathematical formubdher, it is based
on observation. In fact, the word ‘empirical’ imgsi ‘based on observation’.

This concept relates to the relative positionthefmean, median and the mode in case of a hump-
shaped distribution. In a single-peaked frequensyibution, the values of the mean, median andenzmncide if the
frequency distribution is absolutely symmetrical.

THE SYMMETRIC CURVE

t x
MIean = MMedian = MMode
But in the case of a skewed distribution, the meaedian and mode do not all lie on the same pdim¢y are pulled
apart from each other, and the empirical relatixplans the way in which this happens. Experiemtls us that in a
unimodal curve of moderate skewness, the mediagually sandwiched between the mean and the mode.
The second point is that, in the case of manylifeabata-sets, it has been observed that themiist

between the mode and the median is approximatelpldmf the distance between the median and thenasashown

below:
f

-~
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This diagrammatic picture is equivalent to thedwaling algebraic expression:
Median - Mode 2 (Mean - Median) ---- (1)
The above-mentioned point can also be expressibe ifollowing way:

Mean — Mode = 3 (Mean — Median) ---- (2)
Equation (1) as well as equation (2) yields theraximate relation given below:

EMPIRICAL RELATION BETWEEN THE MEAN, MEDIAN AND THE _ MODE

Mode = 3 Median -2 Mean
An exactly similar situation holds in case of a m@dely negatively skewed distribution.
An important point to note is that this empiricalation does not hold in case of a J-shaped ox@eraely skewed
distribution.

Let us now extend the concept of partitioning haf frequency distribution by taking up the conoefpt
guantiles (i.e. quartiles, deciles and percentiles)
We have already seen that the median divides teewarder the frequency polygon into two equal &lve

4
f

50%  50%
| X

Median

A further split to produce quarters, tenths or hredths of the total area under the frequency palyigoequally
possible, and may be extremely useful for analy¥i& are often interested in the highest 10% ofesgnoup of values
or the middle 50% another.

QUARTILES

The quartiles, together with the median, achieeediliision of the total area into four equal parts.
The first, second and third quartiles are givenhgyformulae:

. h(n_
Q1_|+T(Z CJ

1. FIRST QUARTILE

2. SECOND QUARTILE (I.LE. MEDIAN)

ha )\, h
Q:|+? Z—C—I+?(r12—d
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3. THIRD QUARTILE

— 4 (30
=1 ()

It is clear from the formula of the second quatrtiiiat the second quartile is the same as the median

fa

25%'_25%'_25% |25%
Q1 Q=X Qs

v
X

DECILES & PERCENTILES

The deciles and the percentiles give the divisioe total area into 10 and 100 equal parts rdsbg.
The formula for the first decile is

D1:|+h(n - j
fl10

The formulae for the subsequent deciles are

D2:|+?h @_C

D3 =|+E(E_C)
f {10

It is easily seen that the 5th decile is the sana@ntity as the median.
The formula for the first percentile is

and so on.

f L 100
P3 =| +h[31 —CJ
f {100

and so on.
Again, it is easily seen that the 50th percenslehie same as the median, the 25th percentileeisame as the 1st
quartile, the 75th percentile is the same as tey@artile, the 40th percentile is the same agthelecile, and so on.
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All these measures i.e. the median, quartiles)ekeand percentiles are collectively called quastil The
guestion is, “What is the significance of this ceptof partitioningWhy is it that we wish to divide our frequency
distribution into two, four, ten or hundred parts?”

The answer to the above questions is: In certéimtdns, we may be interested in describingréiative quantitative
location of a particular measurement within a dagta Quantiles provide us with an easy way of a@higthis. Out of
these various quantiles, one of the most frequersthd is percentile ranking.

Let us understand this point with the help of aamegle.

EXAMPLE
If oil company ‘A’ reports that its yearly salesaat the 90th percentile of all companies in thiigtry, the implication
is that 90% of all oil companies have yearly sééssthan company A’s, and only 10% have yearly salezeding

company A’s,this is demonstrated in the followirgufe:

Relative Frequency

Yearly

Company A’s sales
(90th percentile)

It is evident from the above example that the cphof percentile ranking is quite a useful concépi, it should be
kept in mind that percentile rankings are of pitivalue only for large data sets.

It is evident from the above example that the cphof percentile ranking is quite a useful concépt, it should be
kept in mind that percentile rankings are of piegdtivalue only for large data sets. The next condegt we will
discuss is the graphic location of quantiles.

Let us go back to the example of the EPA mileagjegsa of 30 cars that was discussed in an eadaute.
EXAMPLE

Suppose that the Environmental Protection Agency developed country performs extensive tests bneal car
models in order to determine their mileage ratiSgppose that the following 30 measurements areingotaby
conducting such tests on a particular new car model

EP\MEEAGEEATING ON 30 CARS (MILES PR
GALLON)
%3 421 #9
1 15 19
205 A0 202
31 6 759
5 i 25
%3 24 405
410 0 70
70 ] 71
771 s 19
9 21 P2
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When the above data was converted to a frequestytdition, we obtained:

Class Limit Frequency
30.0-32.9 2
33.0-35.9 4
36.0 —38.9 14
39.0-41.9 8
42.0-44.9 2

30

Also, we considered the graphical representatichisfdistribution.
The cumulative frequency polygon of this distribaticame out to be as shown in the following figure:

Cumulative Frequency Polygonor OGIVE

This ogive enables us to find the median and ahgroguantile that we may be interested in very eaiently. And
this process is known as the graphic location afngjles.
Let us begin with the graphical location of the med

Because of the fact that the median is that vhkfere which half of the data lies, the first stego
divide the total number of observations n by 2.

In this example:
n_30_45
2

The next step is to locate this number 15 on thaig-of the cumulative frequency polygon.
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v N, N, S N o
o 9F P P
Lastly, we drop a vertical line from the cumulativequency polygon down to the x-axis.

Cumulative Frequency Polygonor OGIVE

35
30
25
20
15
10

o o

NS
L

Now, if we read the x-value where our perpendictdaches the x-axis, students, we find that thisesés
approximately the same as what we obtained fronfararula.

Cumulative Frequency Polygon or OGIVE

23
20 -
23
20 1
13 1
10 4
5_

0l—e
#*#*#*#*#*l?

WA

X3E
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It is evident from the above example that the cating frequency polygon is a very useful devicéind the value of
the median very quickly. In a similar way, we cawcdte the quartiles, deciles and percentiles. Taiokthe first
quartile, the horizontal line will be drawn agaitisé value n/4, and for the third quartile, theibamtal line will be
drawn against the value 3n/4.

Cumulative Frequency Polygonor OGIVE

EL 15
4
f
5 /
01—
o o o o o o
o o o o o S
n P L A » o
4

Q1 Qs

For the deciles, the horizontal lines will be agaithe values n/10, 2n/10, 3n/10, and so on. Andhi® percentiles, the
horizontal lines will be against the values n/1®@,100, 3n/100, and so on.

The graphic location of the quartiles as well &s dew deciles and percentiles for the data-seahef
EPA mileage ratings may be taken up as an exercise:
This brings us to the end of our discussion regardjuantiles which are sometimes also known agilfac-- this
terminology because of the fact that they divideftequency distribution into various parts or fias.
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LECTURE NO. 9

*  Geometric mean

e Harmonic mean

* Relation between the arithmetic, geometric and baicnmeans
e Some other measures of central tendency

GEOMETRIC MEAN

The geometric mean, G, of a set of n positive \&@KXig, X2,...,Xn is defined as the positive nth robtheir product.

G =X X,..X,
(Where X; > 0)
When n is large, the computation of the geomets@ambecomes laborious as we have to extract theoathof the
product of all the values.
The arithmetic is simplified by the use of loganith

Taking logarithms to the base 10, we get
1
logG==[log X, +log X, +...+log X, ]
n
Hence _2log X
n

G = antilog [Zng}
n

EXAMPLE
Find the geometric mean of nhumbers:
45, 32, 37, 46, 39, 36, 41, 48, 36

Solution:
We need to compute the numerical value of

= /45x32x37x46x39x36%41x48x 36

But, obviously, it is a bit cumbersome to find thiath root of a quantity. So we make use of loggni, as shown
below:

X log X

45 1.6532 _ >log X

32 | 1.5052] 109 G = —n

37 1.5682

46 1.6628 14.3870

39 | 1.5911| =— - =1.5986

36 1.5563

41 1.6128 :

Hence = antil 1.

T5 T6810 ence G =antilog 1.598¢

36 | 1.5563 = 3968
14.3870

The above example pertained to the computatioheofjeometric mean in case of raw data.
Next, we consider the computation of the geometean in the case of grouped data.
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GEOMETRICMEAN FOR GROUPED DATA

In case of a frequency distribution having k séss with midpoints X1, X2, ...,.Xk and the
corresponding frequencies f1, f2, ..., fk (such fbft= n), the geometric mean is given by

—_\yfivfs fi
G=yxhxk. X
Each value of X thus has to be multiplied by it$eifnes, and the whole procedure becomes quiteraidiable task!
In terms of logarithms, the formula becomes
log G =<[f,log X, + f, logX, +...+ f, log X,]
0gG=—1,10g Ay + 1T, I0gX, +..+ T, 109 X
f logX

Hence

n

> f logX

G=antiog =—
n

Obviously, the above formula is much easier to karicet us now apply it to an example.
Going back to the example of the EPA mileage ratimge have:

Mileage No. Clqss-mark
Rating of (midpoint) | log X | flog X
Cars X
30.0-32.9 2 31.45 1.4976 2.9952
33.0-35.9 4 34.45 1.537926.1488
36.0-38.9] 14 37.45 1.573522.0290
39.0-41.9 8 40.45 1.6064912.8552
42.0-44.9 2 43.45 1.6340 3.2760
30 47.3042

G=antlog 473042

3C
= antilog 1.5768 = 37.74
This means that, if we use the geometric mean tsores the central tendency of this data set,ttteenentral value of
the mileage of those 30 cars comes out to be 3ile$ per gallon.
The question is, “When should we use the geometean?”
The answer to this question is that when relatikanges in some variable quantity are averaged, neferpthe
geometric mean.

EXAMPLE

Suppose it is discovered that a firm'’s turnoverihaseased during 4 years by the following amounts:

Percentags

Compared
Year| Turnover With F:(ear

Earlier

1958| £ 2,000 -
1959| £ 2,500 125
1960| £ 5,000 200
1961| £ 7,500 150
1962| £ 10,500 140
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The yearly increase is shown in a percentage farthe right-hand column i.e. the turnover of 195925 percent of
the turnover of 1958, the turnover of 1960 is 2@€cpnt of the turnover of 1959, and so on. The'§rowner may be
interested in knowing his average rate of turn@vemwth.
If the arithmetic mean is adopted he finds his arsw be:

Arithmetic Mean:

125-206-156-140
4
=15%7¢
i.e. we are concluding that the turnover for angiryis 153.75% of the turnover for the previous ydamther words,
the turnover in each of the years considered appedye 53.75 per cent higher than in the preveas.
If this percentage is used to calculate the turnover 858 to 1962 inclusive, we obtain:
153.75% of £ 2,000 = £ 3,075
153.75% of £ 3,075 = £ 4,728
153.75% of £ 4,728 = £ 7,269
153.75% of £ 7,269 = £ 11,176
Whereas the actual turnover figures were

Year| Turnover
1958| £ 2,000
1959 £ 2,500
1960| £ 5,000
1961| £ 7,500
1962| £ 10,500

It seems that both the individual figures and, morportant, the total at the end of the period,inocerrect. Using the
arithmetic mean has exaggerated the ‘average’ &natgaof increase in the turnover of this firm.\@usly, we would
like to rectify this false impression. The geonetriean enables us to do so:

Geometric mean of the turnover figures:

J(125% 200x150%140)

= \/525000000
= 15137%

Now, if we utilize this particular value to obtaime individual turnover figures, we find that:
151.37% of £2,000 = £3,027

151.37% of £3,027 = £4,583

151.37% of £4,583 = £6,937

151.37% of £6,937 = £10,500

So that the turnover figure of 1962 is exactly thene as what we had in the original data.

INTERPRETATION

If the turnover of this company were to increaseuatly at a constant rate, then the annual increesed have been
51.37 percent.(On the average, each year's turnisvéil.37% higher than that in the previous ye@hg above
example clearly indicates the significance of te®rgetric mean in a situation when relative changes variable
guantity are to be averaged.

But we should bear in mind that such situatiors @ot encountered too often, and that the occatsion
calculate the geometric mean arises less frequémdly the arithmetic mean.(The most frequently usedsure of
central tendency is the arithmetic mean.)

The next measure of central tendency that we vgiubs is the harmonic mean.

HARMONIC MEAN

The harmonic mean is defined as the reciproctii@frithmetic mean of the reciprocals of the value
In case of raw data: n
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In case of grouped data (data grouped into a fregyudistribution):

(Where X represents the midpoints of the varioass#s)

HM.=

EXAMPLE

Suppose a car travels 100 miles with 10 stops, seghafter an interval of 10 miles. Suppose thatspeeds at which
the car travels these 10 intervals are 30, 354@045, 40, 50, 55, 55 and 30 miles per hours ms@dy.

What is the average speed with which the car tealvite total distance of 100 miles?

If we find the arithmetic mean of the 10 speedsph&in:

Arithmetic mean of the 10 speeds:

30+35+....+30

1C
= %: 42 miles per hour

But, if we study the problem carefully, we find thhe above answer is incorrect.
By definition, the average speed is the speed whfcth the car would have traveled
the 100 mile distance if it had maintained a camstpeed throughout the 10 intervals of 10 milehea

Total distance travelled
Total time taken

Average speed =

Now, total distance traveled 100 milesTotal time takemwill be computed as shown below:

Interval | Distance | Speed = —Dls.tance Time = _Distance |
Time Speed
1 10 miles 30 mph 10/30 = 0.3333 hrs
2 10 miles 35 mph 10/35 = 0.2857 phrs
3 10 miles 40 mph 10/40 = 0.2500 hrs
4 10 miles 40 mph 10/40 = 0.2500 phrs
5 10 miles 45 mph 10/45 = 0.2222 hrs
6 10 miles 40 mph 10/40 = 0.2500 phrs
7 10 miles 50 mph 10/50 = 0.2000 hrs
8 10 miles 55 mph 10/55 =0.1818 hrs
9 10 miles 55 mph 10/55 = 0.1818 hrs
10 10 miles 30 mph 10/30 = 0.333 hrs
Total = 100 mileq Total Time = 2.4881 his
Hence
Average speed 100 _ 402 mph

2.4881

which is not the same as 42 miles per hour.
Let us now try the harmonic mean to find the aversygeed of the car.
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where n is the no. of terms)
We have:

X 1/X
30 | 1/30 = 0.0333
35 | 1/35=10.0284 1 u.-
40 | 1/40 = 0.0250
40 | 1/40=0.025 4,

45| 1745 =0.0223 = ous:
40 | 1/40 = 0.0250
50 | 1/50 = 0.020q = 40.2 mph

55| 1/55 =0.0182
55| 1/55 = 0.0182 Hence itis clear that the hi

30 | 1/30 = 0.0333 gives the totally correcesu

™M
><\|—\‘3

1
—=0.2488
2 X

The key question is, “When should we compute thenbaic mean of a data set?” The answer to thistmuewill be
easy to understand if we consider the followingsul

RULES

*  When values are given as x per y where x is cohstaahy is variable, the Harmonic Mean is the appate
average to use.
*  When values are given as x per y where y is cohstahx is variable, the Arithmetic Mean is the eygpiate
average to use.
*  When relative changes in some variable quantitytarige averaged, the geometric mean is the apptepri
average to use.
We have already discussed the geometric and thiedméc means. Let us now try to understand Rule INwith the
help of an example:

EXAMPLE
If 10 students have obtained the following marks(itest) out of 20:

13,11,9,9,6,5,19,17,12,9
Then the average marks (by the formula of the ieuetic mean) are:

13+11+9+9+6+5+19+17+12+9
1C

_110_
1C

11

This is equivalent to
13 11 9 9 6 5 19 17 12 9
T T T T
20 20 20 20 20 20 20 20 20 20
1C

11

20 _ 110 _11
10 10x20 20

o
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(i.e. the average marks of this group of studergsla out of 20).In the above example, the poirttdmoted was that
all the marks were expressible as x per y wherelém®minator y was constant i.e. equal to 20, @amdéy it was
appropriate to compute the arithmetic mean.

Let us now consider a mathematical relationshiptexdetween these three measures of central tendenc

RELATION BETWEEN ARITHMETIC, GEOMETRIC AND HARMONIC MEANS

Arithmetic Mean > Geometric Mean_>Harmonic Mean

We have considered the five most well-known measwfecentral tendency i.e. arithmetic mean, mediaode,
geometric mean and harmonic mean. It is interegtngpte that there are some other measures afatéemdency as
well. Two of these are the mid range, and the mid deagnge.

Let us consider these one by one:

MID-RANGE

If there are n observations with x0 and xm as theiallest and largest observations respectivedn their mid-range
is defined as

: Xg +X
mid - range= ~9—~M 5 m

It is obvious that if we add the smallest valuehwvtite largest, and divide by 2, we will get a vagch is more or less
in the middle of the data-set.

MID-QUARTILE RANGE

If x1, x2... xn are n observations with Q1 and Q3tlasir first and third quartiles
respectively, then their mid-quartile range is defi as

Q1 +Qs

mid —quartilerange= o

Similar to the case of the mid-range, if we take @hithmetic mean of the upper and lower quartiles will obtain a
value that is somewhere in the middle of the dataThe mid-quartile range is also known as the-hiidje.

Let us now revise briefly the core concept of cantendency: Masses of data are usually expresséuei form of
frequency tables so that it becomes easy to coraptethe data. Usually, a statistician would likegtoa step ahead
and to compute a number that will represent tha olesome definite way.

Any such single number that represents a wholefstdta is calletAverage’.

Technically speaking, there are many kinds of ayesdi.e. there are several ways to compute thEhg&se quantities
that represent the data-set are called “measureantfal tendency”.
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LECTURE NO. 10
e Concept of dispersion
«  Absolute and relative measures of dispersion
* Range
*  Coefficient of dispersion
¢ Quartile deviation
«  Coefficient of quartile deviation

Let us begin the concept of DISPERSION.

Just as variable series differ with respect torthaation on the horizontal axis (having differéaverage’ values);
similarly, they differ in terms of the amount ofriability which they exhibit. Let us understandsttpoint with the
help of an example:

EXAMPLE

In a technical college, it may well be the casé tha ages of a group of first-year students areeuonsistent, e.g. 17,
18, 18, 19, 18, 19, 19, 18, 17, 18 and 18 years.

A class of evening students undertaking a coursgualy in their spare time may show just the oppastuation, e.g.
35, 23, 19, 48, 32, 24, 29, 37, 58, 18, 21 and 30.

It is very clear from this example that the vaoatihat exists between the various values of a-skttés of substantial
importance. We obviously need to be aware of theuaninof variability present in a data-set if we stv&ome to useful
conclusions about the situation under review. Thigerhaps best seen from studying the two frequeistributions
given below.

EXAMPLE

The sizes of the classes in two comprehensivesteldifferent areas are as follows:

Number | Number of Classeq

of Pupils | Area A Area B
10-14 0 5
15-19 3 8
20-24 13 10
25-29 24 12
30-34 17 14
35-39 3 5
40-44 0 3
45 - 49 0 3

60 60

If the arithmetic mean size of class is calculateel discover that the answer is identical: 27.38ilpun both areas.
Average class-size of each school

X = 2733

Even though these two distributions share a comavenage, it can readily be seen that they areen@IFFERENT.
And the graphs of the two distributions (given bélelearly indicate this fact.
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Number of Classes

N ok
v

Number of Pupils

The question which must be posed and answered Hat way can these two situations be distingui3he/Ne need
a measure of variability or DISPERSION to accomptdmeyrelevant measure of position or ‘average’ used

The word ‘relevant’ is important here for we shald one measure of dispersion which expressesdatter of values
round the arithmetic mean, another the scatteabfes round the median, and so forth. Each meadudispersion is
associated with a particular ‘average’.

ABSOLUTE VERSUS RELATIVE MEASURES OF DISPERSION

There are two types of measurements of disperaimsplute and relative.

An absolute measure of dispersisnone that measures the dispersion in termseos#ime units or in the square of
units, as the units of the data.

For example, if the units of the data are rupeegters, kilograms, etc., the units of the measuresspersion will also
be rupees, meters, kilograms, etc.

On the other hand, relative measure of disperssonne that is expressed in the form of a ratmefficient of
percentage and is independent of the units of measant.

A relative measure of dispersion is useful for comparisodaif of different nature. A measure of central ésoy
together with a measure of dispersion gives anwatecdescription of data. We will be discussing ROtdeasures of
dispersion i.e. the range, the quartile deviatiba,mean deviation, and the standard deviation.

RANGE

The range is defined as the difference betweemvmtbeextreme values of a data-set, i.e. R = Xm -wk@re
Xm represents the highest value and X0 the lowest.
Evidently, the calculation of the range is a singplestion of MENTAL arithmetic.

The simplicity of the concept does not necessamikglidate it, but in general it gives no idea loé tDISTRIBUTION
of the observations between the two ends of thesdfor this reason it is used principally as jppgementary aid in
the description of variable data, in conjunctiorthadther measures of dispersion. When the datgyragped into a
frequency distribution, the range is estimatedibgling the difference between the upper boundatphefighest class
and the lower boundary of the lowest class.

We now consider the graphical representation ofdhge:
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—e
Xo
<

Range

Obviously, the greater the difference between ahgdst and the smallest values, the greater withéeange. As stated
earlier, the range is a simple concept and is Easgmpute. However, because of the fact thatdbieputed from only
the two extreme values in a data;dehas two serious disadvantages.

e ltignoresall the INFORMATION available from the intermediadbservations.
« It might give a MISLEADING picture of the spreadtire data.

From THIS point of view, it is an unsatisfactory asere of dispersion. However, it is APPROPRIATEL¥ed in
statistical quality control charts of manufactuprdducts, daily temperatures, stock prices, etis. ititeresting to note

that the range can also be viewed in the followitay.
It is twice of the arithmetic mean of the deviasaf the smallest and largest values round theramide i.e.

(Midrange- X ) + (X, - Midrang¢

2
_ Midrange- X + X, — Midr:
2
Xm~Xo

2

Because of what has been just explained, the reagde regarded as that measure of dispersion whiassociated
with the mid-range. As such, the range may be eyepldo indicate dispersion when the mid-range lees adopted as
the most appropriate average.

The range is arabsolute measure of dispersion. Itelative measure is known as the CO-EFFICIENT OF
DISPERSION, and is defined by the relation giveloiye

\

COEFFICIENT OF DISPERSION

__3(Rangg
Mid — Range
Xm~Xo
=2 _Xm=Xg
Xm*Xo  Xp+Xo
2

This is a pure (i.e. dimensionless) nhumber andsedifor the purposes of COMPARISON. (This is scalbbse a pure
number can be compared with another pure number.)
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For example, if the coefficient of dispersion foreodata-set comes out to be 0.6 whereas the deeffiof dispersion
for another data-set comes out to be 0.4, thendbvious that there is greater amount of dispersidhe first data-set
as compared with the second.

QUARTILE DEVIATION

The quartile deviation is defined as half of thiéedence between the third and first quartiles i.e.

— Qa _Ql
QD.= —2

It is also known asemi-interquartile range. Let us now consider the graphical representatichefjuartile deviation:

f

A

Ql/Tnfer-quartﬂe Ran'ge Qs

Quatrtile Deviation

(Semi Inter-quartile Range)

Although simple to compute, it is NOT an extremeétisfactory measure of dispersion because it taitesaccount
the spread of only two values of the variable roti@median, and this gives no idea of the reth@fispersion within
the distribution.

The quartile deviation has an attractive featued the range “Median + Q.D.” contains approximat&dyo
of the data. This is illustrated in the figure giveelow:

50%

o
Median-Q.D. Median Median+Q.D.

Let us now apply the concept of quartile deviatoithe following example:
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EXAMPLE

The shareholding structure of two companies isrghelow:

Company | Company
X Y
1 quartile 60 shareg 165 shares
Median 185 share¢ 185 shares
3% quartile | 270 share$ 210 shares

The quartile deviation for company X is

M =105 Shares
For company VY, itis
M = 22 Shares

2

A comparison of the above two results indicate thate is a considerable concentration of sharenslabout the
MEDIAN number of shares in company Y, whereas impany X, there does not exist this kind of a cotregion
around the median. (In company X, there is appratéty the SAME numbers of small, medium and large
shareholders.)

From the above example, it is obvious that thedathe quartile deviation, the greater is the scatt values within the
series. The quartile deviation is superior to raagét is not affected by extremely large or srobBervations. It is
simple to understand and easy to calculate.

The mean deviation can also be viewed in anothgr Wé the arithmetic mean of the deviationshw first and third
guartiles round the median i.e.

(M-Q)+(Qs-M)

2
- M_Q1+Q3_M
2
Q3-Q

2

Because of what has been just explained, the tpiai®viation is regarded as that measure of diggemshich is
associated with the median. As such, the quadghgation should always be employed to indicatg@elision when
the median has been adopted as the most approgviaizge.

The quartile deviation is also a@bsolutemeasure of dispersion. Itelative measure called the CO-EFFICIENT OF
QUARTILE DEVIATION or of Semi-Inter-quartile Ranges defined by the relation:

COEFFICIENT OF QUARTILE DEVIATION

_Quartile Deviation
Mid - Quartile Range

QB_QI
- 2 :QS_Ql
QL+ Q+Q’
2

The Coefficient of Quartile Deviation is a pure ragnand is used fAEOMPARINGthe variation in two or more sets
of data.

80
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The next two measures of dispersion to be discussethe Mean Deviation and the Standard Deviatiothis regard,
the first thing to note is that, whereas the raagavell as the quartile deviation are two such messof dispersion
which are NOT based on all the values, the meanatien and the standard deviation are two such oreasof
dispersion that involve each and every data-valubeir computation.

The range measures the dispersion of the datarsehd themid-range whereas the quartile deviation
measures the dispersion of the data-set arounué¢ldéan
How are we to decide upon the amount of dispensiand thearithmetic meaf
It would seem reasonable to compute EHE TANCEof each observed value in the series from thérastic mearof
the series.

But the problem is that the sum of the deviatiohthe values from the mean is ZERO! (No matter wwha
amount of dispersion in a data-set is, this quantitl alwaysbe zero, and hence it cannot be used to measere th
dispersion in the data-set.)

Then, the question arises, ‘HOW will we be ablengasure the dispersion present in our data-setiin attempt to
answer this question, we might look at the numériiffierences between the mean and the data vaMIig$iOUT
considering whether these are positive or negaByeignoring the sign of the deviations we will &mre a NON-
ZERO sum, and averaging these absolute differeraggsn, we obtain a non-zero quantity which carubed as a
measure of dispersion. (The larger this quantity,greater is the dispersion in the data-set).

This quantity is known as tidEAN DEVIATION.

Let us denote these absolute differences

by ‘modulus of d’

or ‘mod d'. Then, the mean deviation is given by

MEAN DEVIATION

|\/|D:ldI
n

As the absolute deviations of the observations fileeir mean are being averaged, therefore the aimpblme of this
measure is Mean Absolute Deviation --- but gengrdllis simply called “Mean Deviation”. In the niebecture, this
concept will be discussed in detail. (The caseauof data as well as the case of grouped data witiobsidered.)Next,
we will discuss the most important and the mostelyidised measure of dispersion i.e. the Standavéhben.
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LECTURE NO. 11

. Mean Deviation
e Standard Deviation and Variance
*  Coefficient of variation

First, we will discuss it for the case of raw datad then we will go on to the case of a frequatistribution. The first
thing to note is that, whereas the range as weheaguartile deviation are two such measures sgaision which are
NOT based on all the values, the mean deviationta@dtandard deviation are two such measuresspediion that
involve each and every data-value in their compartat

You must have noted that the range was measuniagdispersion of the data-set around the mid-range,
whereas the quartile deviation was measuring thgetision of the data-set around the median.

How are we to decide upon the amount of dispensiand the arithmetic mean? It would seem reasenabl
compute the DISTANCE of each observed value irstirées from the arithmetic meahthe series.
Let us do this for a simple data-set shown below:

THE NUMBER OF FATALITIES IN MOTORWAY ACCIDENTS IN QIE WEEK

Number of fatalities
Day X

Sunday 4
Monday 6
Tuesday 2
Wednesday 0
Thursday 3
Friday 5
Saturday 8

Total 28

Let us do this for a simple data-set shown below:
THE NUMBER OF FATALITIES IN MOTORWAY ACCIDENTS IN QIE WEEK

Number of fatalities
Day X

Sunday 4
Monday 6
Tuesday 2
Wednesday 0
Thursday 3
Friday 5
Saturday 8

Total 28

The arithmetic mean number of fatalities per day is

In order to determine the distances of the dataesfrom the mean, we subtract our value of thiragtic mean from
each daily figure, and this gives us the deviatitras occur in the third column of the table below
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Day Number )(zf fatalities N
Sunday 4 0
Monday 6 +2
Tuesday 2 -2
Wednesday 0 -4
Thursday 3 -1
Friday 5 +1
Saturday 8 +4

TOTAL 28 0

The deviations are negative when the daily figarless than the mean (4 accidents) and positive Wigefigure is
higher than the mean. It does seem, however, thaftorts for computing the dispersion of thisalaét have been in
vain, for we find that the total amount of dispensobtained by summing the (x %) column comes out to be zero! In
fact, this should be no surprise, for it is a bas@perty of the arithmetic means that: The suthefdeviations of the
values from the mean is zero. The question arises:

How will we measure the dispersion that is acyuptesent in our data-set?

Our problem might at first sight seem irresolvalide,by this criterion it appears that no series &ay dispersion. Yet
we know that this is absolutely incorrect, and westihink of some other way of handling this sitot Surely, we
might look at the numerical difference betweenrttean and the daily fatality figures without considg whether
these are positive or negative. Let us denotesthbsolute differences by ‘modulus of d’ or ‘mod d’
This is evident from the third column of the tabkdow

X X— X=d | d|
4 0 0
6 2 2
2 —2 2
0 —4 4
3 —1 1
5 1 1
8 4 4
Total 14

By ignoring the sign of the deviations we have agbd a non-zero sum in our second column. Averatiiege
absolute differences, we obtain a measure of digpeknown as the mean deviation.
In other words, the mean deviation is given byfthenula:

MEAN DEVIATION

mD. = =14
n

As we are averaging the absolute deviations obtiservations from their mean, therefore the corapteime of this
measure is mean absolute deviation --- but gereredl just say “mean deviation”. Applying this fortauin our
example, we find that, the mean deviation of theber of fatalities is

M.D.ZEZZ.
7

The formula that we have just considered is validhe case of raw data. In case of grouped data ifeequency
distribution, the formula becomes
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MEAN DEVIATION FOR GROUPED DATA

_ Xfi % —x| _ Xfi| |

n n

M.D.

As far as the graphical representation of the naeamation is concerned, it can be depicted by &botal line
segment drawn below the X-axis on the graph ofriguency distribution, as shown below

f

3

v
X

—>°

< >
Mean Deviation

x|

The approach which we have adopted in the condepeanean deviation is both quick and simple. Betproblem is
that we introduce a kind of artificiality in itslcalation by ignoring the algebraic signs of theidé&ons.
In problems involving descriptions and comparisatlme, the mean deviation can validly be applied;bdecause the
negative signs have been discarded, further thearetevelopment or application of the conceptripassible.

Mean deviation is an absolute measure of disper#i® relative measure, known as the co-effica@nnean
deviation, is obtained by dividing the mean dewiatby the average used in the calculation of dewiati.e. the
arithmetic mean. Thus

CO-EFFICIENT OF M.D

Sometimes, the mean deviation is computed by awegafe absolute deviations of the data-values ftbenmedian
ie.

>[x =X

Meandeviation= —=———

n
And when will we have a situation when we will bging the median instead of the mean? As discusziiére the
median will be more appropriate than the mean aséhcases where our data-set contains a few vghyadnivery low
values. In such a situation, the coefficient of mdaviation is given by:

Co-efficient of M.D:
__MD. M .D.

Mediar Mear

Let us now consider thstandard deviation-- that statistic which is the most important ahé most widely used
measure of dispersion.
The point that made earlier that from the mathezahpoint of view, it is not very preferable to &the absolute values
of the deviationsThis problem is overcome by computing the standexdation.
In order to compute the standard deviation, rathan taking the absolute values of the deviatioves,square the
deviations.

Averaging these squared deviations, we obtaiatésst that is known as the variance.
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VARIANCE

Let us compute this quantity for the data of thev@bexample.
Our X-values were:

jOIjw|oIN|O >~

Taking the deviations of the X-values from theiramgand then squaring these deviations, we obtain:

X (X—=X) (X =X)*

4 0 0

6 +2 4

2 -2 4

0 —4 16

3 -1 1

5 +1 1

8 +4 16
42

Obviously, both (- 2)2 and (2)2 equal 4, both (2 dnd (4)2 equal 16, and both (- 1)2 and (1)2 =1
HenceX(x — "x)?> = 42 is now positive, and this positive value I@en achieved without ‘bending’ the rules of
mathematics. Averaging these squared deviatiorsyahance is given by:

Variance:

n
:4_2:6
7

The variance is frequently employed in statistiwatk, but it should be noted that the figure achiis in ‘squared’
units of measurement.

In the example that we have just considered, thimwvee has come out to be “6 squared fatalitiedfictv does not
seem to make much sense! In order to obtain anenaich is in the original unit of measurement, take the
positive square root of the variance. The resithisvn as the standard deviation.
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STANDARD DEVIATION

Hence, in this example, our standard deviationcoase out to be 2.45 fatalities.

In computing the standard deviation (or variaritean be tedious to first ascertain the arithmet&an of a
series, then subtract it from each value of théatde in the series, and finally to square eacliadiem and then sum.
It is very much more straight-forward to use therskut formula given below:

SHORT CUT FORMULA FOR THE STANDARD DEVIATION

In order to apply the short cut formula, we requindy the aggregate of the serig] and the aggregate of the squares
of the individual values in the seri€sx2).

In other words, only two columns of figures arele@d@lfor. The number of individual calculations Isaconsiderably
reduced, as seen below:

X2
16
36
4
0
9
25
64

154

olojwlo|v]o]l X

Total

N
o

Therefore

7 7

2
S= @—(2_8j = /(22—16’

=6 = 245 fatalities

The formulae that we have just discussed are \mlidase of raw data. In case of grouped data i.Eeguency
distribution, each squared deviation round the nmeast be multiplied by the appropriate frequenguffe i.e.

STANDARD DEVIATION IN CASE OF GROUPED DATA

And the short cut formula in case of a frequencyritiution is:

SHORT CUT FORMULA OF THE STANDARD DEVIATION IN CASE OF GROUPED DATA

. foz_ > fx ?
- n n

Virtual University of Pakistan 86



STA301 - Statistics and Probability Y

Which is again preferred from the computationahdpmint
For example, the standard deviation life of a baticblectric light bulbs would be calculated addois:

EXAMPLE

Life (in No. of | Mid-

Hundreds of Bulbs | point fx fx
Hours) f X
0-5 4 2.5 10.0 25.0
5-10 9 7.5 67.5 506.25

10 -20 38 15.0 570.0 8550.0
20— 40 33 30.0 990. 29700J0
40 and over| 16 50.0 800.9  40000Q.0
b

100 2437.5| 78781.2

Therefore, standard deviation:

S=

7878125 _(2437.5)2
100 100

=13.9hundredhours

= 1390 hours
As far as the graphical representation of the stahdeviation is concerned, a horizontal line segrisedrawn below
the X-axis on the graph of the frequency distribiti-- just as in the case of the mean deviation.

v
X

—°

4—} o
Standard deviation

x|

The standard deviation is an absolute measurespedsion. Its relative measure called coefficidrgtandard deviation
is defined as:

COEFFICIENT OF S.D

_ Standard Deviation
Mear

And, multiplying this quantity by 100, we obtainvary important and well-known measure called thefficient of
variation.
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COEFFICIENT OF VARIATION

CV.= 2 x100
X

As mentioned earlier, the standard deviation isresged in absolute terms and is given in the sanie af

measurement as the variable itself.

There are occasions, however, when this absolutesune of dispersion is inadequate and a relativm feecomes
preferable. For example, if a comparison betweenvtriability of distributions with different vati¢es is required, or
when we need to compare the dispersion of distobstwith the same variable but with very differemthmetic

means. To illustrate the usefulness of the coefficof variation, let us consider the followingotexamples.

EXAMPLE-1

Suppose that, in a particular year, the mean wesskdyings of skilled factory workers in one patacicountry were $
19.50 with a standard deviation of $ 4, while tsrrieighboring country the figures were Rs. 75R8d28
respectively.

From these figures, it is not immediately appanehich country has the GREATER VARIABILITY in
earnings. The coefficient of variation quickly pides the answer:

For country No. 1:

ixlOO: 205 per cent,
185

And for country No. 2:

§X100= 37.3 per cent.
75

From these calculations, it is immediately obvithat the spread of earnings in country No. 2 isignethan that in
country No. 1, and the reasons for this could thesought.

EXAMPLE-2:

The crop yield from 20 acre plots of wheat-landtigated by ordinary methods averages 35 bushels avistandard
deviation of 10 bushels. The yield from similar datreated with a new fertilizer averages 58 bushalso with a
standard deviation of 10 bushels. At first glanites yield variability may seem to be the same, ihutact it has
improved (i.e. decreased) in view of the higherage to which it relates.

Again, the coefficient of variation shows this vetgarly:

Untreated land:

]é—(;X100= 2857 per cent

Treated land:

gX100: 1724 per cent

The coefficient of variation for the untreated ldrabs come out to be 28.57 percent, whereas th&adieef of variation
for the treated land is only 17.24 percent.
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LECTURE NO. 12

e Chebychev's Inequality

e The Empirical Rule

e The Five-Number Summary
In the last lecture, we discussed the conceptaoidstrd deviation in quite a lot of detail.
It is an extremely important concept, and it isyvenportant that we appreciate and understandoits in statistical
analysis. We've seen that if we are comparing teability of two samples selected from a populatithe sample
with the larger standard deviation is the morealae of the two.
Thus, we know how to interpret the standard demtin a relative or comparative basis, but we hawemsidered
how it provides a measure of variability for a $engample.
To understand how the standard deviation provideseasure of variability of a data set, considepecsic data set
and answer the following questions:

Question-1

‘How many measurements are within 1 standard deviatf the mean?’

Question-2

‘How many measurements are within 2 standard devis®’

and so on.

For any specific data set, we can answer thesetignesby counting the number of measurements i edcthe
intervals. However, if we are interested in obitaina general answer to these questions the proldeanbit more
difficult. We will discuss to you two sets of angwéo the questions of how many measurements filimd, 2, and 3
standard deviations of the mean. General answiiiege questions the problem is a bit more difficTifte first, which
applies to any set of data, is derived from a theoproved by Russian mathematician, P.L. Cheby¢h&821-
1894).The second, which applies to mound-shapedmggric distributions of data, is based upon erogirevidence
that has accumulated over the years. And thisfsahswers is valid and applicable even if our disttion is slightly
skewed, Let us begin with the Chebychev’s theorem.

Chebychev’s Rule applies to any data set, regadiethe shape of the frequency distribution ofdh&a.

CHEBYCHEV'S THEOREM

For any number k greater than 1, at least 1 — &fkPe data-values fall within k standard deviati®f the
mean, i.e., within the interval X — kS, X + kS)
This means that:
a) At least 1-1/22 = 3/4 will fall within 2 standhrdeviations of the mean, i.e. within the interval
(X—-2S, X +2S).
b) At least 1-1/32=8/9 of the data-values will faithin 3 standard deviations of the mean, i.ehinithe interval (X —
3S, X + 3S)
Because of the fact that Chebychev's theorem reguirto be greater than 1, therefore no usefulrimdtion is
provided by this theorem on the fraction of measwmets that fall within 1 standard deviation of thean, i.e. within
the interval (X—S,X+S).

Next, let us consider tBenpirical Rule mentioned above.

This is a rule of thumb that applies to data setk fwequency distributions that are mound-shapedl symmetric, as
follows:

Relative Frequency

Measurements
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According to this empirical rule:

e Approximately 68% of the measurements will fall hifit 1 standard deviation of the mean, i.e. wittia t
interval (X - S, X + S)
*  Approximately 95% of the measurements will fall kit 2 standard deviations of the mean, i.e. withie
interval ( X — 2S, X + 2S).
e Approximately 100% (practically all) of the measuments will fall within 3 standard deviations of theean,
i.e. within the interval (X — 3S, X + 3S).
Let us understand this point with the help of aameple:

EXAMPLE

The 50 companies’ percentages of revenues speR&dn(i.e. Research and Development) are:

135 95 82 65 84 81 6.9 75 105 135
72 71 90 99 82132 9269 96 7.7
97 75 72 59 6.611.1 88 52 106 8.2
11.3 56 101 80 85117 71 7.7 94 6.0
80 74 105 78 7965 69 65 6.8 95

Calculate the proportions of these measurementslithavithin the intervals X = S, X = 2S, and X + 3S, and
compare the results with the theoretical value® fiean and standard deviation of these data cotrte be 8.49 and
1.98, respectively.
Mean:
"X =8.49
Standard deviation:
S=1.98
Hence

(X=S,X+9)
= (8.49 — 1.98, 8.49 + 1.98)
= (6.51, 10.47)

A check of the measurement reveals that 34 obthmeasurements, or 68%, fall between 6.51and 10.47
Similarly, the interval

(X-2S,X+2S)

=(8.49 — 3.96, 8.49 + 3.96)

=(4.53, 12.45)

Contains 47 of the 50 measurements, i.e. 94% addke-values

Finally, the 3-standard deviation interval aroud i.e. ( X — 3S, X + 3S)
=(8.49-5.94, 8.49 + 5.94)
= (2.55, 14.43) contains all, or 100%, of theasurements.

In spite of the fact that the distribution of thekea is skewed to the right, the percentages tafetdues falling within
1, 2, and 3 standard deviations of the mean araneahly close to the theoretical values (68%, 9&f6, 100%) given
by the Empirical Rule.
The fact of the matter is that, unless the distidvuis extremely skewed, the mound-shaped appratams will be
reasonably accurate. Of course, no matter whashiage of the distribution, Chebychev's Rule, asstinat at least
75% and at least 89% (8/9) of the measurementdigvilithin 2 and 3 standard deviations of the measpectively.
In this example94% of the values are lying inside the intervél+ 2S, and this percentage IS greater than 75%.
Similarly,100% of the values are lying inside thterval™ X + 3S, and this percentage IS greater than 89%.
But, before we discuss all these new conceptsydetevise the concept of the Chebychev’'s Inequadlitythe last
lecture, we noted that when all the values in aoelata are located near their mean, they exhilsinall amount of
variation or dispersion.
And those sets of data in which some values aratédcfar from their mean have a large amount gbedision.
Expressing these relationships in terms of thedstahdeviation, which measures dispersion, we egrtsat when the
values of a set of data are concentrated nearriesin, the standard deviation is small. And whenvilues of a set of
data are scattered widely about the mean, the atdrdkeviation is large. In exactly the same waythé standard
deviation computed from a set of data is large,vlees from which it is computed are dispersedelyidgbout their
mean. A useful rule that illustrates the relatiopdbetween dispersion and standard deviation isrglwyChebychev’s
theorem named after the Russian mathematician P.L. Chnedwy(1821-1894). This theorem enables us to cdkite
any set of data the minimum proportion of valuest ttan be expected to lie within a specified numifestandard
deviations of the mean.
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The theorem tells us that at least 75% of the walinea set of data can be expected to fall witkwo standard
deviations of the mean, at least 89% (8/9) withie¢ standard deviations of the mean, and at %&86t(15/16) within
four standard deviations of the mean.

In general, Chebychev’s theorem may be statedlasvi

CHEBYCHEV'S THEOREM

Given a set of n observations x1, x2, x3... xn on tkariable X, the probability is at least
(1 — 1/k2) that X will take on a value within k stiard deviations of the mean of the set of obsemstwhere k > 1).
Chebychev’s theorem is applicable to any set oéolagions, so we can use it for either samplespufations. Let us
now see how we can suppose that a set of data mesa of 150 and a standard deviation of 25. Rukir 2 in the
Chebychev’s theorem, at least
1-1/(2)2 = 75% of the data-values will take oralue within two standard deviations of the mean.

Apply it in practice.

Since the standard deviation is 25, hence 2(25),/ahd at least 75% of the data-values will take omlue between
150 — 50 = 100 and 150 + 50 = 200. Consequentlycavesay that we can expect at least 75% of theesao be
between 100 and 200.By similar calculations we fhat we can expect at least 89% to be betweem@225, and at
least 96% to be between 25 and 275.

(The last statement has been made by putting kntHe formula 1 - 1/k2)

Suppose that another set of data has the same asebefore, i.e. 150, but a standard deviation of Ajiplying
Chebychev’s theorem, for this set of data we careeixat least 75% of the values to be between h80QLEO, at least
89% to be between 120 and 180, and at least 968 b&tween 100 and 200.

The above results are summarized in the followatmet

PERCENTAGE | FOR DATA-SET | FOR DATA-SET
OF DATA NO. 1 NO. 2

At least Lies Between Lies Between
75 % 100 & 200 130 & 170

At least Lies Between Lies Between
89 % 75 & 225 120 & 180

At least Lies Between Lies Between
96 % 25 & 275 100 & 200

Thus the intervals computed for the latter setatbcare all narrower than those for the former.
For two symmetric, hump-shaped distributions hatirgsame mean, this point is depicted in the fohg diagram:

THE SYMMETRIC CURVE

1 — [

130150 170
< >

Therefore, we see that for a set of data with allsstandard deviation, a larger proportion of tredues will be
concentrated near the mean than for a set of déteaviarge standard deviation.

A limitation of the Chebychev's theorem is thatgiies no information at all about the probabibtfyobserving a value
within one standard deviation of the mean, sineellk2 = 0 when k = 1. Also, it should be noted tive Chebychev’'s
theorem provides weak information for our varialofe interest. For many random variables, the prdigbof
observing a value within 2 standard deviationshefmean is far greater than 1 — 1/22 = 0.75.

In this way, the Chebychev’'s theorem and the EmglifRule play an important role in understanding mlature and
importance of the standard deviation as a meadudispersion.
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The next topic of today’s lecture is the five-numbammary. (Now that we have studied the three majoperties of
numerical data (i.e. central tendency, variatiamj ahape), it is important that we identify and adige the major
features of the data in a summarized format.)

One approach to this “exploratory data analysigbidevelop a five-number summary.

FIVE-NUMBER SUMMARY

A five-number summary consists of X0,Q1, Media8, @1d Xm ; It provides us quite a good idea atloeitshape of
the distribution. If the data were perfectly symrieetl, the following would be true:

1. The distance from Q1 to the median would be etjuile distance from the median to Q3:

THE SYMMETRIC CURVE

f
a
= >
Ql Q3
ﬁﬁ
3. The distance from gto Q; would be equal to the distance fromtQ X,
THE SYMMETRIC CURVE
f
y
» X
XO Ql QS Xm
M M
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3. The median, the mid-quartile range, and the mgleamould all be equal. All these measures would bt equal to
the arithmetic mean of the data:

THE SYMMETRIC CURVE

X =Mid -R ge

X =
= Mid —quartilerange

On the other hand, for non-symmetrical distribusiothe following would be true:
1. In right-skewed distributions the distance fromt@X,, greatly exceeds the distance frogtX Q.

THE POSITIVELY SKEWED CURVE

X Q Q X > X
0 1 m
H H
2. in right-skewed distributions,

median < mid-quartile range < midrange:
THE POSITIVELY SKEWED CURVE

X
X / ’ \Mid-Range

Mid-quartile Range
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Similarly, in left-skewed distributions, the distanfrom X0 to Q1 greatly exceeds the distance @8rto Xm.Also, in
left-skewed distributions, midrange < mid-quarté@ge < median.
Let us try to understand this concept with the leélan example

EXAMPLE

Suppose that a study is being conducted regarbim@iinual costs incurred by students attendinggubtsus private
colleges and universities in the United States wfefica. In particular, suppose, for exploratorygmses, our sample
consists of 10 Universities whose athletic prograars members of the ‘Big Ten’ Conference. The ahwcoats
incurred for tuition fees, room, and board at 18osds belonging to Big Ten Conference are givefobsws:

Name of University Annu(?rL gggg
Indiana University 15.6
Michigan State University 17.0
Ohio State University 15.2
Pennsylvania State University| 16.4
Purdue University 15.2
University of Illinois 15.4
University of lowa 13.0
University of Michigan 23.1
University of Minnesota 14.3
University of Wisconsin 14.9

If we wish to state the five-number summary forsthelata, the first step will be to arrange our -@atain ascending
order:
Ordered Array:

X0=13.0|14.3|14.915.2]15.2(15.4|15.6 |16.4 | 17.0 | Xmm = 23.1

And if we carry out the relevant computations, e that:

*  The median for this data comes out to be 15.30stwed dollars.
e The first quartile comes out to be 14.90 thousasithuss, and
e The third quartile comes out to be 16.40 thousaiiduc.

Therefore, the five-number summary for this dataisse
The Five-Number Summary:

XO Ql )? QS ><m
13.0[ 14.9| 15.3| 16.4| 23.1

If we apply the rules that | am conveyed to yotharswhile ago, it is clear that the annual cosadar our sample are
right-skewed. We come to this conclusion becauseofreasons:

e The distance from Q3 to Xm (i.e., 6.7) greatly edd=®the distance from X0 to Q1 (i.e., 1.9).
e If we compare the median (which is 15.3), the migitjle range (which is 15.65), and the midrangki¢tv
is 18.05), we observe that the median < the midtdeaange < the midrange.

Both these points clearly indicate that our disttidn is positively skewed.
The gist of the above discussion is that the fiuerber summary is a simple yet effective way of deieing the shape
of our frequency distribution --- without actuatlyawing the graph of the frequency distribution.
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LECTURE NO. 13

* Box and Whisker Plot

» Pearson’s Coefficient of Skewness
Prior to discussing the THE BOX-AND-WHISKER PLOTetlus review the concept of THE FIVE-NUMBER
SUMMARY. As indicated in the last lecture, once have studied the three major properties of nhumedata (i.e.
central tendency, variation, and shape), it is irgu that we identify and describe the major feedwf the data in a
SUMMARIZED format. One way of doing this is to déwe a five-number summary.

EIVE-NUMBER SUMMARY

A five-number summary consists 0§,X;, Median, Q; Xm.It provides us a better idea as to the SHAREhe
distribution, as explained below:
If the data were perfectly symmetrical, the follagiwould be true:
1. The distance from Q1 to the median would be equahé¢ distance from the median to Q3, as shown
below:

THE SYMMETRIC CURVE

v
X

Q. 7 Qs
—>—>

2. The distance from X0 to Q1 would be equal todis¢éance from Q3 to Xm, as shown below:

THE SYMMETRIC CURVE

XO Ql QS Xm
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3. The median, the mid-quartile range, and the amige would ALL be equal.
These measures would also be equal to the arithmmetan of the data, as shown below:

THE SYMMETRIC CURVE

* » X
X =X = Mid - Range

Mid - quartile range

On the other hand, for non-symmetrical distribusice following would be true:

1. In right-skewed (positively-skewed) distributiothe distance from Q3 to Xm greatly EXCEEDS thstatice from
X0 to Q1, as shown below:

THE POSITIVELY SKEWED CURVE

2. In right-skewed distributions,
median < mid-quartile range < midrange

This is indicated in the following figure:

Virtual University of Pakistan 96



STA301 - Statistics and Probability Y

THE POSITIVELY SKEWED CURVE

—h

»X
x / f \Mid—Range

Mid-quartile Range
Similarly, in left-skewed distributions, the distanfrom X0 to Q1 greatly exceeds the distance f@8rto Xm.Also, in
left-skewed distributions, midrange < mid-quartée@ge < median.
Let us try to understand this concept with the leélan example:

EXAMPLE

Suppose that a study is being conducted regatti@gannual costs incurred by students attendindiqoub
versus private colleges and universities in thetéghiStates of America. In particular, suppose, érploratory
purposes, our sample consists of 10 Universitiessetathletic programs are members of the ‘Big Temnference?
The annual costs incurred for tuition fees, roond koard at 10 schools belonging to Big Ten Comiggeare given in
the following table; state the five-number summianthese data.

Annual Costs Incurred on Tuition Fees, etc.

Name of University Annu(?rL 2888
Indiana University 15.6
Michigan State University 17.0
Ohio State University 15.2
Pennsylvania State University| 16.4
Purdue University 15.2
University of Illinois 15.4
University of lowa 13.0
University of Michigan 23.1
University of Minnesota 14.3
University of Wisconsin 14.9

SOLUTION:
For our sample, the ordered array is

Xo=13.0114.3]14.9]15.2|15.2|15.4]15.6 |16.4]17.0 | Xm = 23.1
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The median for this data comes out to be 15.30stdwod dollars. The first quartile comes out to bedQ4housand
dollars, and the third quartile comes out to b&Qéhousand dollars.
Therefore, the five-number summary is:

XO Ql )2 QS Xm
13.0] 14.9] 15.3] 16.4] 23.1

We may now use the five-number summary to studgkta@eof this distribution:

We notice that

1. The distance from Q3 to Xm (i.e., 6.7) grealgeeeds the distance from X0 to Q1 (i.e., 1.9).

2. If we compare the median (which is 15.3), thd-ouiartile range (which is 15.65), and the midrafvgeich is
18.05), we observe that the median < the mid-deadnge < the midrange.

Hence, from the preceding rules, it is clear that annual cost data for our sample gat-skewed The gist of the
above discussion is that the five-number summary BIMPLE yet effective way of determining the shag our
frequency distribution --- WITHOUT actually drawirige graph of the frequency distribution. The cqia# the five
number summary is directly linked with the concepthe box and whisker plot:

BOX AND WHISKER PLOT

In its simplest form, a box-and-whisker plot pra@sda graphical representation of the data throtgyfivie-number
summary.
Box and Whisker Plot

i .. Variable
>f Interest

VAR

To construct a box-and-whisker plot, we proceefbbgws:
Steps involved in the construction of the Box ankisker Plot:

1. The variable of interest in represented on thrizbntal axis.

T T T O O RN BN
0O 2 4 6 8 10 12
Variable of Interest
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2. A BOX is drawn in the space above the horizoaéd in such a way that the left end of the bagrel with the first
quartile Q1 and the right end of the box is align&ith the third quartile Q3.

| I D N D N N BN N B B I>Variable

of Interest
0 7’4 6 No 12
Ql Q3

3. The box is divided into two parts by a VERTICAhe that aligns with the MEDIAN.

Variable

of Interest
0 74 \6 10 12
Q1 "

Qs

4. A line, called a whisker, is extended from theHT end of the box to a point that aligns with XiBe smallest
measurement in the data set.

||||||||||||>Variable
of Interest
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Y,

5. Another line, or whisker, is extended from th&SRT end of the box to a point that aligns with th&RGEST

measurement in the data set.

Variable
of Interest

Xm

Let us understand the construction of the box-ahisier plot with reference to an example:

EXAMPLE

The following table shows the downtime, in houes;arded for 30 machines owned by a large manufagtaompany.

The period of time covered was the same for allhimess.

DOWNTIME IN HOURS OF 30 MACHINES

41 4 1 4 1] 4
6] 10] 5 5 8] 2
1] 6] 10] 1] 13] 5
8] 4 3 9 41 9
1] 4 41 11) 8] 9

In order to construct a box-and-whisker plot feesh data, we proceed as follows:

First of all, we determine the two extreme valuesur data-set:
The smallest and largest values are X0 = 1 and X, ¥espectively.

As far as the computation of the quartiles is cameg, we note that, in this example, we are dealiitiy raw data.

The first quartile is the (30 + 1)/4 = 7.75th oltmeasurement and is equal to 4.

The median is the (30 + 1)/2 = 15.5th measurenoerit,and

The third quatrtile is the 3(30 + 1)/4 = 23.25themetl measurement, which is 8.25.

As a result, we obtain the following box and whisgkot:
Box and Whisker Plot

0 2 4 6 8 10 12

Downtime (hours)

14

Virtual University of Pakistan

100



STA301 - Statistics and Probability Y

INTERPRETATION OF THE BOX AND WHISKER PLOT

With regard to thénterpretationof the Box and Whisker Plot, it should be noteat thy looking at a box-and-whisker
plot, one can quickly form an impression regardihg amount of SPREAD, location of CONCENTRATION,dan
SYMMETRY of our data set.

A glance at the box and whisker plot of the exantipéé¢ we just considered reveals that:

*  50% of the measurements are between 4 and 8.25.

e The median is 5, and the range is 12. and, mosiriaptly:

«  Since the median line is closer to th# end of the box, hence the data are SKEWED to ti&HR.(The
fundamental point is that in a perfectly symmefritata set, the median line will be EXACTLY HALFWAY
between the two ends of the box, and in a datthaets skewed to the LEFT, the median line will be
CLOSER TO THE RIGHT END of the box.)

Let us consolidate all the above ideas by going bathe example of the Big Ten Universities in erhithe annual
costs incurred for tuition fees, room, and boartiaschools belonging to Big Ten Conference wevergas follows:

Name of University Annu(?rL 2888
Indiana University 15.6
Michigan State University 17.0
Ohio State University 15.2
Pennsylvania State University| 16.4
Purdue University 15.2
University of Illinois 15.4
University of lowa 13.0
University of Michigan 23.1
University of Minnesota 14.3
University of Wisconsin 14.9

As stated earlier, the Five-Number Summary of daita-set is :
For this data, the Box and Whisker Plot is of thierf given below:

Box and Whisker Plot

5 10 15 20 25
Thousands of dollars

As indicated earlier, the vertical line drawn witlthe box represents the location of the medianeval the data; the
vertical line at the LEFT side of the box represehe location of Q1, and the vertical line atRISGHT side of the box
represents the location of Q3. Therefore, the BOXains the middle 50% of the observations in ik&itution. The
lower 25% of the data are represented by the whitle¢ connects thieft side of the box to the location of thmallest
value, X0, and the upper 25% of the data are repted by the whisker connecting ttight side of the box to Xm.
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INTERPRETATION OF THE BOX AND WHISKER PLOT

We note that (1) the et median line is CLOSER to the left side of thex, and (2) the left side
whisker length is clearly SMALLER than the rightisiwhisker length .Because of these observatioasThe gist of
the above discussion is that if the median linatia greater distance from the left side of the &®xompared with its
distance from the right side of the box, our disition will be skewed to the left.

In this situation, the whisker appearing on tHe dede of the box and whisker plot will be longer

than the whisker of the right side. Conclude thatdata-set of the annual costs is RIGHT-skewed.
The gist of the above discussion is that if the iaredine is at a greater distance from the lefesid the box as
compared with its distance from the right sidehaf box, our distribution will be skewed to the léft this situation, the
whisker appearing on the left side of the box ahisler plot will be longer than the whisker of tight side. The Box
and Whisker Plot comes under the realm of “exptosaidata analysis” (EDA) which is a relatively newea of
statistics. The following figures provide a compari between the Box and Whisker Plot and the toadit procedures
such as the frequency polygon and the frequenaxeowith reference to the SKEWNESS present in tha-dat.

Four different types of hypothetical distributioase depicted through their box-and-whisker plotsl an
corresponding frequency curves.
1) When a data set is perfectly symmetrical, asesctse in the following two figures, the mean, medimidrange,
and mid-quartile range will be the SAME:

(a) Bell-shaped distributic

F-L_ 1 1-A

(b) Rectanauladistributior

In ADDITION, the length of the left whisker will bequal to the length of the right whisker, and rtedian line will
divide the box in HALF. (Inpractice it is unlikely that we will observe a data sesttlis perfectly symmetrical.
However, we should be able to state that our dettésapproximatelysymmetricalif the lengths of the two whiskers
arealmostequal and thenedianline almostdivides the box in HALF.)

2) When our data set is LEFT-skewed as in the folgwfigure, the few small observations pull the raidye and
mean toward the LEFT tail:
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Left-skewed distribution

For this LEFT-skewed distribution, we observe tthet skewed nature of the data set indicates tleat tis a HEAVY
CLUSTERING of observations at the HIGH END of tleale (i.e., the RIGHT side).

75% of all data values are found between the ld§ieeof the box (Q1) and the end of the right whisgém).
Therefore, the LONG left whisker contains the disttion of only the smallest 25% of the observasioemonstrating
the distortion from symmetry in this data set.

3) If the data set is RIGHT-skewed as shown in tHieong figure, the few large observations PULL timdrange
and mean toward the right tail.

--CL1---4

Right-skewed distribution

For the right-skewed data set, the concentratiotiatd points is on the LOW end of the scale (ite,left side of the
box-and-whisker plot). Here, 75% of all data valaes found between the beginning of the left whigk®) and the
RIGHT edge of the box (Q3), and the remaining 25%he observations are DISPERSED ALONG the LONGtrig
whisker at the upper end of the scale. This brimg$o the end of the discussion of the five nunswenmary and the
box and whisker plot.

Next, we discusanotherway of determining the skewness of the data-se:tlat is the(PEARSON’'S

COEFFICIENT OF SKEWNESS

In this connection, the first thing to note is tHay providing information about the location oferies and
the dispersion within that series it might appéet tve have achieved a PERFECTLY adequate ovezadription of
the data. But, the fact of the matter is thatsifjuite possible that two series are decidedlyirdiks and yet have
exactly the same arithmetic mean AND standard dievial et us understand this point with the hel@ofexample:

EXAMPLE: i
EXAMPLE: Age of Onset of | Children Children of
Nervous Asthma of
. : Non-Manual
in Children Manual Workers
(to Nearest Year)] Workers
0-2 3 3
3-5 9 12
6-8 18 9
9-11 18 27
12 — 14 9 6
15— 17 3 3
60 60
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In order to compute the mean and standard devi&iosach distribution, we carry out the followinglculations:

Age of Onset of

Nervous Asthma Children Children of
. . of Manual Non-Manual
in Children Workers Workers

(to Nearest Year)

AgeGroup| X | £ | fiX | fX* f, | f2X | f2X°
0-2 1 3 3 3 3 3 3
3-5 4 9 36 144 12 48 192
6-8 7 18] 126 882 9 3 441

9-11 10] 18] 18(¢ 1800 ' 240 2700
12 - 14 13 9 117 1521 78 1014
15-17 16 3 48 768 44 76

B
51 | 60| 510f 5118 6Q S51p 5118

WIIN

We find that, for each of the two distributionsg timean is 8.5 years and the standard deviatioisy@ars.
The frequency polygons of the two distributions aseollows:

30 -
25 4 non-manual
20 A / \ \

15 4
10 4
5
0

manual

number of children

age to nearest year

By inspecting these, it can be seen that one lkiigian is symmetrical while the other is quite diffint. The
distinguishing feature here is the degree of asymmyma SKEWNESSn the two polygons. In order tmeasurethe
skewness in our distribution, we compute BEBARSON’s COEFFICIENT OF SKEWNESS which is defined as:
Pearson’s Coefficient of Skewness:

mean- mode
standard deviation

Applying theempirical relationbetween the mean, median and the mode, the P&iGoefficient of Skewness is
given by:

Pearson’s Coefficient of Skewness
_ 3(mean-median
standard deviation

For asymmetricaldistribution the coefficient will always be ZER®y a distribution skewed to the RIGHT the answer
will always be positive, and for one skewed toltB#T the answer will always be negative.

Let us now calculate this coefficient for the exdengf the children of the manual and non-manuakers.

Sample statistics pertaining to the ages of thesdren are as follows:
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Children of | Children of

Manual Non-Manual

Workers Workers
Mean 8.50 years 8.50 year$
Standard deviation 3.61 yearg 3.61 yedrs
Median 8.50 years 9.16 years
Q1 6.00 years 5.50 years
Qs 11.00 years 10.83 yearp
Quatrtile deviation 2.50 years 2.66 yealls

The Pearson’s Coefficient of Skewness is calculdtedeach of the two categories of children, aswshdelow:
Pearson’s Coefficient of Skewness (Modified):

Ages of Children Ages of Children
of Manual Workers of Non-Manual Workers

3(8.50 - 8.50 ) 3(8.50 - 9.16 )

3.61 3.61

=0 =—0.55

For the data pertaining to children of manual weskéhe coefficient is zero, whereas, for the akifdof non-manual
workers, the coefficient has turned out to be aatieg number. This indicates that the distributodrthe ages of the
children of the manual workers is symmetric wherggsdistribution of the ages of the children of thon-manual
workers is negatively skewed.

The students are encouraged to draw the frequenlgggn and the frequency curve for each of the digtributions,

and to compare the results that have just beernalotavith theshapeof the two distributions.
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LECTURE NO. 14

Bowley’s coefficient of skewness

The Concept of Kurtosis

Percentile Coefficient of Kurtosis

Moments & Moment Ratios

Sheppard'’s Corrections

The Role of Moments in Describing Frequency Disitidins

You will recall that the Pearson’s coefficient dfesvness is defined as (mean - mode)/standard d®vjiand if we
apply the empirical relation between the mean, aredind the mode, then the coefficient is given by:

PEARSON'S COEFFICIENT OF SKEWNESS:

_ 3(mean-median

" gandard deviation

As you can see, this coefficient involves the claftton of the mean as well as the standard deviatatually, the
numerator is divided by the standard deviationriteo to obtain a pure number. If the analysis ofata-set is being
undertaken using the median and quartiles aloee, e use a measure called Bowley's coefficierskefvness.

The advantage of this particular formula is thaeduires NO KNOWLEDGE of the MEAN or STANDARD
DEVIATION. In an asymmetrical distribution, the gtikes will NOT be equidistant from the median, atite
AMOUNT by which each one deviates will give an ication of skewness. Where the distribution is pasliy skewed,
Q1 will be closer to the median than Q3.In otherdgo the distance between Q3 and the median wifrbater than
the distance between the median and Q1.

POSITIVE SKEWNESS

Q. Qs

—p < >

And hence, if we subtract the distance median fr@t the distance Q3 - median, we will obtain aiflee answer.
In case of a positively skewed distribution:

(Q3 - median) - (Median - Q1) >0

i.e. Q1 + Q3 - 2 median >0

The opposite is true for skewness to the left

Virtual University of Pakistan 106



STA301 - Statistics and Probability Y

NEGATIVE SKEWNESS

In this case:

(Q3 - median) - (Median - Q1p<i.e.
Q1+ Q3-2median<0
The gist of the above discussion is that in casepdsitively skewed distribution, the quantity

QI8 - oy

will be positive, whereas in case of a negativesgribution, this quantity will be negative.
A RELATIVE measure of skewness is obtained by dividing

Q1+Q3- 252

by the inter-quartile range i.e. Q3 - Q1, so thaiviey's coefficient of skewness is given by:
Bowley’s coefficient of Skewness

— (Q1+Q3_2>~<)

It is a pure (unit less) number, and its valuré Hietwéen Oand 1.

For a positively skewed distribution, this coefiot will turn out to be positive, and for a negalyw skewed
distribution this coefficient will come out to begative. Let us apply this concept to the exampimirding the ages of
children of the manual and non-manual workerswweatonsidered in the last lecture.

Age ofOnsetof | oo [ children of
Nervous Asthma
TVOUS of Manual| Non-Manual
in Children Workers Workers
(to Nearest Year)
0-2 3 3
3-5 9 12
68 18 2
9-11 18 27
12-14 9 6
15-17 3 3
60 60
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EXAMPLE :
Sample statistics pertaining to ages of childremahual and non-manual workers:
Children of | Children of
Manual Non-Manual
Workers Workers
Mean 8.50 years 8.50 year$
Standard deviation 3.61 yearp 3.61 yedlrs
Median 8.50 years 9.16 year$
Q1 6.00 years 5.50 years
Qs 11.00 years 10.83 yearp
Quartile deviation 2.50 years 2.66 yealls

The statistics pertaining to children of manual kews yield the following PICTURE:

Ages of Children of Manual Workers

> X

Q.= e Q3=
6.0 11.0

On the other hand, the statistics pertaining tédodm of non-manual workers yield the following AMIRE:

Ages of Children of Non-Manual Workers

P —

\

TN

A

- » X
= X=92 Q,=108

»
»

Q andX X andQ,

The diagram pertaining to children of non-manuatkeos clearly shows that the distance between

a
v
a
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is much greater than the distance between

which happens whenever we are dealing with a neggtskewed distribution. If we compute the Bovigegoefficient
of skewness for each of these two data-sets, varobt

Bowley’s Coefficient of Skewness

Ages of Children Ages of Children
of Manual Workers of Non-Manual Workers
_ 1100 + 6.00 - 2x 850 1083 + 550 - 2x 9.16
B 2.50 10.83 - 5.5C
=0 =—-0.37

As you have noticed, for the children of the mamaitkers, the Bowley's coefficient has come oubéozero, whereas
for the children of the non-manual workers, thefiigent has come out to be negative. This indisatieat the
distribution of the ages of the children of manwalrkers is symmetrical whereas the distributiorthaf ages of the
children of the non-manual workers IS negativelgvgéd --- EXACTLY the same conclusion that we olgdinvhen
we computed the Pearson’s coefficient of skewness.

KURTOSIS

The term kurtosis was introduced by Karl Pearddns word literally means ‘the amount of hump’, asd
used to represent the degree of PEAKEDNESS oreifatof a unimodal frequency curve.
When the values of a variable are closely BUNCHBONd the mode in such a way that the peak of theedoecomes
relatively high, we say that the curve is LEPTOKURT

=> Leptokurtic

Mode
On the other hand, if the curve is flat-topped,saw that the curve BLATYKURTIC:

Platykurtic
-~

|
|
|
Mode

The NORMAL curve is a curve which is neither vemaged nor very flat, and hence it is taken as A BABOR
COMPARISON. The normal curve itself is callRESOKURTIC.

| will discuss with you the normal in detail whemwiscuss continuous probability distributions.

At the moment, just think of the symmetric humpgcurve shown below:
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Mesokurtic

Mode

Super-imposing the three curves on the same gvepbbtain the following picture:

- Leptokurtic

Mesokurtic

Platykurtic

The tallest one is called leptokurtic, the intermagzione is called mesokurtic, and the flat orealked platykurtic.
The question arises, “How will we MEASURE the degoé peakedness or kurtosis of a data-set?”
A MEASURE of kurtosis based on quartiles and petitanis

K = Q.D.
Pgo - F)10

This is known as thEERCENTILE COEFFICIENT OF KURTOSIS.

It has been shown that K for a normal distribui®0.263 and that it lies between 0 and 0.50.

In case of a leptokurtic distribution, the perclentioefficient of kurtosis comes out to be LESS THB.263, and in the
case of a platykurtic distribution, the percentiteefficient of kurtosis comes out to be GREATER THA.263.The
next concept that | am going to discuss with yothe concept of moments --- a MATHEMATICAL concephd a
very important concept in statistics.

MOMENTS

Amomentesignates the power to which deviations are déigéore averaging them.
For example, the quantity

23 -x) = 2 (x =)

is called the first sample moment about the meadh j@denoted by m1.
Similarly, the quantity
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is called the second sample moment about the naeahis denoted by m2.In general, the rth momenttathe mean
is: the arithmetic mean of thth power of the deviations of the observations frmean. In symbols, this means that

for sample data.

L5 —x)
m, = nZ(XI X)

Moments about the mean are also called the centralents or the mean moments.
In a similar way, moments about an arbitrary origeya, are defined by the relation

, for sample data

Forr =1, we have

——z(

and

X -
Z —a=X-d.

——z&—a)
Putting r = 2 in the relation for mean moments,see that

1 -\2
m;, = n > (x; =%)
which is exactly the same as the sample variance.

If we take the positive square root of this quantite obtain the standard deviation.
In the formula,

m'r :EZ(Xi _a)r

if we puta = 0, we obtain n
1
==¥x'
n

and this is called the rth moment about zero, erth moment about the origin.
Let us now consolidate the idea of moments by clamgig an example.

EXAMPLE
Calculate the first four moments about the meartterfollowing set of examination marks: 45, 32, 88, 39, 36, 41,
48 & 36.
For convenience, the observed values are writteanimcreasing sequence. The necessary calculajgsar in the
table below:

X | xi=x | =% xi=x°| x=x?*

32 -8 64 —-512 4096

36 | -4 16 — 64 256

36 -4 16 - 64 256

37 -3 9 - 27 81

39 -1 1 -1 1

41 1 1 1 1

45 5 25 125 625

46 6 36 216 1296

48 8 64 512 4096

360 0 232 186 10708
Now - Z - @ 40 marks.

9
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Therefore
my = Z(Xi _X) =0
n
o\
m, = Z(Xin X)° 232: 2578 (markg?
_ )3
mg = Z(Xin X) 186 2067 (markg®
o\
m, = Z(X‘n I 10;08:1189.78 (markg*

All the formulae that | have discussed until nowtgie to the case of raw data.
How will we compute the various moments in the aafsgrouped data?

MOMENTS IN THE CASE OF GROUPED DATA

When the sample data are grouped into a frequestiybdition having k classes with midpoints x1, x2, xk and the
corresponding frequencies f1, f2, ...,fk;fi= n), the rth sample moments are given by

m, :%Zfi(xi _i)r , and
1
m'r:Hzfi(Xi ~a).

In the calculation of moments from a grouped frempyedistribution, an error is introduced by thewssption that the
frequencies associated with a class are locatdteaVlIDPOINT of the class interval. You remembee ttoncept of
grouping error that | discussed with you in anieatecture? Our moments therefore need corrections

These corrections were introduced by W.F. Sheperd hence they are known3dEPPARD’S CORRECTIONS:
Sheppard’s Corrections for Grouping Error:

It has been shown by W.F. Sheppard that, if thgueacy distribution (i) is continuous and (ii) &6ff to zero at each
end, the corrected moments are as given below:

2
m, (corrected) = m(uncorrected) _25 :

mj3 (corrected) = m(uncorrected);
2
my (corrected) = m(uncorrected) DZ_ m, (uncorrected) -5% h*;

whereh denotes the uniform class-interval.

The important point to note here is that theseemions are NOT applicable to highly skewed disitidns and
distributions having unequal class-intervals. | amow going to discuss with you certain mathematical
RELATIONSHIPS that exist between the moments abimeimean and the moments about an arbitrary origin.

The reason for doing so is that, in many situatidnis easier to calculate the moments in the fitrstance, about an
arbitrary origin. They are then transformed to itiean-moments using the relationships that | am gaiwg to convey

to you.

The equations are:

m =0
m, = m'y = (m'y)%;
m3 = mI3_3 mlz m'1+2(m'1)3, and

m, =m'y—4 m';m’ + 6m’, (m'l)z - 3(m'1)4
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In this course, | will not be discussing the mathéoal derivation of these relationships. You asosme to study the
mathematics behind these formulae if you are istetk (The derivation is available in your own téexiok.)But |
would like to give you two tips for remembering skeformulae:

* In each of these relations, the sum of the coeffitsi of various terms on the right hand side eqgexis and

e Each term on the right is of the same dimensioth@serm on the left.
Let us now apply these concepts to an example:

EXAMPLE

Compute the first four moments for the followingttibution of marks after applying Sheppard’s cciigns:

Marks out of 20 5 6 7 8 9101112 13 14 15

No. of Students 1 2 51020512211 5 3 1

If we wish to compute the first four moments abitie mean by the direct method, first of all, wel Wwdve to compute
mean itself. The mean of this particular data-setes out to be 10.06.
But, 10.06 is not a very convenient number to wwithk!
This is so because when we construct the columns oX -X (X - X) etc.,
)

we will have a lot many decimals. An alternativeyved computing the moments is to take a convermember as the
arbitrary origin and to compute the moments abbig humber. Later, we utilize the relationshipswesn the
moments about the mean and the moments aboutkitegr origin in order to find the moments abdut mean.

In this example, we may select 10 as the arbitoaigin, which is the X-value corresponding to thghtest frequency
51, and construct the column of D which is the same-10. Next, we compute the columns of fD, fI23, and so
on.

Earnings| No. of

Di 2 3 4
in Men ! fiD fiD f;D; fiD;
R | 1 | %10
5 1 -5 -5 25 — 124 625
6 2 -4 -8 32 — 124§ 512
7 5 -3 —-15 45 — 13f 404
8 10 -2 - 20 40 - 80 160
9 20 -1 -20 20 - 20 20
10 51 0 0 0 0 0
11 22 1 22 22 22 22
12 11 2 22 44 88 176
13 5 3 15 45 135 405
14 3 4 12 48 192 768
15 1 5 5 25 125 625
Sum 131 . 8 346 74 3718
] 0.06 | 2.64 | 0.56 | 28.38
Sum+n 1 .. et | et —ry
=mi =mo =ms =My

Moments about the mean are:

ml=0
m2=m'2-(m "1)2 =2.64 - (0.06)2 = 2.64

m3=m’'3-3m2m'1+2(m’1)3
=0.56 — 3(2.64) (0.06) + 2(0.06)3
=0.08

m4d=m’4—-4m 3m "1 +6m 2 (m’ 1)2 —3(m 1)4
=28.38 —4.(0.56) (0.06) + 6(2.64) (0.06)2 —.BQ)4
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=28.30
Applying Sheppard'’s corrections, we have
m2 (corrected) = m2 (uncorrected) — =2.64 8&G@.56,
m3 (corrected) = m3 (uncorrected) = 0.08,

m4 (corrected) = m4 (uncorrected)
- . m2 (uncorrected) +

=28.30-1.32 +0.03 = 27.01
| have discussed with you in quite a lot of dettad concept of moments.
The question arises, “Why is it that we are goimngugh all these lengthy calculations? What isdigmificance of
computing moments? “You will obtain the answer te thuestion when | discuss with you the concept ofnerd
ratios. There are certain ratios in which bothribenerators and the denominators are moments. Thecmwsnon of
these moment-ratios are denoted by bl and b2, dimetddvy the relations:

MOMENT RATIOS:.

b = (my)* m,

3 2
(m,) (m,)
(in the case of sample data)
They are independent of origin and units of measangn.e. they are pure numbers.
b1l is used to measure the skewness of our diswiutind b2 is used to measure the kurtosis ofigtealition.

andb, =

INTERPRETATION OF bl

For symmetrical distributions, bl is equal to zétence, for any data-set, b1 comes out to be rero,
can conclude that our distribution is symmetricsHould be noted that the measure which will indi¢lagedirection of
skewness is the third moment round the mean.

If our distribution is positively skewed, m3 wille positive, and if our distribution is negatively
skewed, m3 will be negative.bl will turn out tofmmsitive in both situations because it is given by

3
)
(Since m3 is being squared, b1 will be positlvea% tess of the sign of m3.)

INTERPRETATION OF b2

For the normal distribution, b2 = 3.
For a leptokurtic distribution, b2 > 3, and forlatpkurtic distribution, b2 <3
You have noted that the third and fourth momentsuitiee mean provide information about the skewneskthe
kurtosis of our data-set. This is so because m8redn the numerator of b1 and m4 occurs in theerator of b2.
What about the dispersion and the centre of owar-glat? Do you not remember that the second moment #te mean
is exactly the same thing as the variance, thetipessquare root of which is the standard deviatienthe most
important measure of dispersion? What about theeerf the distribution? You will be interestedrtote that the first
moment about zero is NONE OTHER than the arithnragan!

This is so because %z (Xi 3 0)1 1 T,

is equal to n

--- none other than the arithmetic mean! In thig/wthe first four moments play a KEY role in desgrifrequency
distributions.
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LECTURE NO. 15

On numerous occasions, our interest lies not ihgas single variable but in two, three, four orren@ariables. For
example, if we talk about the yield of a crop, walize that the yield of any crop depends on eetaof factors --- the
fertility of the soil, the type of fertilizer usethe amount of rainfall, and so on.

e Simple Linear Regression

e  Standard Error of Estimate

*  Correlation

Let me begin the discussion of the bivariate sitwmely picking up an example.

EXAMPLE:

An important concern for any pharmaceutical compproducing drugs is to determine how a particulargdwill
affect one’s perception or general awareness. Sgpoe such company wants to establish a relatphsgtween the
PERCENTAGE of a drug in the blood-stream and th8BIGEH OF TIME it takes to respond to a stimulus.
Suppose the company administers this drug on ®stsind obtains the following information:

Percentage | Reaction Time
Subject of drug (milli-seconds)
X Y
A 1 1
B 2 1
C 3 2
D 4 2
E 5 4

In this example, the reaction time to the stimukié DEPEND on the amount of drug in the blood-stre As you
must know, the dependent variable is denoted bgnd, the independent variable is denoted by X.l& ¢leample, the
reaction time will be denoted by Y, and the peragatof drug in the blood stream by X. Going backh® example
that we were just considering, it is obvious thatave interested in determining the nature of étetionship between
the amount of drug in the blood stream and the tirrakes to react to a stimulus.

In order to ascertain the nature of the relatigndi@tween these two variables, the first step draov aSCATTER

DIAGRAM --- which is a simple graph of the X-values agathe Y-values depicted on the graph paper in ¢ fof
points.

In this example, the scatter diagram is as follows:

Scatter Diagran

o B N W h~ O

As you can see, there is an upward trend in thesadiagram i.e. it is clear that as X increasés|so increases. Of

course, the points are not all falling on a straigie, but if we look carefully, we find an overdihear pattern as
shown below:
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Scatter Diagram:

It will be very RARE in the field of behavioral social sciences to find two sets of data whichral&ted perfectly by
a straight line: it is more likely that only a gealdinear pattern or tendency will be apparent.

WRHY is it that we will not get an exact linear reétaship?

Let me explain this to you with the help of an epéen

Suppose one is studying the relationship betweerrdbearch and development expenditure and thé prafgin on
products of a number of firms. While it may be gaflg true to state that the two will increase tibge, it is
INEVITABLE that some firms’ profit margin will be igher than others with the SAME
R and Dexpenditure, and vice versa. The reasons fomthig be that the conditions under which the varfouss are
operating may be very different. The goods beirgdpced, the firm's share of the market, the efficieof the firm
etc. will ALL play a part in determining the inddaal results.

A linear relationship betwdam variables is a SURPRISINGLY common occurrerzc®l even where a
refined non-linear curve might prove slightly superthe SIMPLER form will often be quite adequatehe context of
the problem under consideration. Having plotted rihgairs of values in the form of a scatter diagréfnan overall
linear pattern emerges, then the object of regvadgsito superimpose on this pattern the genelaioaship between y
and x in the linear form which will REMOVE the effeof outside factors. | am sure that you are awétbe equation
of a straight line.

Do you not remember the equati¥h= mX + c, where Y represents the slope of the line, andpcesent the Y-
intercept?

This equation can also be stated as Y = ¢ + mX,fand rename c and m as ‘a’ and ‘b’, the equabenomesr = a +
bX.

EQUATION OF A STRAIGHT LINE

Y =a+bX
Where
* Y represents the dependent variable
e Xrepresents the independent variable
e arepresents the Y-intercept
(i.e. the value of Y when X is equal to zero)
* b represents the slope of the line
(i.e. the value of the taly whereb represents the angle between the line and thedrdal axis)
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Interpretation of ‘a’ and ‘b’:

(e}]

o
>

X

A very important point to note is that MANY lineartbe drawn through the same scatter diagram.

THE LINEAR PATTERN:

B O o N
o O O o
L L L )

2N
o o
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Evaporation loss (pints)
w
o

o

0 5 10 15 20 25 30
Days in stock

Even with the greatest care and skill, a line drédngtween the points with a ruler will be highly SIBCTIVE, and
different individuals will arrive at different lirse

The real objective is to find the line of BEST fit. For shiwe use a method known as THE METHOD OF LEAST
SQUARES. The line of best fit obtained by the metbbleast squares is called the REGRESSION LINE of X.
And, this whole process is known as simple linesgression. A very important point to note herehit,t from the
MATHEMATICAL standpoint, simple linear regressioequires that X is a NON-RANDOM variable, whereas¥a
RANDOM variable. For example, consider the caseagficultural experiments. If we conduct an expentnt®
determine the optimal amount of a particular feeeil to obtain the maximum yield of a certain crtgen the amount
of fertilizer is a non-random variable whereasytedd is a random variable. This is so becausetheunt of fertilizer
is in our OWN control. But, the yield is a randorariable because it is NOT in our control. In coriwec with
determining the line of BEST fit, the first poistthat.

If we use the ‘FREE-hand’ method of curve-fittimgarder to represent the relationship between X\aad portrayed
by the scatter diagram, one tends, consciouslybcansciously, to draw the straight line such thate is EQUAL
numbers of points located on either side of the.lin

What is more, the eye will automatically try to gedand EQUATE the total distances between the pa@ihbve and
below the line.

This is a recognition of the fact that the linebekt fit must be an ‘AVERAGE’ line in the true sens

You will recall that the sum of the deviations rduthe ARITHMETIC MEAN of a data-set is always eqt@kero i.e.
the positive and negative deviations CANCEL eatieiot

Similarly, POSITIVE and NEGATIVE deviations round a lineBEST fit must CANCEL out.
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This is the first of the conditions or requiremefuisan optimal line.

But, the point to understand is that there areNIRINITELY large number of straight lines which wshatisfy this
condition. _

Any line that passes through the poir(t % will dgtithis condition, and as shown in the followingre,
numerous lines can pass through the ppift, )

Three equations where

Y Y=-5.42+3.37, Y=8.99+2.14X
70 -

60
50
40
Y
30
20
10

Evaporation loss (pints)

1

i

i

i

1

i
10X 20 30
Days in stock

For each of the three lines that you see, the SEMeVERTICAL deviations between the data-pointsl ¢he line is
ZERO. These deviations are depicted by the follgvdiagram:

\

«—

How will we calculate these vertical deviations?
The values of Y obtained from the line are dendigd .
And the deviations of the actual Y-values from tteeresponding Y-values obtained from the line dveaimed by
subtracting from Y.
In all the cases --- as long as our line passesigirthe point(ly —)1 --- , we find thla¢ sum of the deviations of
theactual Y-values from the corresponding Y-values obtai eﬂyt eline is zero.
Hence, it appears that we need some SECOND critésioestablishing aniqueposition for the BEST-fitting line.
Our interest is NOT simply in achieving a non-zswom: it is the MAGNITUDE of the sum which is our imaoncern.
In the two figures that follow, the DIFFERENCEStive sums of squared deviations for two differemdi passing
through the SAME scatter diagram are clearly pgeda In position 1, the shaded areas are relgtiaefe, but AS the
line is rotated around the poin()? 7) in a clo@endirection to position 2, the areas become small

H
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Position 1

V = oem mm -

V===

X

There would seem to be some UNIQUE position at ithe sum of the square deviations is at a MINIMUMis is
the position ofeastsquares.

If we can ascertain the location of THIS particidaright line in terms of the constants a and theflinear equation Y
=a + bX, then we have found the line of BEST fit

The rationale is that the SMALLER the sum of theagd deviations round the mean, the LESS dispensethe data
points around the fitted line.

THE PRINCIPAL OF LEAST SQUARES

According to the principal of least squares, thstditting line to a set of points is the one fdrich the sum
of the squares of the vertical distances betweempdiints and the line is minimum.
The line Y = a + bX is the one that best fits theeg set of points according to the principal adesquares.
And, this best fitting line is obtained by solvisgnultaneously two equations which are known asnthenal
equations.

NORMAL EQUATIONS
Y Y=natb) X
Y XY=aY X +b Y X?

In connection with these two equations, two pogtitsuld be noted:

1) I will not be discussing the mathematical deiitwa of these equations.

2) The word “normal” here has nothing to do witke tvell-known normal distribution.

For any bivariate data-set, obviously we will havailable to us two columns, a column of X and larmoo of Y.
Hence, obviously, we will be in a position to cortgpaums likeX, XY, > XY, and so on.
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Hence, the only unknown quantities in the two ndrecmations are a and b, as shown below:

NORMAL EQUATIONS
> Y=nat+b) X
D XY=a) X+b) X?

Hence, when we solve the two normal equations samabusly, we will obtain the values of a and ki #rese are
EXACTLY the two quantities that we need in ordeottain the BEST-fitting line.

Let me explain this whole concept to you with tledphof the same example that | picked up in therbégg of today’'s
lecture:

EXAMPLE

An important concern for any pharmaceutical compproducing drugs is to determine how a particulargdwill
affect one’s perception or general awareness. Sgppoe such company wants to establish a relatphsgtween the
PERCENTAGE of a drug in the blood-stream and th&lGEH OF TIME it takes to respond to a stimulus. Soge
the company administers this drug on 5 subjectsoatains the following information:

Percentage | Reaction Time
Subject of drug (milli-seconds)

X Y

m{O|O|w|>
(&1 EXY FV] LS
AN LSS L

Scatter Diagram:

o B N W b~ G

In order to find a and b, we need to solve the twaommal equations, and for this purpose, we willngasut
computations as shown below:

X 1Y | x| xy
1 1] 1 1
2| 1] 4 2
3| 21 9 6
4] 2] 16| 8
5|1 4] 25] 20
151 10| 55| 37
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10=5a+15b —1
37 =15a + 55b —2
-7 =-10b
b=—" =07
-10
10 =5a + 15b
ad 10— 15b =5a
ad 10 - 15(0.7) = 5a
ad 10-10.5=5a
0 —-05=5a [ azg =-0.1

Hence our straight line is given by
Y=-01+0.7X

A hat is placed on top of the Y so as to differatetithe Y values obtained from the line from thesthat pertain to the
actual data-points.
The question is, “What is the advantage of fittihig line?”
The answer to this question is that this line canused to ESTIMATE the value of the dependent béria
corresponding to some particular value of the jrethelent variable. In this example, suppose thaaneenterested in
finding out what will be the reaction time of a pen who has 4.33% of the drug in his blood stre@h&answer will
be obtained by putting X=4.33 in the equation thatust obtained.
Our regression line is

=-0.1+0.7 X
Putting X = 4.33, we obtain

=-0.1+0.7 (4.33)

=-0.1+3.031=2.931

Hence we conclude that it can be expected thatrsopéhaving 4.33% of the drug in his blood streaith take 2.9
milli-seconds to react to the stimulus. A pointlte noted here is that this procedure of estimatiegvalue of the
dependent variable should not be used for extréipolaExtrapolation means the making of estimategredictions
outside the range of the experimental data, aisdnne situations, this can be very unwise.

Let me explain this point with the help of the éolling diagram:

The extrapolation trap

A = region of interpolation

B = regions of extrapolation

C = true relationship in regions o
extrapolation

While a set of observations may show a good linelationship between the variables, there is NE\ABRguarantee
that the SAME linear form is present over THOSEgemof the variable NOT under consideration. | wWawdw like to
convey to you another point: All the discussiort th@ave done until now assumes that Y is the dépenvariable and
X is the independent variable, and therefore, veeragressing Y on X. But, in some situations, wg beinterested in
just the OPPOSITE --- i.e. we may wish to regresmX . In this situation, all we have to do is méeirchange the roles
of X and Y. | would like to encourage you to work this on your own, and to establish the normakéquas that will
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be required in this situation. You may be thinkifd/hy should we go through this hassle? Can't we th& equation
that we have just fitted i.e. Y = a + bX to estimatfrom Y?”

It is important to note that this is not the cd$eve are confronted with a situation where we iiggjto predict Y from
X AND X from Y, thentwo DISTINCT equations need to be found. The regressainY on X and X on Y for the
same bivariate data are NOT identical.

The next concept that | am going to discuss with igathe STANDARD ERROR OF ESTIMATE.

STANDARD ERROR OF ESTIMATE

The observed values of (X, Y) do not all fall o tlegression line but they scatter away from ie @iegree of scatter
of the observed values about the regression lineeesured by what is called the standard deviatioagression or the
standard error of estimate of Y on X.

For sample data, the standard error of estimaibtaned from the formula

Syx =

where Y denotes an observed values, denotes thesponding values obtained from the least-squanesand n
denotes the sample size.

The formula that | just conveyed to you is a bitntiersome to apply because, in order to apply itfirsé need to
compute corresponding to all our X-values.

Alternative formula for Sy.x

The standard error of estimate can be more convidpieomputed from the alternative formula

_ [ZY?-ayY -by XY
yx n-2

INTERPRETATION OF Sy.x

S

The range within which sy.x lies is given by 0 <xsy sy (where sy denotes the standard deviatiahefy values).
sy.x will be zero when all the observed points gallthe regression line (denoting perfect relatigmbetween the two
variables). sy.x will be equal to sy when theradsrelationship between the two variables. Heneectbser sy.x is to
zero (the further away it is from sy), the closee points are to the line, and the more RELIABLBEDis line for

purposes of prediction.

Let us apply this concept to the example of the wrhef drug in the blood stream and the time talcereact to a
stimulus:

X |y | x2] v? | xy
1] 1] 12 1 1
2|1 1] 4 1 2| .- 01
e
5| 4] 25| 16] 20
15| 10| 55| 26| 37

SY2-a>Y -bY XY
n-2
26-(-0.1)(10)-(0.7)(37)
5-2

Syx =

_

11
_

26+1- 259

g

=i 4/0.3667= 061

w|
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Also, § =
3 n n

5 5
=12 = 110

INTERPRETATION

. @{E’T:m

Sy.x is NOT very small compared with sy, henceleast-squares line.

Y =-01+07X

is probably NOT very reliable for purposes of potidin. As it explained a short while ago, the seradlur Standard
Error of Estimate, the closer the data-points télto the line --- i.e. the more REPRESENTATIVE boe will be of
the data-points --- and, hence, the more RELIABLEIme will be for estimation purposes.

The next concept that | am going to discuss with igathe concept of CORRELATION.

It is a concept that is very closely linked witle ttoncept of linear regression.

CORRELATION
is a measure of the strength or the degree ofoekitip between two RANDOM variables.

A numerical measure of the strength of the linedationship between two random variables X andsY i
known as Pearson’s Product-Moment Coefficient afr€ation.

PEARSON'S COEFFICIENT OF CORRELATION

Co({X,Y)

JWar(X)var(Y)
Y (x-X){v-v)

where, covariance of X and Y is defined gs =

CoVX,Y)=

This formula is a bit cumbersome to apply. Therefare may use the following short cut formula:

SHORT CUT FORMULA FOR THE PEARSON'S COEFFICIENT OF CORRELATION

> xy -3 x)¥)/n
VDX - X v -v)n

ris a pure number that lies between -1 and 1 i.e.

-l1<r<1
Actually, the mathematical expressions that youehaist seen is a combination of three different heatatical
expressions:

r =

Case 1:

Positive correlation: O0<r<1
Case 2:

No correlation: r=0
Case 3:

Negative correlation: -1<r<0
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Case 1
In case of a positive linear relationship, r lietvbeen 0 and 1.

Y

N X

In this case, the closer the points are to the URBAoing line, the STRONGER is the positive linealationship,
and the closer ris to 1.

PerfectPositive Linear Correlation (r = 1)

7 1 .
6 .

5 A *

4 1 .

3 1 .

2 A *

1-

In this case, the closer the points are to the DAVWRD-going line, the stronger is the linear relasbip, and the
closer ris to —1.
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Case 3:
In a situation where neither an upward linear trend nor a downward
linear trend can be visualized, r 0

O P N W A~ O O N
S S S—

Here, the bivariate data seem to beompletelyrandom.

The extremeof dissociation gerocorrelation (r = 0)):

N

In such a situation, X and Y are said to ba&incorrelated
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EXAMPLE

Suppose that the principal of a college wants twakif there exists any correlation between gradddathematics and
grades in Statistics. Suppose that he selectsdamasample of 9 students out of all those who thlsecombination of
subjects. The following information is obtained:

Marks in Marks in
Student Mathematics Statistics
(Total Marks: 25) | (Total Marks: 25)
X Y

A 5 11
B 12 16
C 14 15
D 16 20
E 18 17
F 21 19
G 22 55
a 23 24
| 25 21

SCATTER DIAGRAM

30
25 4 ..
20 4 . .
154 .

10 -

Marks in Statistics

0 . . . . . X
0 5 10 15 20 25 30

Marks in Mathematics

In order to compute the correlation coefficient, eery out the following computations,

X Y X? Y? XY

5 11 25 121 55
12 | 16 | 144] 256 192
14 | 15| 196] 225| 210
16 | 20| 256] 400] 320
18 | 17 | 324| 289 306
21 | 19| 441| 361] 399
22 | 25| 484 625] 550
23 | 24| 529| 576] 552
25 | 21| 625 441] 525

156 | 168| 3024 3294 310p
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XY (ZX)(ZY)/n

X2 -ExP ][y - (v P
3109- (156)(168)/9
J [3024— (L56)2 /9] [3294— (168 /9]

_ 3109- 2912
J [3024- 2704 [3294- 3134
197 197

= 088

320x158 22486

INTERPRETATION

There exists a strongositive linear correlation between marks in Mathematicd ararks in Statistics for these 9
students who have been taken into consideration.

The conclusion that we have just drawn i.e. strpagitive linear correlation --- this conclusionsspported by the
scatter diagram.

SCATTER DIAGRAM

30
25 A LN
20 A . R
154 .

10 A

Marks in Statistics

0 5 10 15 20 25 30
Marks in Mathematics

As you can see in the scatter diagram, the datestgpappear to follow a linear pattern quite strgngl

In today’s lecture, | have discussed with you thacept of regression and correlation. Although ehaonveyed to
you a number of interesting concepts, believe mg, it only the BEGINNING of a very vast and imgort area of
Statistics. You can study this concept further,,ahgossible, to study a little bit about MULTIPLEgression and
correlation as well --- the situation when we ystudy the relationship between three or moreabies.

This brings us to the end of the FIRST part of twarse i.e. Descriptive Statistics.

This brings us to the end of the FIRST part of twarse i.e. Descriptive Statistics.
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LECTURE NO. 16

e Set Theory
e Counting Rules:
e The Rule of Multiplication

“SET”

A set is any well-defined collection or list of tiigt objects, e.g. a group of students, the baoks library, the
integers between 1 and 100, all human beings oeadht, etc. The term well-defined here meansahgtobject must
be classified as either belonging or not belongmthe set under consideration, and the term distimplies that each
object must appear only once. The objects thainaaeset, are called members or elements of thaSsés are usually
denoted by capital letters such as A, B, C, Y,, etbile their elements are represented by sma#ériessuch as, a, b, c,
y, etc.

Elements are enclosed by parentheses to represent a
For example:

EXAMPLES OF SETS:

A={a, b,c,d}or

B={1,2,3,7}
The Number of a set A, written as n(A), is defiredthe number of elements in A.
If x is an element of a set A, we writelkA which is read as “x belongs to A” or x is in Ax does not belong to A,
i.e. x is not an element of A, we writé XA.
A set that has no elements is called an emptynoilgset and is denoted by the sympdlt must be noted that {0} is
not an empty set as it contains an element 0.)
If a set contains only one element, it is callaché set or a singleton set.
It is also important to note the difference betwaarelement “x” and a unit set {x}.
A set may be specified in two ways:
1. We may give a list of all the elements of a #& (Roster” method),
e.g.

A={1,3,5,7,9,11};

B = {a book, a city, a clock, ateacher};
2. We may state a rule that enables us to determtiether or not a given object is a member of th@heetRule”
method or the “Set Builder” method),
e.g.
A ={x| x is an odd number and x < 12} meaningtth is a set of all elements x such that x is ét wumber and x is
less than 12. (The vertical line is read as “shelt’t). An important point to note is thathe repetition or the order in
which the elements of a set occur, does not chtmggeature of the set. The size of a set is giyethé number of
elements present in it. This number may be finitefinite. Thus a set is finite when it containfrate number of
elements; otherwise it is an infinite set.
The Empty set is regarded as a Finite set.

EXAMPLES OF FINITE SETS

i) A={1,23...... , 99, 100};
i) B = {x | x is a month of

the year};
iii) C ={x| xis a printing

mistake in a book};

iv) D ={x | x is a living citizen
of Pakistan};
Examples of infinite sets:

i) A ={x|xis an even
integer};
i) B = {x | x is a real number

between 0 and 1 inclusive},
ie.B=(x|x0<x<1}
iii) C ={x| xis a point on a line},
iv) D ={x | xis a sentence in a
English language}; etc
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SUBSETS

A set that consists of some elementmother set, is called a subset of that set.
For example, if B is a subset of A, then every mendj set B is also a member of set A.
If B is a subset of A, we write:
B O A or equivalently:
AOB
‘B is a subset of A’ is also read as ‘B is conéinn A,
or ‘A contains B’

EXAMPLE

If A={1,2,3,4,5, 10}
and B {1, 3, 5}

then BO A,

i.e. B is contained in A.

It should be noted that any set is always regaadsubset of itself.

and an empty seiis considered to be a subset of every set.

Two sets A and B are Equal or Identical, if andyahthey contain exactly the same elements.
In other words, A = B if and only if A1 B and BO A.

PROPER SUBSET

If a set B contains some but not all of the elemehtanother set A, while A contains each eleméi, a.e. if
BOAand B£A
then the set B is defined to be a proper subsat of
Universal Set:
The original set of which all the sets tatk about, are subsets, is called the univerda(csethe space) and is
generally denoted by S Q.
The universal set thus contains all possible elésnemder consideration.
A set S with n elements will produce 2n subsetduiling S andp.
EXAMPLE;
Consider the set A ={1, 2, 3}.
All possible subsets of this set are:
o {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}
Hence, there are 23 = 8 subsets of the set A.

VENN DIAGRAM

A diagram that is undeecstdo represent sets by circular regions, partsi@ular regions or their
complements with respect to a rectangle repregeiitie space S is called a Venn diagram, named tiéeEnglish
logician John Venn (1834-1923).

The Venn diagrams are used to represent sets &seétsun a pictorial way and to verify the relatibip among sets
and subsets.
A Simple Venn diagram:

Disjoint Sets
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OPERATIONS ON SETS

Let the sets A and B be #ubsets of some universal set S. Then thesemsgtde combined and
operated on in various ways to form new sets whrehalso subsets of S.
The basic operations are union, intersection, diffee and complementation.

UNION OF SETS

The union or sum of two sets A and B, denoted by 8, and read as “A union B”, means the set of all
elements that belong to at least one of the setsdAB, that is
AOB={x|xOAorx0OB}
By means of a Venn Diagram,[A B is shown by the shaded area as below:

A

A O B is shaded

EXAMPLE

LetA={1,2, 3,4}and B ={3, 4,5, 6}
Then AOB={1, 2, 3, 4,5, 6}
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INTERSECTION OF SETS

The intersection of two sets A and B, denoted hy B, and read as “A intersection B”, means thatsthie
of all elements that belong to both A and B; tlsat i
A n B={x|x0Oand xOB}.
Diagrammatically, An B is shown by the shaded area as below:

A n B is shaded

EXAMPLE

LetA={1,2,3,4}and B={3, 4,5, 6}
Then An B ={3, 4}
The operations of union and intersection that Hzeen defined for two sets may conveniently be elddrio any finite
number of sets.

DISJOINT SETS

Two sets A and B are defined to be disjoint orually exclusive or non-overlapping when they haee n
elements in common, i.e. when their intersecticanigmpty set
i.e.AnB=q
On the other hand, two sets A and B are said twoh@int when the have at least one element in comm

SET DIFFERENCE

The difference of two sets A and B, denoted by B er by A — (An B), is the set of all elements of A which
do not belong to B.
Symbolically,
A—-B={x|xOA and xO B}

It is to be pointed out that in general A #B — A.
The shaded area of the following Venn diagram shtwlifference A — B:

Virtual University of Pakistan 131



STA301 - Statistics and Probability Y

Difference A — B is shaded

It is to be noted that A — B and B are disjoinssétA and B are disjoint, then the difference B-eoincides with the
set A.

COMPLEMENTATION

The particular difference S — A, that is, the afedill those elements of S which do not belong to A
is called the complement of A and is denotedfyor by Ac.
In symbols:
"A={x|x0Sand <A}
The complement of S is the empty get
The complement of A is shown by the shaded poitighe following Venn diagram.

A is shaded

It should be noted that A — B andrA™ B, where B is the complement of set B, are the same sett, Mexconsider the
Algebra of Sets. The algebra of sets provides ub laivs which can be used to solve many problemsrabability
calculations.
Let A, B and C be any subsets of the universabsathen, we have:
1. Commutative laws:

AOB=BOA

AnB=BnA
2. Associative laws:

(AOB)OC=AO(BOC)

(AnB)nC=An(BnC)
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3. Distributive laws

An(BOC)=(AnB)O(ANC)
AOBNC)=(AOB)n (AOC)

4. ldempotent laws

AOA=A
AnA=A
5. Identity laws

AOS=S,
An S=A,
AO@=A and

Ano=q
6. Complementation laws

AO A=S,
A nA=q
(A)=A,

S =@, and
¢ =S
7. De Morgan'’s laws:

AOB)=An B,

and (AnB)=A0OB

PARTITION OF SETS

A partition of ®tsS is a sub-division of the set into non-emptissts that are disjoint and
exhaustive, i.e. their union is the set S itself.
This implies that:
e DA n Aj =@ where i#j;

« i)AlnA20..0An=S.
The subsets in a partition are called cells.

EXAMPLE

Let us consideraset S ={a, b, c, d, e}.
Then {a, b}, and {c, d, e} is a patrtition of S a@ch element of S belongs to exactly one cell.

CLASS OF SETS
A set of sets is called a class. For example,setaf lines, each line is a set of points.
POWER SET

The class of ALL subsets of a set A is called thevét Set of A and is denoted by P(A).
For example, if A = {H, T}, then P(A) =¢, {H}, {T}, {H, T}}.

CARTESIAN PRODUCT OF SETS

The Cartesian product of sets A and B, denoted byBA (read as “A cross B”), is a set that contaih®m@ered pairs
(X, y), where x belongs to A and y belongs to B.

Symbolically, we write

AxB={(xy)|xOAandyOB}

This set is also called the Cartesian set of A Bnset of A and B, named after the French mathematiRene’
Descartes (1596-1605).

The product of a set A by itself is denoted by A2.

This concept of product may be extended to anyefinumber of sets.
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EXAMPLE

LetA={H, T}and B ={1, 2, 3, 4, 5, 6}. Then th@artesian product set is the collection of théofeing twelve (2x
6) ordered pairs:

AxB ={(H, 1); (H, 2);(H, 3); (H, 4);(H, 6); (H, 6)T, 1); (T, 2); (T, 3); (T, 4); (T, 5); (T, 6) }

Clearly, these twelve elements together make upithesrsal set S when a COIN and a DIE are tossgether.

A die is a cube of wood or ivory whose six faces marked with dots are shown below:

The plural of the word ‘die’ is ‘dice’.
The product A x B may conveniently be found by means of the stedal
tree diagram shown below:

Tree Diagram

A

AxB

OURWNRL RRRERRLRRERRE @
~~
I
=)

TREE DIAGRAM

The “tree” is constructedm the left to the right. A “tree diagram” isugeful device for enumerating
all the possible outcomes of two or more sequestiahts.
The possible outcomes are represented by the thdivpaths or branches of the tree.
It is relevant to note that, in general

AxBZBxA.
Having reviewed the basics of set theory, let us newview the COUNTING RULES that facilitate the goutation of
probabilities in a number of problems.

RULE OF MULTIPLICATION

If a compound experiment consists of two experimevhich that the first experiment has exactly stidct
outcomes and, if corresponding to each outcomaefitst experiment there can be n distinct outcowfethe second
experiment, then the compound experiment has gxanctloutcomes.

EXAMPLE
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The compound experiment of tossing a coin and tmgwa die together consists of two experiments. ddie-tossing
experiment consists of two distinct outcomes (H,ahd the die-throwing experiment consists of siinct outcomes
(1,2,3,4,5,6).
The total number of possible distinct outcomeshef¢compound experiment is therefore @ = 12 as each of the two
outcomes of the coin-tossing experiment can ocdilr @ach of the six outcomes of die-throwing expent. As stated
earlier, if A={H, T}and B = {1, 2, 3, 4, 5, 6}then the Cartesian product set is the collectiohefollowing twelve
(2 x 6) ordered pairs:
AxB ={ (H, 1); (H, 2);(H, 3); (H, 4);

(H, 6); (H, 6);(T, 1); (T, 2);

(T, 3); (T, 4); (T, 5); (T, 6) }

Tree Diagram

A A« B

(H, 1)
(H, 2)
(H, 3)
(H.4)
)
)

(H, 5
(H, 6

(T, 1)
(T, 2)
(T, 3)
)
)

(T, 4
(T,5
(T, 6)

The rule of multiplication can be readily extendeccompound experiments consisting of any numbexperiments
performed in a given sequence.

OUDNWNRLR RRRREERLR @

This rule can also be called the Multiple ChoicéeRas illustrated by the following example:

EXAMPLE

Suppose that a restaurant offers three types wgssdour types of sandwiches, and two types ofelts.
Then, a customer can order any one out o3 2 = 24 different meals.

EXAMPLE

Suppose that we have a combination lock on wiiiehetare eight rings.
In how many ways can the lock be adjusted?
Solution:
The logical way to look at this problem is to seattthere are eight rings on the lock, each of k&n have any of the
10 figures 0 to 9:

ring A can have any of the digits 0 to 9 and fihg can have any of the digits 0 to 9 and ring C n chave
any of the digits 0 to 9 and

ring H can have any of the digits 0 to 9

Hence the total No. of ways in which these 8 ricas be filled is 8
10x10x 10x 10x 10x 10x 10x 10

=10

i.e. 100,000,000 — one hundred million.
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LECTURE NO. 17

*  Permutations
*  Combinations
e Random Experiment
e Sample Space
. Events

» Mutually Exclusive Events

» Exhaustive Events

» Equally Likely Events

COUNTING RULES

As discussed in the last lecture, there are certdes that facilitate the calculations of prolliéibs in certain
situations. They are known as counting rules aolliite concepts of;
e Multiple Choice
*  Permutations
»  Combinations
We have already discussed the rule of multiplicaiiothe last lecture.
Let us now consider the rule of permutations.

RULE OF PERMUTATION

A permutation is any ordered subset from a setditinct objects.

For example, if we have the set {a, b}, then onemeation is ab, and the other permutation is Bae number of
permutations of r objects, selected in a definitleofrom n distinct objects is denoted by the s«ym“id? and is given
by

"P =nn-1)(n-2)...(n=r+1)

r

n!

(n=r)

EACTORIALS

T'=7x6x5x4%x3x2x1
6! =6x5x4x3x2x1

11=1
Also, we define 0! = 1.

EXAMPLE

A club consists of four members. How many ways tere of selecting three officers: president, gacyeand
treasurer? It is evident that the order, in whicbfficers are to be chosen, is of significance. STthere are 4 choices
for the first office, 3 choices for the second offiand 2 choices for the third office. Hence titalthumber of ways in
which the three offices can be filled ix8 x 2 = 24.

The same result is obtained by applying the rulpesfutations:

Let the four members be, A, B, C and D. Then a diagram which provides an organized way of listing possible
arrangements, for this example, is given below:
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President Secretary Treasurer Sample Space

B ——— C oS

D ABD

B ACB

A C < D ACD
C ADC

C BAC

A < D BAD

A BCA

B C < D BCD
C BDC

B CAB

A < D CAD

A CBA

C B < D CBD
B CcDhB

B DAB

A < C DAC

A DBA

D B < C DBC
C — " boB

B DCB

PERMUTATIONS

In the formula oFF’r , if we put r = n, we obtain:

"P=n(n-1)(n-2)..82x1

=n!
l.e. the total number of permutations of n distiolsfects, taking all n at a time, is equal to n!

EXAMPLE

Suppose that there are three persons A, B & Dtlaatdhey wish to have a photograph taken.
The total number of ways in which they can beestah three chairs (placed side by side) is
3P3=3!=6

These are:

ABD,

ADB,

BAD,

BDA,

DAB,

DBA

The above discussion pertained to the case wheheabbjects under consideration are distinct dbjdt some of the
objects are not distinct, the formula of permutagionodifies as given below:

The number of permutations of n objects, seleclieat a time, when n objects consist of n1 of omelkn2 of a second
kind, ..., nk of a kth kind,

n!
n!n,l....nt
(where > n, =n)

isP=
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EXAMPLE

How many different (meaningless) words can be farfnrem the word ‘committee’?
In this example:

n = 9 (because the total number of letters inwsd is 9)
nl =1 (because there is one c)

n2 =1 (because there is one 0)

n3 = 2 (because there are two m's)

n4 =1 (because there is one i)

n5 = 2 (because there are two t's)

and

né = 2 (because there are two e’s)

Hence, the total number of (meaningless) words
(permutations) is:

n!
n!n,!...n !

9!
a2 2t 2
_9xBxT7xBx5x4x3x2x1
© Ix1x2x1x1x2x1x2x1

= 45360
Next, let us consider the rule of combinations.

P =

RULE OF COMBINATION

A combination is any subset of r objects, seleetitdout regard to their order, from a set of nidist objects. The total
number of such combinations is denoted by the symbo

nC n
and is given by r Of r/

e

It should be noted that

where r <n.

"P =r!
r

In other words, every combination of r objects (olub objects) generates r! Permutations
EXAMPLE

Suppose we have a group of three persons, A, B, k@ wish to select a group of two persons duhese three, the
three possible groups are {A, B}, {A, C} and {B, Gh other words, the total number of combinatiofisipe two out
of this set of size three is 3.
Now, suppose that our interest lies in formingpenmittee of two persons, one of whom is to be tiesident

and the other the secretary of a club.
The six possible committees are:

(A, B), (B, A),

(A, C), (C,A),

(B,C) & (C, B)
In other words, the total number of permutationsaaf persons out of three is 6.
And the point to note is that each of three comiona mentioned earlier generates 2 = 2! Permutstibe. the
combination {A, B} generates the permutations (A,ad (B, A) and the combination {A, C} generatks t
permutations (A, C) and (C, A); and the combina{iBnC} generates the permutations (B, C) and (., B

The quantity
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or nCr is also called a binomial co-efficient becausésodppearance in the binomial expansion of

et =3 (v

r=0
The binomial co-efficient has two important propest

_ n n
i) = , and
r n-r
. n n n+1
i) + =
n-r r r

Also, it should be noted that

)

and

n n
=n=
1 (n—J

EXAMPLE

A three-person committee is to be formed out ofcupg of ten persons. In how many ways can thisdred
Since the order in which the three persons of tmemittee are chosen, is unimportant, it is theeefom example of a
problem involving combinations. Thus the desirethhar of combinations is

ny (10 10 10

r) \3) 3(10-3) 37
_10x9x8x7x6x5x4x3x2x1
 3x2x1x7x6x5%x4x3%x2x1
=12C

In other words, there are one hundred and twerfitgrdnt ways of forming a three-person committeeafa group of
only ten persons!

EXAMPLE

In how many ways can a person draw a hand of Sdawdh a well-shuffled ordinary deck of 52 cards?
The total number of ways of doing so is given by

n 52
_ ZSZXS1XSOX4QX48::2598960
r 5 Ex4x3x2x1

Having reviewed the counting rules that facilitadculations of probabilities in a number of probg let us now
begin the discussion of concepts that lead toahmdl definitions of probability. The first conceptthis regard is the
concept of Random Experiment. The term experimezdns a planned activity or process whose resiétd gi set of
data. A single performance of an experiment itedaa trial. The result obtained from an experinmra trial is called
an outcome.

RANDOM EXPERIMENT

An experiment which produces different resultsretieough it is repeated a large number of timeseund
essentially similar conditions is called a Randaoxpéfiment.
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The tossing of a fair coin, the throwing of a bakeah die, drawing of a card from a well-shuffled idet 52 playing
cards, selecting a sample, etc. are examples dbramxperiments.

PROPERTIES OF A RANDOM EXPERIMENT

A random experiment has three properties:

e The experiment can be repeated, practically orrgeally, any number of times.
* The experiment always has two or more possiblecosés. An experiment that has only one possible
outcome is not a random experiment.
e The outcome of each repetition is unpredictabée,i.has some degree of uncertainty.
Considering a more realistic example, interviewagerson to find out whether or not he or she ssnaker is an
example of a random experiment. This is so becthiseexample fulfils all the three properties thatve just been
discussed:
e This process of interviewing can be repeated alatgnber of times.
e To each interview, there are at least two possipées: ‘1 am a smoker’ and ‘I am not a smoker’.
e For any interview, the answer is not known in adeane. there is an element of uncertainty regardire
person’s reply.
A concept that is closely related with the conadfa random experiment is the concept of the SaiBpkee.

SAMPLE SPACE

A set consisting of all possible outcomes that regult from a random experiment (real or conceptuain be defined
as the sample space for the experiment and is elghgtthe letter S. Each possible outcome is a reewitthe sample
space, and is called a sample point in that spatais consider a few examples:

EXAMPLE-1

The experiment of tossing a coin results in eitifehe two possible outcomes: a head (H) or gTail(We assume
that it is not possible for the coin to land ondtigye or to roll away). The sample space for thigeement may be
expressed in set notation as S = {H, T}. ‘H’ and &Fe the two sample points.

EXAMPLE-2

The sample space for tossing two coins once (sirtgs coin twice) will contain four possible outoes denoted by
S ={HH, HT, TH, TT}.
In this example, clearly, S is the Cartesian produg A, where A = {H, T}.

EXAMPLE-3

The sample space S for the random experiment afvihg two six-sided dice can be described by theeSan
product Ax A, where A ={1, 2, 3, 4, 5,6}. In other words=SA x A ={(x, y) | xO A and yO A}, Where x denotes
the number of dots on the upper face of the fiist@hd y denotes the number of dots on the upmer ¢f the second
die. Hence, S contains 36 outcomes or sample paistshown below:

S= {1,1). 1 2),(1,3),(1,5), (1,6),
(2,1).(2,2),(2,3),(2,5), (2,6),
(3,1).(3,2),(3,3).(3,5), (3,6),
(4,1),(4,2),(4,3),(4,5), (4,6),
(6,1).(5,2),(5,3),(5,9), (5, 6),
(6,1). (6, 2), (6,3), (6, 5), (6, 6)}

The next concept is that of events.
EVENTS

Any subset of a sample space S of a random expetjinsecalled an event. In other words, an evemtnisndividual
outcome or any number of outcomes (sample poirfitg)random experiment.

SIMPLE & COMPOUND EVENTS

An event that contains exactly one sample poidefined as a simple event. A compound event contamre than one
sample point, and is produced by the union of sengpents.
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EXAMPLE

The occurrence of a 6 when a die is thrown, isrgpk event, while the occurrence of a sum of 1 aipair of dice, is
a compound event, as it can be decomposed inte imgple events (4, 6), (5, 5) and (6, 4).

OCCURRENCE OF AN EVENT

An event A is said to occur if and only if the oartee of the experiment corresponds to some elenféht o
EXAMPLE

Suppose we toss a die, and we are interested octherence of an even number.

If ANY of the three numbers ‘2, ‘4’ or ‘6’ occursye say that the event of our interest has occurred

In this example, the event A is represented bys#ig2, 4, 6}, and if the outcome ‘2’ occurs, themce this outcome
is corresponding to the first element of the seth&refore, we say that A has occurred.

COMPLEMENTARY EVENT

The event “not-A” is denoted byA or Ac and called the negation (or complementasng) of A.
EXAMPLE

If we toss a coin once, then the complement of dseé “tails”. If we toss a coin four times, théme complement of
“at least one head” is “no heads”. A sample spaxesisting of n sample points can produce 2n diffeseibsets (or
simple and compound events).

EXAMPLE

Consider a sample space S containing 3 samplespomtS = {a, b, c}.
Then the 23 = 8 possible subsets are
@ {a}, {b}, {c}, {a, b},
{a, c}, {b, c}, {a, b, c}
Each of these subsets is an event. The subset ,i® the sample space itself and is also an tevealways occurs
and is known as the certain or sure event. The esgt is also an event, sometimes known as impossil#atev
because it can never occur.

MUTUALLY EXCLUSIVE EVENTS

Two events A and B of a single experiment are satge mutually exclusive or disjoint if and onlytifey cannot both
occur at the same time i.e. they have no point®@mmon.

EXAMPLE-1

When we toss a coin, we geither a heador a tail, butnot both at the same time. The two events head ahdr&i
therefore mutually exclusive.

EXAMPLE-2

When a die is rolled, the events ‘even number’ ‘add number’ are mutually exclusive as we can gifiee an even
number or an odd number in one throw, not bothatsame time. Similarly, a studesither qualifies or fails, a single
birth must beeither a boy or a girl, it cannot be both, etc., etc.€ehor more events originating from the same
experiment are mutually exclusive if pair wise theg mutually exclusive. If the two evertan occur at the same
time, they are not mutually exclusive, e.g., if dvaw a card from an ordinary deck of 52 playingscétcan be both a
king and a diamond.

Therefore, kings and diamonds are not mutuallywesiee. Similarly, inflation and recession are nattaally exclusive
events. Speaking of playing cards, it is to be mabered that an ordinary deck of playing cards dost&2 cards
arranged in 4 suits of 13 each. The four suitscatied diamonds, hearts, clubs and spades; theiosare red and the
last two are black. The face values called denotiing, of the 13 cards in each suit are ace, 2,310, jack, queen
and king. Thdace cardsare king, queen and jack. These cards are useifimus games such as whist, bridge, poker,
etc. We have discussed the concepts of mutualjusixe events. Another important concept is thaexiiaustive
events.
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EXHAUSTIVE EVENTS

Events are said to be collectively exhaustive, witenunion of mutually exclusive events is equahi® entire sample
space S.

EXAMPLES

* Inthe coin-tossing experiment, ‘head’ and ‘taile&ollectively exhaustive events.
« Inthe die-tossing experiment, ‘even number’ ardt'‘aumber’ are collectively exhaustive events.
In conformity with what was discussed in the lasture:

PARTITION OF THE SAMPLE SPACE

A group of mutually exclusive and exhaustive evdrgdnging to a sample space is called a partiifothe sample
space. With reference to any sample space S, eemtsl A form a partition as they are mutually exclusivel aheir
union is the entire sample space. The Venn Diadralow clearly indicates this point.

“Ais shaded

Next, we consider the concept of equally likely etee

EQUALLY LIKELY EVENTS

Two events A and B are said to be equally likelizew one event is as likely to occur as the otmeotter words, each
event should occur in equal number in repeatettria

EXAMPLE

When a fair coin is tossed, the head is as likelggpear as the tail, and the proportion of tireeheside is expected to
appear is 1/2.

EXAMPLE

If a card is drawn out of a deck of well-shuffleakds, each card is equally likely to be drawn, gnedprobability that
any card will be drawn is 1/52.
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LECTURE NO. 18

DEFINITIONS OF PROBABILITY

e Subjective Approach to Probability
e Objective Approach:
e  Classical Definition of Probability

RELATIVE FREQUENCY DEFINITION OF PROBABILITY

Before we begin the various definitions of probipilet us revise the concepts of:
e Mutually Exclusive Events
*  Exhaustive Events
e Equally Likely Events

MUTUALLY EXCLUSIVE EVENTS

Two events A and B of a single experiment are satge mutually exclusive or disjoint if and onlytifey cannot both
occur at the same time i.e. they have no point®mmon.

EXAMPLE-1

When we toss a coin, we geither a heador a tail, butnot both at the same time. The two events head ahdr&i
therefore mutually exclusive.

EXAMPLE-2

When a die is rolled, the events ‘even number’ ‘add number’ are mutually exclusive as we can gifiee an even
number or an odd number in one throw, not bothasame time. Similarly, a studesither qualifiesor fails, a person
is either a teenager or not a teenager, etc., etc.

Three or more events originating from the same exmamt are mutually exclusive if pair wise they amaitually
exclusive. If the two eventsanoccur at the same time, they are not mutuallywesket, e.g., if we draw a card from an
ordinary deck of 52 playing cars,danbe both a king and a diamond.

Therefore, kings and diamonds are not mutuallyiesieé. Speaking of playing cards, it is to be reimerad that an
ordinary deck of playing cards contains 52 cardargred in 4 suits of 13 each. The four suits atledaiamonds,
hearts, clubs and spades; the first two are redtentast two are black. The face values calleddenations, of the 13
cards in each suit are ace, 2, 3, ..., 10, jack, yaee king. The face values called denominatiohtheo 13 cards in
each suit are ace, 2, 3, ..., 10, jack, queen argl Kife have discussed the concepts of mutually sxaievents.
Another important concept is that of exhaustivenéve

EXHAUSTIVE EVENTS
Events are said to be collectively exhaustive,mtie union of mutually exclusive events is eqoaht entire sample
space S.

EXAMPLES

¢ Inthe coin-tossing experiment, ‘head’ and ‘tai¢aollectively exhaustive events.
« Inthe die-tossing experiment, ‘even number’ ardb'‘oumber’ are collectively exhaustive events.
In conformity with what was discussed in the lasture:

PARTITION OF THE SAMPLE SPACE

A group of mutually exclusive and exhaustive evdrgdnging to a sample space is called a partiiothe sample
space. With reference to any sample space S, eemtsl A form a partition as they are mutually exclusivel aheir
union is the entire sample space. The Venn Diadralow clearly indicates this point.
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Venn Diagram

~Ais shadec

EQUALLY LIKELY EVENTS

Two events A and B are said to be equally likeliiew one event is as likely to occur as the otlerother words,
each event should occur in equal number in repeetds.

EXAMPLE

When a fair coin is tossed, the head is as likelggpear as the tail, and the proportion of tireeheside is expected to
appear is 1/2.

EXAMPLE

If a card is drawn out of a deck of well-shuffledrds, each card is equally likely to be drawn, dr&proportion of
times each card can be expected to be drawrverydarge number of draws is 1/52.Having discussedth@amcepts
related to probability theory, we now begin the cdission of THE CONCEPT AND DEFINITIONS OF
PROBABILITY. Probability can be discussed from twoints of view: the subjective approach, and thgeaive
approach.

SUBJECTIVE OR PERSONALISTIC PROBABILITY

As its name suggests, the subjective or persoraidyability is a measure of the strength of a gessbelief regarding
the occurrence of an event A. Probability in thémse is purely subjective, and is based on whatevielence is
available to the individual. It has a disadvanttg® two or more persons faced with the same evelemay arrive at
different probabilities.

For example, suppose that a panel of three judgéearing a trial. It is possible that, based @dhidence that is
presented, two of them arrive at the conclusion tia accused is guilty while one of them decidied the evidence is
NOT strong enough to draw this conclusion. On ttieelohand, objective probability relates to thoseasions where
everyone will arrive at the same conclusion.

It can be classified into two broad categorieshezonvhich is briefly described as follows:

1. THE CLASSICAL OR ‘A PRIORI' DEFINITION OF PROBAB ILITY

f a random experiment can produce n mutually exetuand equally likely outcomes, and if m out tedh outcomes
are considered favorable to the occurrence of @icegvent A, then the probability of the eventd&noted by P(A), is
defined as the ratio m/n.

Symbolically, we write

m

P(A)=—

(n)="T

_ Numberof favourableoutcomes
Total numberof possibleoutcomes

This definition was formulated by the French mathiician P.S. Laplace (1949-1827) and can be veryeaiently
used in experiments where the total number of peseutcomes and the number of outcomes favoratde event can
be DETERMINED

Virtual University of Pakistan 144



STA301 - Statistics and Probability Y

Let us now consider a few examples to illustratediassical definition of probability:
EXAMPLE-1

If a card is drawn from an ordinary deck of 52 plgycards, find the probability that i) the cardaised card, ii) the
card is a 10.

SOLUTION:

The total number of possible outcomes is 13+13+33+52, and we assume that all possible outcomeegually

likely.(It is well-known that an ordinary deck o&ms contains 13 cards of diamonds, 13 cards othet8 cards of
clubs, and 13 cards of spades.)

(i) Let A represent the event that the card drasva ied card.

Then the number of outcomes favorable to the e&ant26 (since the 13 cards of diamonds and theat8s of hearts
arered).

Hence
m
P(A) =—
() =2
_ Number of favourableoutcomes
Total numberof possibleoutcomes
26_1
52 2
4 1
Thus P(B)—— =—.
EXAMPLE-2 52 13

A fair coin is tossed three times. What is the piulity that at least one head appears?
SOLUTION

The sample space for this experiment is
S= {HHH, HHT, HTH, THH,
HTT, THT, TTH, TTT}
and thus the total number of sample points is.&\(8) = 8.Let A denote the event that at leasthwsd appears. Then

A= {HHH, HHT, HTH, THH, HTT, THT, TTH}
Therefore n(A) = 7.

Hence

P(A)=nrfé))=;.

EXAMPLE-3

Four items are taken at random from a box of Idstand inspected. The boxrejectedif more than 1 item is found
to be faulty. If there are 3 faulty items in thexbfind the probability that the box &cepted

SOLUTION

12
The sample space S contaiEs 4J =495  sample points

(Because there %2 ways of selectingifeans out of twelve)

4
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The box contains 3 faulty and 9 good items. Theibaccepted if there is (i) no faulty items, ay @ine faulty item in
the sample of 4 itemselected
Let A denote the event the number of faulty itetnesen is 0 or 1.

RRECIERIHEN N

=126+ 252=378 sample points.

=M_378_476
49t

0 P(A)

Hence the probability that the box is acceptedPs 7 (in spite of the fact that the boantains3 faulty items).

THE CLASSICAL DEFINITION HAS THE FOLLOWING SHORTCOM _INGS

e This definition is said to involve circular reasogias the term equally likely really means equpilybable.
e Thus probability is defined by introducing concepitat presume arior knowledge of themeaningof
probability.
e This definition becomes vague when the possibleamés are INFINITE in number, or uncountable.
e This definition is NOT applicable when the assumptof equally likely doesot hold. And the fact of the
matter is that there are NUMEROUS situations wlhieeeassumption of equally likely cannot hold.
And these are the situations where we have to floolinother definition of probability!

THE RELATIVE FREQUENCY DEFINITION OF PROBABILITY

The essence of this definition is that if an expent is repeated a large number of times undergmptess) identical
conditions, and if the event of our interest occarrsertain number of times, then thportion in which this event
occurs is regarded as the probability of that event

For example, we know that a large number of stuedsittfor the matric examination every year. Alae, know that a
certain proportion of these students will obtaie finst division, a certain proportion will obtathe second division, ---
and a certain proportion of the students will fail.

Since the total number of students appearing f®ntatric exam is very large, hence:

e The proportion of students who obtain the firstiglon --- this proportion can be regarded asptabability
of obtaining the first division,

e The proportion of students who obtain the secondsidin --- this proportion can be regarded as the
probability of obtaining the second division, and so on.
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LECTURE NO. 19

* Relative Frequency Definition of Probability
e Axiomatic Definition of Probability
e Laws of Probability
= Rule of Complementation
=  Addition Theorem

THE RELATIVE FREQUENCY DEFINITION OF PROBABILITY (‘A POSTERIORI' DEFINITION OF
PROBABILITY)

If a random experiment is repeated a large numbgmes, say n times, under identical conditiond dran event A is
observed to occur m times, then the probabilitthefevent A is defined as the LIMIT of the relativequency m/n as
n tends to infinitely.

Symbolically, we write

P(A) = Lim
n-e N
The definition assumes that as n increases indetfinthe ratio m/n tends to become stable at tmearical value P(A).
The relationship between relative frequency antaldity can also be represented as follows:
Relative Frequency- Probability
as nN- oo
As its name suggests, the relative frequency difinrelates to the relative frequency with whiak avent occurs in
thelong run In situations where we can say that an experirhastbeen repeated a very large number of times, th
relative frequency definitionan be applied.
As such, this definition is very useful in thosegtical situations where we are interested in cdingwa probability in
numerical form but where the classical definiticemoot be applied.(Numerous real-life situations sueh where
various possible outcomes of an experiment are MQJally likely). This type of probability is alsalted empirical
probability as it is based dMPIRICALevidence i.e. 0®OBSERVATIONAUMata.
It can also be calleBTATISTICAL PROBABILITY for it is this very probability that forms the bagif mathematical
statistics.
Let us try to understand this concept by meanwofexamples:
e from a coin-tossing experiment and
e From data on the numbers of boys and girls born.

EXAMPLE-1

Coin-Tossing:

No one can tell which way a coin will fall but wepect the proportion of leads and tails after gdamo. of tosses to be
nearly equal. An experiment to demonstrate thistpwas performed by Kerrich in Denmark in 1946.tbigsed a coin
10,000 times, and obtained altogether 5067 heatis 4933 tails.

The behavior of the proportion of heads throughbetexperiment is shown as in the following figure:

The proportion; of heads in a sequence of tossesatoin (Kerrich, 1946):

Proportion of heads
(&3]

O 1 1 1 1 1 1 1
3 10 30 100 300 1000 3000 10000
Number of tosses (logarithmic scale)
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As you can see, the curve fluctuateslely at first, but begins to settle down to a more essktablevalue as the
number of spins increases. It seems reasonablepjpose that the fluctuations would continue to disfi if the
experiment were continueiddefinitely, and the proportion of heads would cluster mard moreclosely about a
limiting value which would beery near if not exactly, one-half. This hypotheticihiting value is the (statistical)
probability of heads.

Let us now take an example closely related todauly lives --- that relating to the sex ratio:-

In this context, the first point to note is thathias been known since the eighteenth century thatliable birth
statistics based on sufficientlgrge numbers (in at least some parts of the world)iethie always a slightxcessof
boys, Laplace records that, among the 215,599shirthhirty districts of France in the years 1806802, there were
110,312 boys and 105,287 girls. The proportionsayfs and girls were thus 0.512 and 0.488 respégtfiadicating a
slightexcesf boys over girls).In amallernumber of births one would, however, expect carsidledeviationsfrom
these proportions. This point can be illustratethwhe help of the following example:

EXAMPLE-2

The following table shows the proportions of mailehs that have been worked out for the major negiof England as
well as the rural districts of Dorset (for the y&866).

Proportions of Male Births in various Regions and Riral Districts of England in 1956

. Proportion - Proportion
Bogons’ | Torae” B Psreser | Corae
9 Births Births

Northern 514 Beaminster .38

E. & W. Riding .513 Blandford A7

North Western 512 Bridport .53

North Midland 517 Dorchester .50

Midland 514 Shaftesbury .59

Eastern 516 Sherborne 44

London and S. 514 Sturminster .54

Eastern

Southern 514 | Wareham and 53
Purbeck

South Western 513 Wimborne & 54
Cranborne

Whole country 514 All Rural District’s 512
of Dorset

(Source: Annual Statistical Revie)N

As you can see, the figures for the rural distraft®orset, based on about 200 births each, fltetbatween 0.38 and
0.59. While those for the major regions of Englawtlich are each based on about 100,000 births,otidluctuate
much, rather, they range between 0.512 and 0.5ly7 ©he larger sample size is clearly the reasanttie greater
constancy of the latter. We can imagine that if shenple were increased indefinitely, the proportibrboys would
tend to dimiting value which is unlikely to differ much from 0.51the proportion of male births for threholecountry.
This hypotheticalimiting value is the (statisticaprobability of a male birth. The overall discussion regardihg
various ways in which probability can be definegiiesented in the following diagram:
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Probability
Non-Quantifiable Quantifiable
(Inductive,
Subijective or
Personalistic
Probability) “ A Priori” Statistical
Probability Probability
(Verifiable (Empirical or
through “ A Posteriori ”
Empirical Probability)
Evidence) 1
(A statistician’s
main concern)

As far asquantifiable probability is concerned, in those situations wh#ne various possible outcomes of our
experiment are equally likely, we can compute ttebability prior to actually conducting the experiment --- othepyis
as is generally the case, we can compute a prdtyadnily after the experiment has been conducted (and this isitvhy
is also called ‘a posteriori’ probabiljtyNon-quantifiable probability is the one thatslled Inductive Probability.

It refers to the degree of belief which it is rezalole to place in a proposition givenevidence.

An important point to be noted is that it is difflc to express inductive probabilities numerically to construct a
numerical scale of inductive probabilities, witlstanding for impossibility and for logical certainn important point
to be noted is that it is difficult to express iotlue probabilities numerically — to construct anrerical scale of
inductive probabilities, with 0 standing for impdskty and for logical certainty. Most statisticia have arrived at the
conclusion that inductive probability cannot, imgeal, he measured and, therefore cannot be ube imathematical
theory of statistics.

This conclusion is not, perhaps, very surprisingcsithere seems no reason why rational degreelief bhould be
measurable any more than, say, degrees of beaoiye Paintings are very beautiful, some are quiteutiial, and
some are ugly, but it would be observed to try dastruct a numerical scale of beauty, on which Mbisa had a
beauty value of 0.96.Similarly some propositiong &ighly probable, some are quite probable and sanee
improbable, but it does not seem possible to coastr numerical scale of such (inductive) probébgi.Because of the
fact that inductive probabilities are not quanbf@a and cannot be employed in a mathematical argyrtigs is the
reason why the usual methods of statistical infegesuch as tests of significance and confidenaviat are based
entirely on the concept of statistical probabilitylthough we have discussed three different waysdefining
probability, the most formal definition is yet toroe.

This is The Axiomatic Definition of Probability.

THE AXIOMATIC DEFINITION OF PROBABILITY

This definition, introduced in 1933 by the Russmathematician Andrei N. Kolmogrov, is based ontao§&XIOMS.
Let S be a sample space with the sample point€E],.. Ei, ...En. To each sample point, we assignahmember,
denoted by the symbol P(Ei), and called the prditglof Ei, that must satisfy the following basigioms:
Axiom 1:

For any event Ei,

0<P(Ei)< 1.
Axiom 2:

P(S) =1

for the sure event S.
Axiom 3:

If A and B are mutually exclusive events (subsétS)pthen

P (AO B) = P(A) + P(B).
It is to be emphasized that According to the axitertheory of probability:
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SOME probability defined as a non-negative real bemnis to be ATTACHED to each sample poinskch that the
sum of all such numbers must equal ONlEe ASSIGNMENT of probabilities may be based astgvidence or on
some other underlying conditions. (If this assigntreff probabilities is based on past evidence, rgdalking about
EMPIRICAL probability, and if this assignment isdesl on underlying conditions that ensure that #r@®us possible
outcomes of a random experiment are EQUALLY LIKELNen we are talking about the CLASSICAL definitioh
probability. Let us consider another example:

EXAMPLE

Table giverbelow shows the numbers of births in England ande¥/m 1956 classified by (a) sex and (b) whether |
born or stillborn.

Table-1

Number of births in England and Wales in 1956 byas®d whether live- or still born

(Source Annual Statistical Review)

There are four possible events in this double ifleaton:

Liveborn Stillborn Total
Male 359,881 (A)| 8,609 (B] 368,490
Female 340,454 (B 7,796 (00) 348,2%0
Total 700,335 16,405 716,74D

= Male livebirth (denoted by A),
= Male stillbirth (denoted by B),
=  Female livebirth (denoted by C)
= Female stillbirth (denoted by D),

The relative frequencies corresponding to the égwf Table-1 are given in Table-2:

Table-2

Proportion of births in England and Wales in 1956&bx and whether live- or stillborn
(SourceAnnual Statistical Review

Liveborn | Stillborn| Total
Male 5021 .0120 5141
Female 4750 .0109 4859
Total| .9771 .0229 1.0000

The total number of births is large enough for ¢heslative frequencies to be treated for all pcattpurposes as

PROBABILITIES

Let us denote the compound events ‘Male birth’ &itdlbirth’ by the letters M and S. Now a male thiroccurs

whenever either a male live birth or a male stittbioccurs, and so the proportion of male birtigareless of whether

they are live-or stillborn, is equal to the sunthaf proportions of these two types of birth; tisatioi say,

p(M) =p(Aor B) = p(A) + p(B)
=.5021 +.0120 = .5141

Similarly, a stillbirth occurs whenever either alm stillbirth or a female stillbirth occurs and g@ proportion of
stillbirths, regardless of sex, is equal to the sifitihe proportions of these two events:
p(S) =p(B or D) =p(B) + p(D)

=.0120 +.0109 = .0229

Let us now consider some basic LAWS of probabilitgese laws have important
problems.

applications in sghpnobability
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LAW OF COMPLEMENTATION

If A is the complement of an event A relative to tample space S, then

P(A)=1-P(A).
Hence the probability of the complement of an everigual to one minus the probability of the evedomplementary

probabilities are very useful when we are wantmgdlve questions of the type ‘What is the probghthat, in tossing
two fair dice, at least one even number will appear

EXAMPLE

A coin is tossed 4 times in succession. What igptbhbability that at least one head occurs?
e The sample space S for this experiment consist34of 16 sample points (as each toss can result in 2
outcomes),and
e We assume that each outcome is equally likely.
If we let A represent the event that at least oeadhoccurs, then A will consist of MANY sample peinand the
process of computing the probability of this eveuilt become somewhat cumbersome! So, instead obtitem this
particular event by A, let us denote its complement‘No head” by A.
Thus the event A consists of the SINGLE sampletd@imTT}.
Therefore P(A) = 1/16.
Hence by the law of complementation, we have

A)=1-p(a)=1-L =15
P(A)=1-P(A)=1 TRETE

The next law that we will consider is the Additibaw or the General Addition Theorem of Probability:
ADDITION LAW

If A and B are any two events defined in a sampbs S, then

P(AOB) = P(A) + P(B) — P(AB)

In words, this law may be stated as follows:

“If two events A and B are not mutually exclusiveer the probability that at least one of them ogcisrgiven by the
sum of the separate probabilities of events A amdifidis the probability of the joint eventAB.”
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LECTURE NO. 20
e Application of Addition Theorem
*  Conditional Probability
e Multiplication Theorem
First of all, let us consider in some detail thedidn Law or the General Addition Theorem of Prolhity:

ADDITION LAW

If A and B are any two events defined in a sampbes S, then P(AB) = P(A) + P(B) — P(AB)
In words, this law may be stated as follows:

“If two events A and B are not mutually exclusitteen the probability that at least one of themuoscis
given by the sum of the separate probabilitiesvehes A and B minus the probability of the joineatAn B.”

EXAMPLE

If one card is selected at random from a deck gbl&fing cards, what is the probability that thedda a club or a face
card or both?
Let A represent the event that the card selectactiab, B, the event that the card selected &a €ard, and A B,
the event that the card selected is both a clukadade card. Then we need PAB)
Now P(A) = 13/52, as there are 13 clubs, P(B) $22as there are 12 faces cards,
P(A n B) = 3/52, since 3 of clubs are also face cards.

Therefore the desired probability is
P (AOB)=P (A) +P (B)— P (4 B)

=13/52 + 12/52 - 3/52

=22/52.

COROLLARY-1

If A and B are mutually exclusive events, then
P (AOB) =P (A) + P (B) (Since A B is an impossible event, hence P®) = 0)

EXAMPLE

Suppose that we toss a pair of dice, and we ageestied in the event that we get a total of 5totad of 11.What is the
probability of this event?

SOLUTION

In this context, the first thing to note is tha¢tting a total of 5’ and ‘getting a total of 11eamutually exclusive
events. Hence, we should apply the special cafeeaiddition theorem. If we denote ‘getting a tofab’ by A, and
‘getting a total of 11’ by B, then P (A) = 4/36r{sk there are four outcomes favorable to the oenae of a total of 5),
and P(B) = 2/36 (since there are two outcomes &hlerto the occurrence of a total of 11).

Hence the probability that we get a total of 5 ¢otal of 11 is given by

P (AOB) =P (A) + P (B)
= 4/36 + 2/36 = 6/36 = 16.67%.

COROLLARY-2

If A1, A2... Ak are k mutually exclusive events, then the prolitgtithat one of them occurs, is the sum of the
probabilities of the separate events, i.e.

P(A, 0A20 ... 0 AK) = P(A) + P(A)+ ... + P(A).

Let us now consider an interesting example totilie the way in which probability problems carsbéved:

EXAMPLE

Three horses A, B and C are in a race; A is twickkaly to win as B and B is twice as likely tomés C. What is the
probability that A or B wins?
Evidently, the events mentioned in this problemraoeequally likely.
Let PC)=p
Then P (B) = 2p as B is twice as likely to win as C
Similarly
P (A)=2P (B) = 2(2p) = 4p
In this problem, we assume that no two of the loAseB and C cannot win the race together (i.eréoe cannot end
in a draw).
Hence, the events A, B and C are mutually exceusiv
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Since A, B and C are mutually exclusive and coilety exhaustivetherefore the sum of their probabilities must be

equal to 1.
Thus
p+2p+4p=1
orp=1/7

O P(C)=1/7,

P(B) = 2(L/7) = 217,
and P(A) = 4(1/7) = 4/7.

Hence

P(AOB) =P(A) + P(B)
= 417+ 2/7
= 6/7.

Having discussed the addition theorem in some Idetaiwould now like to discuss the Multiplicatidineorem.
But, before we are in a position to take up thetiplidation theorem, we need to consider the cohoéponditional
probability.

CONDITIONAL PROBABILITY

The sample space for an experiment must often &eged when some additional information pertainmthe
outcome of the experiment is received.

The effect of such information is to REDUCE the p#arspace by excluding some outcomes as being sitpesvhich
BEFORE receiving the information were believed jfulss The probabilities associated with such a cedusample
space are called conditional probabilities.

The following example illustrates the concept afiditional probability

EXAMPLE

Suppose that we toss a fair die. Then the sanppleesof this experiment is S = {1, 2, 3, 4, 5, 8lippose we
wish to know the probability of the outcome thag thie shows 6 (say event A).Also, suppose thatrbefeeing the
outcome, we are told that the die shows an EVENbmurof dots (say event B).

Then the information that the die shows an evenbeiraxcludes the outcomes 1, 3 and 5, and theezluces the
original sample space to a sample space that ¢smdithree outcomes 2, 4 and 6,

i.e. the reduced sample space is

B ={2, 4, 6}.

2 8 %
2 4 6

(The sample space is reducea

Then, the desired probability in the reduced sarmpéee B is 1/3.

(since each outcome in the reduced sample sp&@URALLY LIKELY). This probability 1/3 is called theonditional
probability of the event A because it is computader the CONDITION that the die has shown an ewenbrer of
dots. In other words,

P(die shows 6/die shows even numbers)

=1/3,

(Where the vertical line is read as given that gwedinformation following the vertical line desceithe conditioning
event).

Sometimes, it is not very convenient to computeraitional probability by first determining the nber of sample
points that belong to the reduced sample space.

In such a situation, we can utilize the followiagernative method of computing a conditional priotity
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CONDITIONAL PROBABILITY

If A and B are two events in a sample space SfaR(Bi) is not equal to zero, then the conditionalability of the
event A given that event B has occurred, writteR@¥B), is defined by

P(A/B)= m
Where P (B) >0 P(B)
(If P (B) = 0, the conditional probability P(A/Bg¢mains undefined.)
Similarly

P(B/A):m

where P(A) > 0. ( )
It should be noted that P(A/B) SATISFIES all tesic axioms of probability, namely:

e O0<P(AB)<1.

« i) P(S/B) =1

e P(A10A2/B) = P(A1/B) + P(A2/B) (provided that the evert& and A2 are mutually exclusive).
Let us now apply this concept to a real-world exeemp

EXAMPLE-2

At a certain elementary school in a Western coutiy school-record of the past ten years shovis/étd of the
students come from a two-parent home and that Z0%eastudents are low-achievers and belong togament homes.
What is the probability that such a randomly selécttudent will be a low achiever GIVEN THAT hestie comes
from a two-parent home?

SOLUTION

Let A denote a low achiever and B a student frama@parent home. Applying thelative frequency definitioof
probability, we have

P(B) = 0.75 and P(4 B) = 0.20.

Thus, we obtain

P(AnB)_ 020 _
P(B) 075
MULTIPLICATION THEOREM OF PROBABILITY

027

P(A|B)=

It is interesting to note that the multiplicatidrebrem is obtained very conveniently from the fdaraf conditional
probability:

PIAnB
P(A|B)= PAnB)
P(B)
As discussed earlier, the conditional probabilityAa@iven that B has occurred has already beemddfas:
P(A nB)

P(A/B):—, Where P (B) >0
P(B)
Multiplying both sides by P (B), we get
P (An B) =P (B) . P (A/B).
And if we interchange the roles of A and B, we afota
P (An B) =P (A) P (B/A),
Provided P(A) > 0.

MULTIPLICATION LAW

If A and B are any two events defined in a sampbes S, then
P (An B)
=P (A) P (B/A), provided P (A) > 0,
=P (B) P (A/B) provided P (B) > 0.
(The second form is easily obtained by interchagdirand B. This is called the GENERAL rule of mplitation of
probabilities. It can be stated as follows:
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MULTIPLICATION LAW

“The probability that two events A and B will batlecur is equal to the probability that one of thergs will occur
multiplied by the conditional probability that théher event will occur given that the first eveastalready occurred.”
Let us apply the concept of multiplication theoreenan example

EXAMPLE

A box contains 15 items, 4 of which are defectinel 11 is good. Two items are selected. What is the
probability that the first is good and the secortkdtive?
Let A represent the event that the first item delédés good, and B, the event that the second itemsfective.
Then we need to calculate the probability of théNJOevent An B by the rule
P(A n B) = P(A)P(B/A).

We have:
Type of No. of
ltem Items
Defective 4
Good 11
Total 15

Since all the items are equally likely to be chodwmce

P (A) = 11/15.

Given the event A has occurred, there remain Isitef which 4 are defective. Therefore the proligtof selecting a
defective item after a good item has been seléstéd 4 i.e.

P (B/A) = 4/14.
Hence

P (An B) =P (A) P (B/A)

=11/15% 4/14

=44/210

=0.16.
In this lecture, the concepts of the Addition Theorand the Multiplication Theorem of probabilityvieabeen
discussed in some detail.
In order todifferentiate between the situation where the addition theorerapplicable and the situation where the
multiplication theorem is applicable, the main poio keep in mind is that whenever we wish to cotapthe
probability thateither A occursor B occurs, we should think of the Addition Theoremhere as, whenever we wish to
compute the probability thésoth A and B occur, we should think of the Multiplication Tdvem.
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LECTURE NO. 21

* Independent and Dependent Events

e Multiplication Theorem of Probability for IndepentteEvents

e Marginal Probability
Before we proceed the concept of independent vetepsndent events, let us review the Addition andtiplication
Theorems of Probability that were discussed indkelecture.
To this end, let us consider an interesting exantipée illustrates the application of both of thekeorems in one
problem:

EXAMPLE

A bag contains 10 white and 3 black balls. Anoth&g contains 3 white and 5 black balls. Two baiés teansferred
from first bag and placed in the second, and thenball is taken from the latter.

What is the probability that it is a white ball?

In the beginning of the experiment, we have:

Colour of No. of No. of
Ball Ballsin Bag A| Ballsin Bag B
White 10 3
Black 3 5
Total 13 8

Let A represent the event that 2 balls are drawmfthe first bag and transferred to the second Bagn A can occur
in the following three mutually exclusive ways:

Al = 2 white balls are transferred to the secorgl ba

A2 =1 white ball and 1 black ball are transfertedhe second bag. 13

A3 =2 black balls are transferred to the secorid ba

Then, the total number of ways in which 2 balls bardrawn out of a total of 13 balls i 2 !

10

And, the total number of ways in which 2 whitelbaian be drawn out of 10 white balls jis

Thus, the probability that two white balls are stde from the first bag containing 13 balls (inerdotransferto the

second bag) is
10 13) 45
P = = =—,
(A) 2 ( zj 78

Similarly, the probability that one white ball abde black ball are selected from the first bag aioiig 13 balls (in
order totransferto the second bag) is

p(a,)= 10)(3) . (13) _ 30
1)\1 2) 78
And, the probability that two black balls are sédelcfrom the first bag containing 13 balls (in orttetransferto the

second bag) is
3) (13
P(A)= (2) { 2) ) 7_?;3'

AFTER having transferred 2 balls from the first btigg second bag contains
i) 5 white and 5 black balls (if 2 white balls ar@sferred)

Colour of No. of No. of
Ball BallsinBag A| Ballsin Bag B
White 10-2=8 3+2=5
Black 3 5
Total 13-2=11 8+2=10
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Hence: P(W/A1) =5/10

i) 4 white and 6 black balls (if 1 white and 1 bldckl are transferred)
Colour of No. of No. of
Ball Ballsin Bag A| Ballsin Bag B
White 10-1=7 3+1=4
Black 3-1=2 5+1=4
Total 13-2=11 8+2=10

Hence: P(W/A2) = 4/10

iii) 3 white and 7 black balls (if 2 black balls a@nsferred)
Colour of No. of No. of
Ball Ballsin Bag A| Ballsin Bag B
White 10 3
Black 3-2=1 5+2=7
Total 13-2=11 8+2=10

Hence: P(W/A3) = 3/10
Let W represent the event that the WHITE ballrswh from the second bag after having transferrédI
from the first bag.
Then P (W) = P (AbW) + P (A2nW) + P (A3 W)
Now P (Aln W) =P (Al) P (W/A1)
= 45/78x 5/10

= 15/52

P (A2n W) =P (A2) P (W/A2)

=30/78% 4/10

=2/13,
And
P (A3n W) = P (A3) P (W/A3)

= 3/78x 3/10

= 3/260.

Hence the required probability is
P (W)

=P (AINW) + P (A2nW) + P (A3nW)
= 15/52 + 2/13 + 3/260
= 59/130
=0.45
INDEPENDENT EVENTS

Two events A and B in the same sample space Sjedieed to be independent (or statistically indefgsn) if the
probability that one event occurs, is not affedigdvhether the other event has or has not occutiatljs
P (A/B) =P (A) and P (B/A) = P (B). It then folls that two events A and B are independent if ang ib
P(AnB)=P (A)P (B)
and this is known as thepecial casef the Multiplication Theorem of Probability.

RATIONALE
According to the multiplication theorem of probatlil we have:
P (An B)=P (A). P (B/A)
Putting P(B/A) = P(B), we obtain
P(AnB)=P(A) P (B)
The events A and B are defined toEPENDENTIf P(AnB) # P(A) x P(B).
This means that the occurrence of one of the evergeme way affects the probability of the occonoe of the other
event. Speaking of independent events, it is t@mphasized that two events that are independemtN&/ER be
mutually exclusive.
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EXAMPLE
Two fair dice, one red and one green, are throlet. A denote the event that the red die shows an eumber and let
B denote the event that the green die shows aa%oShow that the events A and B are independent.
The sample space S is represented by the follo@6ngutcomes:
$={(1,1).(1,2),(13),(15), (16

(2,1),(2,2),(2,3),(2,5), (2,6);
(3,1).(3,2),(3,3).(3,5), (3,6);
(4,1),(4,2),(4,3), (4,5), (4,6);
(5,1), (5, 2), (5,3), (5, 5), (5, 6);
(6,1). (6, 2),(6,3),(6,5),(6,6) }

Since
A represents the event that red die shows an eweber, and B represents the event that green diessa 5 or a 6,
Therefore An B represents the event that red die shows anmweer and green die shows a 5 or a 6.
Since A represents the event that red die showsvan number, hence P(A) = 3/6. Similarly, sinceeBresents the
event that green die shows a 5 or a 6, hence Pgj.=
Now, in order to compute the probability of thénjoevent An B, the first point to note is that, in all, there
are 36 possible outcomes when we throw the twotdigether, i.e.
$=(1,1),(1,2),(1,3),(15), 6
(2,1),(2,2),(2,3), (2,5), (2, 6)
(3. 1), (3,2), (3,3), (3, 5). (3, 6);
(4, 1), (4,2), (4,3), (4,5), (4,6);
(5, 1), (5, 2), (5, 3), (5,5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 5), (6, 6)
The joint event An B contains only 6 outcomes out of the 36 possibteomes.
These are (2, 5), (4, 5), (6, 5), (2, 6), (4,88) (6, 6).
and P(An B) = 6/36.

Now

P (A) P (B)
=3/6x 2/6
=6/36
=P (An B).

Therefore the events A and B are independent. kehaw go back to the example pertaining to livehisirand
stillbirths that we considered in the last lectaed try to determine whether or not sex of theybatd nature of birth
are independent.

EXAMPLE

Table-1 below shows the numbers of births in Emgland Wales in 1956 classified by (a) sex and (b)
whether live born or stillborn.
Table-1
Number of births in England and Wales in 1956 byad whether live- or still born
(SourceAnnual Statistical Review

Liveborn Stillborn Total

Male 359,881 (A)| 8,609 (B] 368,490
Female | 340,454 (B} 7,796 (0) 348,250
Total| 700,335 16,405 | 716,74p

There are four possible events in this double ifleaton:
*  Male live birth,
*  Male stillbirth,
* Female live birth, and
¢ Female stillbirth.

The corresponding relative frequencies are giveFainle-2.

Table-2

Proportion of births in England and Wales in 19§&bx and whether live- or stillborn
(Source Annual Statistical Review)
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Liveborn | Stillborn Total
Male 5021 .0120 5141
Female 4750 .0109 4859
Total 9771 .0229 1.000(|)

As discussed in the last lecture, the total nunatbirths is large enough for these relative framuies to be treated for
all practical purposes @ROBABILITIES The compound events ‘Male birth’ and ‘Stillbirthiay be represented by
the letters M and S. If M represents a male bintth & a stillbirth, we find that

n(M and S) _ 8609
n(m) 368490

=0.0234

This figure is the proportion — and, since the glarsize is large, it can be regarded agptiobability — of males who
are still born — in other words, t&ONDITIONAL probability of a stillbirthgiven thatit is a male birth. In other
words, the probability of stillbirthin males. The corresponding proportion of stillbirtmsong females is

7796
34825¢

These figures should be contrasted with the OVERAMIUNCONDITIONAL, proportion of stillbirths, which is

16405

71674(

We observe that the conditional probability oflsiiths among boys is slightldIGHER than the overall proportion.
Where as the conditional proportion of stillbirdasiong girls is slightht OWERthan the overall proportion. It can be
concluded that sex and stillbirth are statisticBIFPENDENT that is to say, th8EXof a baby yet to be botmasan
effect, (although a small effect), on its chancebeing stillborn. The example, that we just consdepoint out the
concept oMARGINAL PROBABILITY

Let us have another look at the data regardindj\tbevirths and stillbirths in England and Wales:

Table-2Proportion of births in England and Wales1Bb6 by sex and whether live- or stillborn (Soufoenual
Statistical Revieyv

=0.0224

=0.0229

Liveborn | Stillborn| Total
Male 5021 .0120 5141
Female 4750 .0109 4859
Total| .9771 .0229 1.0000

And, the figures in Table-2 indicate that the ptubty of male birth is 0.5141, whereas the proliabof female birth
is 0.4859.Also, the probability of live birth is90.71, where as the probability of stillbirth is 229. And since these
probabilities appear in the margins of the Tabeytare known aMarginal Probabilities According to the above
table, the probability that a new born baby is denaad is live born is 0.5021 whereas the prohighifiat a new born
baby is a male and is stillborn is 0.0120.Alsostated earlier; the probability that a new bornybigba male is 0.5141,
and, CLEARLY, 0.5141 = 0.5021 + 0.0120. Hencesitliear that the joint probabilities occurring imyaow of the
table ADD UP to yield the correspondinmarginal probability. If we reflect upon this situation eéully, we will
realize that this equation is totally in accordamgth the Addition Theorem of Probability for mutlyaexclusive
events.
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P (male birth) = P(male live-boom male stillborn)
=P (male live-born) + P (male stillborn)
=0.5021 + 0.0120
=0.5141

EXAMPLE

P (stillbirth/male birth)
P (male birthand stillbirth)/P(male birth)
=0.0120/0.5141
= 0.0233
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LECTURE NO. 22
e Bayes’ Theorem
» Discrete Random Variable
o Discrete Probability Distribution
o Graphical Representation of a Discrete Probatiistribution
0 Mean, Standard Deviation and Coefficient of Vadatof a Discrete Probability Distribution
o Distribution Function of a Discrete Random Variable

First of all, let us discuss the BAYES' THEOREM.i3ltheorem deals with conditional probabilitiesaim interesting
way:

BAYES' THEOREM

If events A, Az... Ak form a PARTITION of a sample space S (that is,ahents Ai are mutually exclusive
and exhaustive (i.e. their union is S)),
and if B is any other event of S such that it cacuo ONLY IF ONE OF THE Ai OCCURS, then for any i,

P(A, /B) = kP(Ai)P(B/Ai) ’
> P(A)PB/A))

i=1

fori=1,2, ..., k
Stated differently:
BAYES' THEOREM:
If A1, A2... and A are mutually exclusive event$é which one must occuthen

P(a,) P(BIA)
P(A,) P(B|A,)+P(A,) P(B|A,)+...+P(A, ) P(B|Ay)

P(Ai |B):

If k = 2, we obtain:
Bayes’ Theorem for two mutually exclusive eventsaki A2:

P(A;)-P(BIA)
P(A;) P(BIA,)+P(A,) P(B]A,)

P(Ai |B):

Where i=1, 2.
In other words

P(A,) P(B]A,)
P(A,).P(B|A;)+P(A,) P(BIA,)
P(A,) P(BIA,)
P(A;) P(B| A;)+P(A,) P(B] A;)

and P(Al | B) =

P(A2|B):

EXAMPLE

In a developed country where cars atetkfor the emission of pollutants, 25 percerdlofars emit excessive
amounts of pollutants. When tested, 99 percenll ches that emit excessive amounts of pollutaritsfail, but 17
percent of the cars that do not emit excessive atsaf pollutants will also fail. What is the prdiity that a car that
fails the test actuallgmitsexcessive amounts of pollutants?

SOLUTION

Let Al denote the event that it emits@ESSIVE amounts of pollutants, and let A2 denotedthent that a car
does NOT emit excessive amounts of pollutantsotfher words, A2 is the complement of Al.)
Also, let B denote the event that a E&iLSthe test.
The first thing to note is that any car will eitt@nit or not emit excessive amounts of pollutants. In otherdspAl
and A2 are mutually exclusive and exhaustive eveat#\1 and A2 form a PARTITION of the sample sp&
Hence, we are in a position to apply the Bayertben.
We need to calculate P(A1|B), and, according tdBiéges’ theorem:

P(A,) P(B|A,)
P(A;) P(BIA,)+P(A,) P(B]A,)

P(Al | B) =
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Now, according to the data given in this problem:
P (A1) =0.25,

P (A2) = 0.75 (as A2 is simply the complement of) A1

P (B|A1) = 0.99,
and
P (B|A2) = 0.17

Substituting the above values in the Bayes’ thepreenobtain:

P(A,) P(BIA,)
P(A;) P(B| A;)+P(A;) P(B| A,)
_ (025)(099)
" (025)(099)+(075)(017)
_ 02475
© 0.2475+0.1275
_0.2475

0.3750
= 066

This is the probability that a car which fails tiest ACTUALLY emits excessive amounts of pollutarftke example
that we just considered pertained to the simplasé evhen we have only two mutually exclusive arfthastive events
Al and A2.

As stated earlier, the Bayes’ theorem can be egrténad the case of three, four, five or more muyuekclusive and
exhaustive events.

Let us consider another example: In the followimgraple, check the percentages of defective baits the recorded
lecture.

P(Al | B) =

EXAMPLE

In a bolt factory, 25% of the bolts aneguced by machine A, 35% are produced by machinar the
remaining 40% are produced by machine C. Of theipuats, 2%, 4% and 5% respectively are defectivesbib a bolt
is selected at random and found to be defectiva veithe probability that it came from machine A?

In this example, we realize that “a bolt is prodlity machine A”, “a bolt is produced by machine &id “a bolt is
produced by machine C” represent three mutuallyuskee and exhaustive events i.e. we can regami te A1, A2
and A3. The event “defective bolt” represents thengé B. Hence, in this example, we need to detezrRifA1/B).

The students are encouraged to work on this prolentheir own, in order to understand the applcatand
significance of the Bayes’ Theorem. This brings tasthe END of the discussion of variousasic concepts of
probability. We now begin the discussion ofery importantconcept in mathematical statistics, i.e., the ephof
PROBABILITY DISTRIBUTIONS

As stated in the very beginning of this courserdtae two types of quantitative variables ---diserete variable, and
the continuous variable. Accordingly, we have treegtte probability distribution as well as the tionous probability
distribution.

We begin with the discussion of the discrete prdlgllistribution.

In this regard, the first concept that we needatasader is the concept of Random variable.

RANDOM VARIABLE

Such a numerical quantity whose value is deterchimethe outcome of a random experiment is called a
random variable.
For example, if we toss three dice together, ahiX ldenote the number of heads, then the randomhlarX consists
of the values 0, 1, 2, and 3. Obviously, in thiareple, X is a discrete random variable. Let us d@guss the concept
of discrete probability distribution in detail withe help of the following example:
Example:

If a biologist is interested in the number of pet@n a particular flower, this number may take h&ies
3,4,5,6,7,8,9, and each one of these nuniiéiisave its own probability.

Suppose that upon observing a large no. of flowsay 1000 flowers, of that particular species, the
following results are obtained:
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No. of Petals f
X
3 50
4 100
5 200
6 300
7 250
8 75
9 25
1000
Since 1000 is quite a large number, hence the piiope f2f can be regarded as probabilities and hence wevaén
No. of Petals P(x)
X
X1=3 0.05
Xo=4 0.10
X3= 5 0.20
X4=6 0.30
Xs=7 0.25
X6 =8 0.075
X7=9 0.025
1
PROPERTIES OF A DISCRETE PROBABILITY DISTRIBUTION

R )
0<P(X,)<1. foreachxi (i=1,2..7)

© @ Z p(xi):]'
And, since the number of petals on a leaf can belyawhole number, hence the variable X is known adistrete
random variable, and the probability distributidrttas variable is known aslSCRETEprobability distribution.
In other words, Any discrete variable that is aggted with a random experiment, and attached toselvarious values
are various probabilities (Such t@lp(x‘ )=1)

i=1

is known as a Discrete Random Variable, and itsbaidity distribution is known as a Discrete Proitigb
Distribution. Just as we can depict a frequencyriflistion graphically, we can draw the GRAPH of ekmbility
distribution.

EXAMPLE

Going back to the probability distribution of thember of petals on the flowers of a particularcsgs i.e.:

No. of Petals P(x)
X
X1=3 0.05
X2 =4 0.10
X3=5 0.20
Xa=6 0.30
Xs=7 0.25
X =8 0.075
X7=9 0.025
1

This distribution can be represented in the forma bhe chart.
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Line Chart Representation
of the

30

Probabilit
P(x) -25

.20

15

.10

.05

0

No. of Petals (x)
Evidently, this particular probability distributiaa approximately symmetric. In addition, this gnagearly shows that,
just as in the case of a frequency distributiorergwdiscrete probability distribution hasGENTRALpoint and a
SPREAD Hence, similar to a frequency distribution, thescdete probability distribution has MIEAN and a
STANDARD DEVIATIONHow do wecalculatethe mean and the standard deviation of a prolyabdistribution?
Let us first consider the computation of the MEAN:
We know that in the case of a frequency distributiach as

aga|bdlw|N|— X

RIN[(™IN|-|

the mean is given by

g XX _ XX
> f > f

In case of a discrete probability distribution, Is@s the one that we have been considering i.e

No. of Petals PX)
X
X1=3 0.05
X2 =4 0.10
X3=5 0.20
Xa=6 0.30
Xs=7 0.25
X =8 0.075
X7=9 0.025
1

the mean is given by:
_ £(x) = ZXP(X) _ ZXP(X)
=E(X)= =
u=Ex) > p(X) 1

Hence we construct the column of XP(X), as showovae

=¥ XP(X)
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No. o;‘( Petals P(X) XP(X)
X1= 3 0.05 0.15
X2 =4 0.10 0.40
X3= 5 0.20 1.00
X4=6 0.30 1.80
Xs=7 0.25 1.75
X =8 0.075| 0.60
X7=9 0.025] 0.225
Total 1 5.925

Hencep = E(X) =2 XP(X) = 5.925 i.e. the mean of the given probapittiistribution is 5.925. In other words,
considering a very large number of flowers of thatticular species, we would expect that, on treragye, a flower
contains 5.925 petals --- sgundingthis number, 6 petals. This interpretation pototthe reason why the mean of the
probability distribution of a random variable Xtexhnically called the EXPECTED VALUE of the randeariable X.
(“Given that the probability that the flower hapé&tals is 5%, the probability that the flower Hagetals is 10%, and
soON, we EXPECTthat on theaveragea flower contains 5.925 petals.)

COMPUTATION OF THE STANDARD DEVIATION

Just as in case of a frequency distribution, weehav

o [ZexT

> f
X2 (wix Y [ExE (exiY’
-\ >f st )\ xf > f

Similarly, in case of a probability distributiong have

o _ _2xPx) _[Exp(x)T
- SPe0 J > AX) {zp(xﬂ

=y ZX?P(X)~[£XP(X )]

[n > P(X)= 1)
In the above exakple
No. o;‘( Petals Py | xPe) | 2P

X1=3 0.05 0.15 0.45
X2 =4 0.10 0.40 1.60
X3= 5 0.20 1.00 5.00
X4=6 0.30 1.80 10.8¢
Xs=7 0.25 1.75 12.24
X = 8 0.075] 0.60 4.80
X7=9 0.025] 0.225 2.02%
Total 1 5.925] 36.92p

Hence
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SD.(X) =+ 36925- (5925

=./36925- 35106
=.1819=13

Graphical Representation

Probability,
Px) -

@ a@ N FO o

No. of Petals
o=13 (x)

1 =5.925

Now that we have both the mean and the standardti®y we are in a position to compute treefficient of variation
of this distribution:

Coefficient of Variation

cv. =Zx100
U
_ 13 o0
5925

=219 %

Let us consider another example to understandaheept of discrete probability distribution.

EXAMPLE

a) Find the probability distribution of the sumtb& dots when two fair dice are thrown

b) Use the probability distribution to find the pebilities of obtaining (i) a sum that is greateart 8, and (ii) a sum
that is greater than 5 but less than or equal to 10

SOLUTION

a) The sample space S is represented by the foigp@6 outcomes:
S={(11).(12),(13) (1 5) (1, 6);

(2,1),(2,2),(2,3),(2,5), (2, 6);
(3,1).(3,2),(3,3).(3,5), (3, 6);
(4,1),(4,2),(4,3),(4,5), (4,6);

(5. 1), (5, 2), (5, 3), (5, 5), (5, 6);
(6,1), (6, 2), (6, 3), (6,5), (6,6)}
Since each of the 36 outcomes is equally likelgdour, therefore each outcome has probability 1/36.
Let X be the random variable representing the stidots which appear on the dice. Then the valugkef.v. are 2, 3,
4...12.
The probabilities of these values are computedesab
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f(2)=P(X= 2= P[{l]}] :3_16’ as there is on

one outcome resulting in a sum of 2,

i@®)=P(x=3=rl{(1.2). ()=
4=r(x=4=A{(13. (23 (31}]=,

Similarly
4 5 6 5 4
f(5)=—.,f(6)=—,f(7)=—,f(8)=—,f(9)=—,
(6)=55:f(6)=55.f(7)=55 f8)=55 F(O)=5
=3 -2 -1
f(1 )_36,f@.) 56 2nd f(12) 36

Therefore the desired probability distribution leétr.v X is
Xi 2 3 4 5 6 7 8 9 10 11 1p

1 2 3 4 5 6 5 4 3 2 1
36 36 36 36 36 36 36 36 36 36 36

f(x;)

The probabilities in the above table clearly inticthat if we draw the line chart of this distrilout, we will obtain a
triangular-shaped graph. The students are encalitagdraw the graph of this probability distributjan order to be
able to develop a visual picture in their minds.

b) Using the probability distribution, we get tregjuired probabilities as follows:

i) P(asum that is greater than 8)
=P(X>8)
= P(X=9) + P(X=10) + P(X=11) + P(X=12)
= f(9) + f(10) + f(11) + f(12)
4 3 2 1 10
=t —+—+— ==
36 36 36 36 36
i) P(a sum that is greater than 5
but less than or equal to 10)
= P(5 < X<10)
:P(X:6)+P(X:7)+P(X:8)
+P(X=9) +P(X=10)
= f(6) + f(7) + f(8) + f(9) + f(10)
5 6 5 4 3 _23
= —+—+—+—+—=—
36 36 36 36 36 36

Next, we consider the concept of the DISTRIBUTIOMNCTION of a discrete random variable:
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DISTRIBUTION FUNCTION

The distribution function of a random variable Xnoted by F(x), is defined by F(x) = P(X < x).

The function F(x) gives the probability of the evémat X takes a value LESS THAN OR EQUAL TO a sfied value
x. The distribution function is abbreviateddd. and is also called thmumulative distribution function (cd#s it is the
cumulative probability function of the random vdnlia X from the smallest value uptspecificvalue x.

Let us illustrate this concept with the help of Hzene example that we have been considering +-eottiae probability
distribution of the sum of the dots when two fagedare thrown. As explained earlier, the probabdistribution of
this example is:

Xi 2 3 4 5 6 7 8 9 10 11 1p

1 2 3 4 5 6 5 4 3 2 1
36 36 36 36 36 36 36 36 36 36 36

f(xi)

The term ‘distribution function’ implies the cumtiteg of the probabilities similar to the cumulatiohfrequencies in
the case of the frequency distribution of a disexetriable.

Xi 2 3 4 5 6 7 8 9 10 11 1p
wo|L 2 3 4 5 6 5 4 3 2 1
136 36 36 36 36 36 36 36 36 36 36
1 3 6 10 15 21 26 30 33 35 36

F) | = = =

36 36 36 36 36 36 36 36 36 36 36

If we are interested in finding the probability thae obtain a sum of five or less, the column omalative
probabilities immediately indicates that this proitity is 10/36.
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LECTURE NO. 23

e Graphical Representation of the Distribution Fumtif a Discrete Random Variable
e Mathematical Expectation
. Mean, Variance and Moments of a Discrete Probgtillistribution
«  Properties of Expected Values
First, let us consider the concept of the DISTRIBON FUNCTION of a discrete random variable.

DISTRIBUTION FUNCTION

The distribution function of a random variable »Xendted by F(x), is defined by F(x) = P(X < x). Thmction F(x)
gives the probability of the event that X takes alue LESS THAN OR EQUAL TO a specified value x. The
distribution function is abbreviated to d.f. and @so called the cumulative distribution functiordf)

as it is the cumulative probability function of trendom variable X from the smallest value up specific value x.

EXAMPLE

Find the probability distribution and distributiduanction for the number of heads when 3 balancedscare tossed.
Depict both the probability distribution and thetdibution function graphically. Since the coins dalanced, therefore
the equally probable sample space for this expettiise

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.
Let X be the random variable that denotes the numbleeads.

Then the values of X are 0, 1, 2 and 3.
And their probabilities are:

f(0) =P(X=0)

=P{TTT}=1/8
fl) =P (X=1)

=P [{HTT, THT, TTH}] = 3/8
f) =P (X=2)

= P [{HHT, HTH, THH}] = 3/8
f2) =P (X=3)

=P [{HHH}] = 1/8

Expressing the above information in the tabulamfove obtain the desired probability distributidnXoas follows:

Number of Headg Probability
(xi) f(xi)
0 1
8
1 3
8
2 3
8
3 1
8
Total 1
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The line chart of the above probability distributis as follows:

f(x)
48 =
3/8 |-

2/8 =

1/8 =
0

In order to obtain the distribution function ofghiandom variable, we compute the cumulative priiiab as follows:

0 1 2

3

Number of Probability Cumulative
Heads Probability
[€9) f(X;i) F(x)
0 1 1
8 8
1 § 1 =+ :_3 = ﬂ-
8 8 8 8
2 § ﬂ. =+ § = Z
8 8 8 8
3 1 Z + 1 =1
8 8 8
Hence the desired distribution function is
0, for x<0
}, for 0<s x<1
8
4
F(x)= g forlsx<2
Z, for 2<x<3
8
1 for x=3

Why has the distribution function been expressetiismmmanner? The answer to this question is:

INTERPRETATION

If x <0, we have P(X < x) =0, the reason beingt it is not possible for our random variable Xagsume value less
than zero.(The minimum number of heads that weheae in tossing three coins is zero.)

If 0 < x < 1, we note that it is not possible far@gandom variable X to assume any value betweemad one. (We
will have no head or one head but we will NOT h&i&heads or 2/5 heads!)

Hence, the probabilities of all such values willz&¥o, and hence we will obtain a situation whielm e explained
through the following table:
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Number of Probability Cumulative
Heads Probability
(x) f(xi) F(xi)
0 1 1
8 8
0.2 0 1 +0= 1
8 8
0.4 0 1 +0= 1
8 8
0.6 0 1 +0= 1
8 8
08 0 1i0=12
8 8
. 3 1,3_4
8 8 8 8

The above table clearly shows that the probaliligt X is LESS THAN any value lying between zera &9999...
will be equal to the probability of X =0 i.e. FOK x < 1,

Similarly,

P(X<x):P(X:O)::—é;
For 1 < x < 2, we have
P(X <x)=P(X =0)+P(X =1)
_1.,3_4
8 8 8

For 2 < x < 3, we have

P(X <x)=P(X =0)+P(X =1)+P(X = 2)
1.3 3 7
=—+—+—=—;

8 8 8 8

And, finally, for x > 3, we have

P(X <x)=P(X =0)+P(X =1)+ P(X =2)+P(X =3)

Hence, the graph of the DISTRIBUTION FUNCTION isfalows:
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F(x)

1Pk ﬁ
6/8 I
48| @

2/8 |

D y

0] 1 2 K]

As this graph resembles the steps of a staircaisekmown as a step function. It is also knowragsmp function (as it
takes jumps at integral values of X).In some bodks, graph of the distribution function is given gt®own in the
following figure:

F(x)

1F ﬁ

@l
6/8 | .
|
4/8 [ Gl
|
|
|

28 I

T 073 X

In what way do we interpret the above distributfonction from a REAL-LIFE point of view? If we toshree

balanced coins, the probability that we obtairhatmost one head is 4/8, the probability that waiatat the most two
heads is 7/8, and so on. Let us consider anotheresting example to illustrate the concepts ofsardte probability
distribution and its distribution function:

EXAMPLE

A large store places its last 15 clock radios glemrance sale. Unknown to any one, 5 of the ragliesdefective. If a
customer tests 3 different clock radios selectedmatom, what is the probability distribution of Where X represent
the number of defective radios in the sample?

SOLUTION
We have:
Type of Number of
Clock Radio | Clock Radios
Good 10
Defective 5
Total 15
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15
The total number of ways of selecting 3 radiosajuit5 is [ 3}

Also, the total number of ways of selecting 3 goadios (and no defective radio) (0)( 5
Hence, the probability of X = 0 is 3tof

10\(5
310
-7~ =026
15
3
The probabilities of X = 1, 2, and 3 are computedai similar way. Hence, we obtain the following tpability
distribution:

Number of defective| Probability
clock radios in the
sample
X f(x)
0 0.26
1 0.49
2 0.22
3 0.02
Total 0.99=1
The line chart of this distribution is:
LINE CHART
f(x)
0L =
04 =
0.3
0.2 p=
0.1
0 A
0 1 2 3 X

As indicated by the above diagram, it is not nemgsfor a probability distribution to be symmetriccan be positively
or negatively skewed. The distribution functiortlé above probability distribution is obtained akofwvs:

Number of defectivd f(x) F(X)
clock radios in the
sample

X

0 0.26 0.26
1 0.49 0.75
2 0.22 0.97
3 0.02 0.99=1

Total 0.99=1
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INTERPRETATION

The probability that the sample of 3 clock radiostains at the most one defective radio is 0.7 ptiobability that the
sample contains at the most two defective radi@s9g, and so on.

Let a discrete random variable X have possibleeskd, x2, ..., xn with corresponding probabilitiesl}, f(x2), ...,
f(xn) such thak&f(xi) =1. Then the mathematical expectation ordkpectation or the expected value of X, denoted by
E(x), is defined as

E(X) = x1f(x1) + x2f(x2) + ... + xnf(xn)

:i Xif(xi)’
i=1

E(X) is also called the mean of X and is usuallgated by the lettqu.

n
E(X)=3 x1(x)
may be regarded as a weighted n|1_elan of the variablessible values x1, x2, ...,xn, each being weigltgdhe

respective probability.
In case the values are equally likely,

1
E(X) =—=2 X,
Which represents the ordinary arithmetic mean efrtipossible values
It should be noted that E(X) is the average vafub®random variable X over a vel@l‘gEnumber of trials.

The expression

EXAMPLE
If it rains, an umbrella salesman can earn $ 3@pgr If it is fair, he can lose $ 6 per day. Wisdhis expectation if the
probability of rain is 0.3?

SOLUTION
Let X represents the number of dollars the saleszaans. Then X is a random variable with possiblaes 30 and —6,

(where -6 corresponds to the fact that the saledas&s), and the corresponding probabilities &8eafid 0.7
respectively. Hence, we have:

AMOUNT
EARNED | PROBABILITY
EVENT %) P(X)
X
Rain 30 0.3
No Rain —6 0.7
Total 1

In order to compute the expected value of X, weycant the following computation

AMOUNT
EARNED | PROBABILITY
EVENT %) P(x) XP(x)
X
Rain 30 0.3 9.0
No Rain —6 0.7 -4.2
Total 1 4.8

Hence

E(X) = $ 4.80 per day

i.e. on the average, the salesman can expectrndieadollars per day.

Until now, we have considered the mathematical etgtion of the random variable X.
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But, in many situations, we may be interested érttathematical expectation of some FUNCTION of X:

EXPECTATION OF A FUNCTION OF A RANDOM VARIABLE

Let H(X) be a function of the random variable X.eAhH(X) is also a random variable and also hasxpeaed value,
(as any function of a random variable is also aloam variable). If X is a discrete random variablighwrobability
distribution f(x), then, since H(X) takes the valdéi) when X = xi, the expected value of the fuantH(X) is

E[H(X)] =H(x1) f(x1) + H(x2)f(x2) + ... + H(xn) f(x

=iZ H(x;)f (x;),

Provided the series converges absolutely. Agati(X) = (X - p)2,wherep is the population mean, then

E(XX —W)2 =Z(xi - w)2 f(x).
We call this expected value the variance and dahbieVar (X) oro2.
And, since

E(X —W)2 = E(X2) - [E(X)]2,
hence the short cut formula for the variance is

02 = E(X2) - [E(X)]2
The positive square root of the variance, a befsrealled the standard deviation. More generdily,
H(X) = Xk, k=1, 2, 3... then

E(Xk) =Zxik f(x)

which we call the kth moment about the origin & thndom variable X and we denote it'pl. Similarly, if H(X) =
X-wk, k=1, 2,3, ..., then we get an expected vatadled the kth moment about the mean of the randamable
X, which we denote byk. That is:
pk = E(X —p)k =Z(xi — p)k f(x)
The skewness of a probability distribution is ofte@asured by

2
B M3
17 3
and kurtosis by M2
B - H4
2= 2"

These moment-ratH)g assist us in determining tfewv8kss and kurtosis of our probability distributianexactly the
same way as was discussed in the case of frequaéstaputions.

PROPERTIES OF MATHEMATICAL EXPECTATION

The important properties of the expected values r@indom variable are as follows:

* If cis a constant, then E(c) = c. Thus the expbetue of a constant is constant itself. This poan be
understood easily by considering the following iiagting example: Suppose that a very difficult teas
given to students by a professor, and that eveidesit obtained 2 marks out of 20! It is obvioud tha mean
mark is also 2. Since the variable ‘marks’ was rastant, therefore its expected value was equabedf.i

e If X is a discrete random variable and if a andd@onstants, then E(aX + b) = a E(X) + b.

%sents the number of heads that appean Wiiee fair coins are tossed. The probabilityrihistion of X is:
X P(x)
0 1/8
1 3/8
2 3/8
3 1/8
Total 1

The expected value of X is obtained as follows:

X P(x) XP(x)

0 1/8 0

1 3/8 3/8
2 3/8 6/8
3 1/8 3/8

Total 1 12/8=1.5
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Hence, E(X) = 1.5
Suppose that we are interested in finding the drpevalue of the random variable 2X+3.Then we cauy the

following computations:
X | 2x+3 P(x) | (2x+3)P(x)
0 3 1/8 3/8
1 5 3/8 15/8
2 7 3/8 21/8
3 9 1/8 9/8
Total 1 48/8=6

Hence E(2X+3) = 6lt should be noted that
E(2X+3) =6=2(1.5) + 3=2E(X) + 3
i.e. E(@X+b)=aE(X)+h.
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LECTURE NO. 24
e Chebychev's Inequality
e Concept of Continuous Probability Distribution
e Mathematical Expectation, Variance & Moments ofanfthuous Probability Distribution

We begin with the discussion of the concept of @tebychev’'s Inequality in the case of a discretebability
distribution

Chebychev’s Inequality

If X is a random variable having megrand variance@?2 > 0, and k is any positive constant, then théabdity that a
value of X falls within k standard deviations oétmean is at least
That is:

P(u—ko < X <,u+ka)21—k—12,

Alternatively, we may state Chebychev’s theorenfoilew: Given the probability distribution of themndom variable
X with meanu and standard deviatian the probability of the observing a value of Xtthéfers thep by k or more
standard deviations cannot exceed 1/k2. As indicatglier, this inequality is due to the Russianthmaatician P.L.
Chebychev (1821-1894), and it provides a meansndérstandindhow the standard deviation measures variability
about the meanf a random variable. It holds for all probabildistributions having finite mean and variance.

Let us apply this concept to the example of the lmemof petals on the flowers of a particular spedieat we
considered earlier:

EXAMPLE
If a biologist is interested in the number of pgtah a particular flower, this number may takevhles 3, 4, 5, 6, 7, 8,

9, and each one of these numbers will have its mwhability
The probability distribution of the random varialX is:

No. of Petals P(X)
X
X1=3 0.05
X, =4 0.10
X3=5 0.20
X4=6 0.30
Xs =7 0.25
X6 =8 0.075
X7=9 0.025
1

The mean of this distribution is:
p = E(X) =2XP(X) = 5.925005.9
And the standard deviation of this distribution is:

o=

SD.(X) =+ 36925~ (5925

=./36925- 35106
=/1819=13

According to the Chebychev's inequality, the prabigtis at least 1 - 1/22 = 1 - 1/4 = 3/4 = 0. Hat X will lie
betweery - 20 andy + 20 i.e. between 5.9 - 2(1.3) and 5.9 + 2(1.3) ietwieen 3.3 and 8.5
Let us have another look at the probability disttidn:
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No. of Petals P(X)
X
X1 =3 0.05
X, =4 0.10
X3=5 0.20
X4=6 0.30
Xs=7 0.25
Xe =8 0.075
X7=9 0.025
1

According to this distribution, the probability thé lies between 3.3 and 8.5 is
0.10 + 0.20 + 0.30 + 0.25 + 0.075
=0.925
which isgreaterthan 0.758Sindicated by the Chebychev’s inequality).
Finally, and most importantly, we will use the cepts in Chebychev's Rule and the Empirical Ruléuidd the
foundation for statistical inference-making. Thetinog is illustrated in next example.

EXAMPLE
Suppose you invest a fixed sum of money in eacfivef business ventures. Assume you know that 70%uch

ventures are successful, the outcomes of the \etane independent of one another, and the prayatistribution
for the number, x, of successful ventures out\sf fs:

X 0 1 2 3 4 5
P(x) | .002 .029 .132 .309 .360 .168

a) Findp = E(X).
Interpret the result.
b)Find

0:\/E|(X—p)2| .

Interpret the result.

c) Graph P(x).

d) Locatep and the intervgl + 20 on the graph. Use either ChebycheVv's Rule or theiEcal Rule to approximate
the probability that x falls in this interval. Coame this result with the actual probability.

e) Would you expect to observe fewer than two sudakssntures out of five?

SOLUTION

a) Applying the formula,

H= E(X) =2xP(x)
=0(.002) +1(.029) + 2(.132) + 3(.309) + 4 (.36()(.168)
=3.50

INTERPRETATION

On average, the number of successful venturesfdisteowill equal 3.5. (It should be rememberedtttids expected
value has meaning only when the experiment — im@sh five business ventures — is repeated a largaber of
times.)

b) Now we calculate the variance of X:

We know that

02 = E[(X -p)2] =X(x - W2 P(X)

Hence, we will need to construct a column ofix -
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X | POO [ x-p | (xW)* | (x-p)°P(X)
0| .002| -3.5 12.25 0.02
1] .029| -2.5 6.25 0.18
2| .132 | -1.5 2.25 0.30
3] .309| -0.5 0.25 0.08
4 | 360 +0.5] 0.25 0.09
51| .168| +1.5 2.25 0.38

Total 1.05

Thus, the variance 32 = 1.05 and the standard deviation is

o=+02 =/105 = 102

This value measures the spread of the probabiltyildution of X, the number of successful ventuoes of five.

c¢) The graph of P(x) is shown in the following figwséth the meamu and the interval

H+20 =3.50+2(1.02)
=3.50+2.04

= (1.46, 5.54) shown on the graph.

p(x)
04 p
03 }
02 F
01 F
0 lf; . . 3 . . A » X
0 1 2 3 4 5
M+ 20 K M+ 20
(1.46 (5.54

Note particularly thaft = 3.5 locate theentreof the probability distribution. Since this digtition is a theoretical
relative frequency distribution that is moderatelgund-shaped, we expect (from Chebychev's Rul&ast 75% and,
more likely (from the Empirical Rule), approximatél5% of observed x values to fall in the interyat 20 ------ that

is, between 1.46 and 5.54.

It can be seen from the above figure that the &phadability that X falls in the interval + 20 includes the sum of

P(x) for the values

X=2,X=3,X=4,and X =

5.
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p(x)
04
03 }
02 }
o1}
0 1 > X
0 1 2 3 4 5
M+20 u u+20
(1.46° (5.54'

This probability is P(2) + P(3) + P(4) + P(5)

=.132 +.309 + .360 + .168

=.969.

Therefore, 96.9% of the probability distributiordi within 2 standard deviations of the mean. Thiscgntage is
CONSISTENTwith both the Chebychev’s rule and the EmpiricaleR

d) Fewer than two successful ventures out of fiveliespthat x = 0 or x = 1. Since both these valdes|® outside the
intervaly + 20, we know from the Empirical Rule that such a resulinlikely (with approximate probability of only
.05).The exact probability, P(x < 1), is P(0) + P£1002 + .029 = .031.

Consequently, in aingle experiment where we invest in five business vergtuwe wouldhot expect to observe fewer
than two successful ones. Tkey question: What is thsignificance of the Chebychev’s Inequality and the Empirical
Rule?

The answer to this question is that both thesesrasist us in having a certdiDEA regarding amount of data lying
between the mean minus a certain number of standevéhtions and mean plus that same number of atednd
deviations. Given any data-set, the moment we cbenphe mean and standard deviation, MEVE an idea
regarding the two points (i.e. mean minus two saatidieviations, and mean plus two standard dewglibetween
which theBULK of our data lies. If our data-set is hump-shapezipbtain this idea through tlenpirical Rule and if
we don'’t have any reason to believe that our datasshump-shaped, then we obtain this idea throglChebychev's
Rule

We now begin the discussion of CONTINUOUS RANDOM RIABLES - quantities that are measurable. As stated
in the very first lecture, continuous variablesutefrom measurement, and can therefore take aluevaithin a certain
range. For example, the height of a normal Pakistdnlt male may take any value between 5 feetthdn and 6 feet.
The temperature at a place, the amount of raintiatie to failure for an electronic system, etc. alleexamplesof
continuous random variable. Formally speaking, rinaous random variable can be defined as follows:

CONTINUOUS RANDOM VARIABLE

A random variable X is defined to be continuoug fan assume every possible value in an intdejal
b], a < b, where a and b may b® and o respectively. The function f(x) is called theobability density function
abbreviated tg.d.f, or simply density function of the random varialleA continuous probability distribution looks
something like this:

f(v\

¢
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A p.d.f. has the following properties:
i) f(x) > 0, for all x

(o]
i) [f(x) dx=1
i) The pr(_)goability that X takes on a value in therwéd[c, d], c < d is given by:
P(c<x<d) =

d
[1(x) dx
which is the area under the curve y= f(x) betw¥enc and X = d, as shown in the following figure:

f(x)
P(c < x<d)

'

o d
TheTOTALarea under the curve is 1. In other words:
« f(x) a non-negative function,
¢ The integration takes place over all possible \@loEthe random variable Xetween the specified
limits, and
«  The probabilities are given by appropriate areafeuthe curve.
Since K
P(X =k)=[ f(x) dx=0,
k
It should therefore be noted that the probabilityaccontinuous random variable X taking gogrticular value k is
alwayszera That is why probability for a continuous randoarigble is measurable only over a given interval.
Further, since for a continuous random variablePXX = x) = 0 for every x, the following four probiites are
regarded as the same:
P(c<X<d), P(c<X<d),
P(c < X <d)and P(c < X d).

They may be different for a discrete random vagafbhe values (expressed as intervals) of a camsmsandom
variable and their associated probabilities camxpgessed by means of a formula.
We now discuss theistribution functionof a continuous random variable.

CONTINUOUS RANDOM VARIABLE

A random variable X may also be defined as contisuibitsdistribution functionF(x) is continuous and is
differentiable everywhere except at isolated poimt$e given range. In contrast with the graplthefdistribution
function of a discrete variable, the graph of F(xdhe case of a continuous variable has no jumsseps but is a
continuousfunction for all x-values, as shown in the follogifigure:
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P00

Since F(x) is a non-decreasing function of x, weeha
i) f(x) >0,

iy F(x)= T f(x) dx, for allx.

The relationship between f(x) and F(x) is as foBowi(x) is obtained by finding the derivative di;, i.e.

d F(X) — f(X)
dx
EXAMPLE
a) Find the value of k so that the function f(x) aefil as follows, may be a density function
f(x) =kx,0<x<2
=0, elsewhere

b) Compute P(X = 1).
c) Compute P(X > 1).

d) Compute the distribution function F(x).

© Px <12 / 1/3< X <2/3)

SOLUTION

a) The function f(x) will be a density function, if
i) f(x) > 0 for every X, andJ‘ f(x) dx=1

ii)

—o0

The first condition is satisfied when k > 0. The®d condition will be satisfied, if

T f(x) dx=1,
e if 1= _?f(x) dx +§f(x) dx+°£f (x) dx

(o]

0 2 00
ie.if 1= [Odx+[kx dx+ [0 dx
—o0 0 2
2
X2
ie.if 1==0+ k7 +0=2k

0

We had . .
This gives k = 1/2
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f(x)

=kx,0<x<2
=0, elsewhere

and since we have obtained
k = 1/2, hence:

X < X<

f(x): 5, forO0sx<2
0, elsewhere

b) Since f(x) is continuous probability functiohetefore (X = 1) = 0.

c) P(X > 1) is obtained by computing the area urtdercurve (in this case, a straight line) betwxefh and X=2:
f(x)
1 p—
f(x) = x|2
X
0 1 2
This area is obtained as follows:
P(X>1) = area of shaded region
2
=[f(x) dx
1
2 27 3
—[ X — x| =
=[ Fdx= [7 =
1

4

1
d) To compute the distribution function, we neefind:

X

F(x) = P(X <x) = [f(x) dx
We do sastep by stepas shown befSw:
For any x such that e <x <0,

F(x) = )[(OdX:O,

—00

If 0 <x <2, we have

o g b
Fix)= [ Odx+[| = |dx= | =—,
(0= f oo ][ =i -
0
and, finally, for x > 2 we have
0
F(x)= [ 0dx+

—00

2 2
[Zdx+[0dx=1
02 0
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Hence
Fx) =0, forx<0
x2
=—, forO<x<2
4

=1, for x > 2.

We will discuss the computation of the conditiopedbability

P(X <1/2 / 1/3< X < 2/3)
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LECTURE NO. 25

«  Mathematical Expectation, Variance & Moments of@tthuous Probability Distribution

¢ BIVARIATE Probability Distribution
In the last lecture, we were dealing with an exampl a continuous probability distribution in whiehe were
interested in computing a conditional probabilitye now discuss this particular concept

EXAMPLE
a) Find the value of k so that the function f(x) defil as follows, may be a density function
f(x) =kx,0<x<2
=0, elsewhere

b) Compute P(X = 1).
c) Compute P(X > 1).
d) Compute the distribution function F(x).

o PX<12/1/3<x<2/3)

SOLUTION
We had
f(x) =kx,0<x<2

=0, elsewhere
and we obtained k = 1/2.

Hence:
X for0sx<?2
f(x)=42
0, elsewhere

e) Applying the definition of conditional probéibji, we get
1

(1 l) f)z(dx
Plz<X<s5) 1
Px<i|isx<2)=—p )3
PisX<2) iy
1z [
2 3 %
HESINES
41| 4
|
3 3

The above example was of the simplest case whegréph of our continuous probability distributianin the form of
a straight line.
Let us now consider a slightly macemplicatedsituation.

EXAMPLE

A continuous random variable X
the d.f. F(x) as follows:

F(x) =0, for x <O,
2
:ZL, for 0 < x <1,
2
:_:_34.2 3X—X_ Jforl<x <2
5 5
=1 for x > 2.

Find the p.d.f. and P(|X]| < 1.5).
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SOLUTION
d
By definition, we havef (X) = — F(X).
dx
4x
Thereforef (X) = ? forO<x<1

2
:—(3—X) for 1 < x <2
5
=0 elsewhere.
Let us now discuss the mathematical expectati@oofinuousandom variables through the following example:
EXAMPLE

Find the expected value of the random variable Wrtpthe p.d.f
f(x) =2 (1-x), O0<x<1
=0, elsewhere

SOLUTION

00

Now E(X) = [ xf(x)dx

=2} X (1-x) dx

1
x> x® [1_1} 1
3

=2 —=—| =2 ==-=|=
2 30 2 3

As indicated earlier, the term ‘expected value’ liep the meanvalue. The graph of the above probability density
function and itsneanvalue are presented in the following figure:

f(x)

0 0278 05 075 1 X

E(X) = 0.33

Suppose that we are interested in verifying thep@riies of mathematical expectation that are valithe case of
univariate probability distributions. In the lastture, we noted that if X is a discrete randonivae and if a and b are
constants, then
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E (aX+b) =a E(X) +b.
This property is equally valid in the case of conbus probability distributions. In this exampleppose that a = 3 and
b = 5. Then, we wish to verify that
E(3X +5) =3 E(X) + 5.
The right-hand-side of the above equation is:
B3EX)+5=3( )+5=1+5=6
In order to compute the left-hand-side, we proaestbllows:

E(BX +5) = 2} (3x +5)(1- x)dx
0

=2 (5—2x—3x2)dx

= 2[5x—x2—x3]§J
=45-1-1]=23)=6.

Since the left-hand-side is equal to the right-hsid@, therefore the property is verified.

o—r

SPECIAL CASE

We have
E(@aX+b)=aE(X) +b.
If b = 0, the above property takes the followingsie form:
E(aX) = a E(X).
Next, let us consider the computation of tm@mentsand moment-ratiosin the case of a continuous probability
distribution:

EXAMPLE

A continuous random variable X has the p.d.f.

f(x) :g x(2-x),0sx<2.

=0, otherwise

Find the first four moments about the mean andrtbenent-ratios.
We first calculate the moments about origin as

i, =E(x?) :T x? f(x) dx
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2
:Ef x4(2x—x2)dx:§ = -2
45 4| 6 7
_E{E‘_@} _3 [@} _16
4| 3 7 4121
Next, we find the moments about
mean as follows:
M1 =0

=u'-—=(u' 2:§— 2:&
M2 =M (Ul) 5 (1) 5

Hy == 2 )

Hy = A 8 ) =3

2w

_16_32,.36_,_3
7 5 5 35

The first moment-ratio is

M _ 0%
f="2=—75=
4o (1

This implies that this particular continuous proitigbdistribution isabsolutelysymmetric
The second moment-ratio is 3

B, =He=35 - 914
H; 1
5
This implies that this particular continuous proitigbdistribution may be regarded as playkurti®. iflatter than the

normal distribution.
The students are encouraged to draw the graplisodiigtribution in order to develop a visual pietin their minds.
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We begin the concept of Bivariate probability dmttion by introducing the term ‘Joint Distributish

JOINT DISTRIBUTIONS

The distribution of two or more random variablesahhare observed simultaneously when an experiimsgoerformed
is called theidOINT distribution. It is customary to call the distition of a single random variable as univariate.
Likewise, a distribution involving two, three or mar.v.’s simultaneously is referred to as bivagjatrivariate or
multivariate. A bivariate distribution may be distz when the possible values of (X, U) are finiteaunt ably infinite.
It is continuous if (X, Y) can assume all valuessome non-countable set of the plane. A bivariggidution is said
mixed when one r.v. is discrete and the other rgioaous.

BIVARIATE PROBABILITY FUNCTION

Let X and Y be two discrete r.v.’s defined on thene sample space S, X taking the values x1, xm and Y taking
the values y1, y2, ..., yn. Then the probability taakes on the value xi and, at the same timegRés on the value,
denoted by f(xi, yj) or pij, is defined to be theérjt probability function or simply the joint digbution of X and Y.
Thus the joint probability function, also callecthivariate probability function f(x, y) is a funmh whose value at the
point (xi, yj) is given byf(xi, yj) = P(X = xi and =j),

i=1,2,..,m.

j=1,2,..,n.
The joint or bivariate probability distribution csisting of all pairs of values (xi, yj) and thessaciated probabilities
f(xi, yj) i.e. the set of triples [xi, yj, f(xi, y] can either be shown in the following two-way &b

Joint Probability Distribution of X and Y

X\Y Y1 Y2 Yj Yn P(X =X%)
X1 f(xny)  f(xyy2) ... f(Xyy) ... f(Xy,Yn) a(xa)
Xo f(x2y) f(xay2) ... f(X2y) ... f(X2,¥n) a(x2)
x| oy oy o foaw) o Ty | oo
Xm fXmy1) fXmy2) ... fXmy) ... f(XmYn) 9(Xm)
PY=y) [ hly)  hly2 ... h) ... hiw 1

or be expressed by mean of a formula for f(x, yje Pprobabilities f(x, y) can be obtained by substiy appropriate
values of x and y in the table or formula. A jogmbbability function has the following properties:

PROPERTIES

i) f(xi, yj)>0,for all(xi, yj),i.e. for i=1,2,....m; 1,2, ...,n.
iy EXflx.y;)=1
(|

MARGINAL PROBABILITY FUNCTIONS

The point to be understood here is that, from ¢t jprobability function for (X, Y), we can obtathe INDIVIDUAL
probability function of X and Y. Such individualgirability functions are calleARGINALprobability functions.

Let f(x, y) be the joint probability function of twdiscrete r.v.’s X and Y. Then the marginal prdbgb
function of X is defined as

g(xi):i f(xi’yj)

fxi, y1) + fxi, Y2) + ... + f(xi, yn)
as xi must occur either with y1 or y2 or ... or yn
=P(X = xi);
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that is, the individual probability function of ) ifound by adding over the rows of the two-way eal8imilarly, the
marginal probability function for Y is obtained bgding over the column as

h(yj):g f(Xi’y]): P(YZYj)

The values of the marginal probabilities are ofteritten in the margins of the joint table as theg e row and
column totals in the table. The probabilities ickeaarginal probability function add to 1.

CONDITIONAL PROBABILITY FUNCTION

Let X and Y be two discrete r.v.’s with joint prdbkity function f(x, y). Then the conditional probtity function for X
given Y =y, denoted as f(x|y), is defined by

fxily) =PX=x[Y=y)
_PX=x;andY =vy;)
PlY =y;)
- f(xi 1yj)
fori=1,2,...,j=1,2, ...
Where h(y) is the marginal probability, and h(y) >

It gives the probability that X takes on the vakigjiven that Y has taken on the value yj. The dtodal probability
f(xi | yj) is non-negative and (for a given fixed) ydds to 1 on i and hence igpebability function Similarly, the
conditional probability function for Y given X =is

flyj1x) =P(Y =y[X=x)
_PlY =y; andX =x;)
) P(X =x;)
=f(x'—y') where g(x) > 0.

a(x;)

INDEPENDENCE

Two discrete r.v.’s X and Y are said to be staiddly independent, if and only if, for all possbpairs of
values (xi, yj) the joint probability function f(%) can be expressed as tm®duct of the two marginal probability
functions.

That is, X and Y are independent, if

f(x,y) =P(X=xand Y =Yy)

=P(X=x%). P(Y =Yy)
for all i and j.

= g(x) h(y).

It should be noted that the joint probability fuoet of X and Y when they arsndependentcan be obtained by
MULTIPLYINGtogether their marginal probability functions.

EXAMPLE

An urn contains 3 black, 2 red and 3 green baltsaballs are selected at random from it. If XhHe humber of black
balls and Y is the number of red balls selecteek tind
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i) the joint probability function f(x, y
ii) P(X+Y<1);
iii) the marginal p.d. g(x)
and h(y);
iv) the conditional p.d. f(x | 1),
V) P(X=0|Y=1);and
Vi) Are x and Y independent?

i) The sample space S for this experiment contaimpkeapoints. The possible values of X are 0, 1, 2rmhd those for
Y are 0, 1, and 2. The values that (X, Y) can takare (0, 0), (0, 1), (1, 0), (1, 1), (0, 2) aBd). We desire to find
f(x, y) for each value (x, y).

The total number of ways in which 2 balls can bendr out of a total of 8 balls is

8x7
(£)=27 - 28
2
Now f(0, 0) = P(X = 0 and Y = 0), where the eveXtf 0 and Y = 0) represents that neither black meaf ball is
selected, implying that the 2 selected are greéia.3ais event therefore contai 0) (2))(2) sample points,

and

f(0,0)=P(X=0and Y =0) = 3/28
Againf(0, 1) =P(X=0and Y =1)

= P (none is black, 1 is red
and 1 is green)

28 28
Similarly, f(1, 1)
=P(X=1land Y =1)
= P(1is black 1 is red and
none is green)
_BJEGR) - e

28 28

Similar calculations give the probabilities of ativalues and the joint probability function of Xdal is given as:

Joint Probability Distribution

o 1 o |Px=x
y 9
328 6/28 1/28]  10/28
1 0/28 628 0 15/28
328 0 0 3/28
POY=¥) | 15/08 12/28 1/28 1
h(y)
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LECTURE NO. 26

«  BIVARIATE Probability Distributions (Discrete ando@tinuous)
«  Properties of Expected Values in the case of BatarProbability Distributions

In the last lecture we began the discussion oetteample in which we were drawing 2 balls out ofuam containing 3
black, 2 red and 3 green balls, and you will rementbat, in this example, we were interested inmating quite a few
guantities.

EXAMPLE

An urn contains 3 black, 2 red and 3 green baltsZballs are selected at random from it. If Xhie humber of black
balls and Y is the number of red balls selecteeh find

i) the joint probability function f(x, y)
ii) P(X+Y<1)

iii) the marginal p.d. g(x) and h(y)

iv) the conditional p.d. f(x | 1)

V) PX=0|Y=1)

vi) Are x and Y independeft

As indicated in the last lecture, using the ruleafbinations in conjunction with the classicalidigbn of probability,
the probability of the first cell came out to b8/ By similar calculations, we obtain all the reniag probabilities,
and, as such, we obtain the following bivariatdeab

Joint Probability Distribution

Y 0 1 2 | PX=x)
X 9(x)
328 6/28 1/28 10/28
1 928  6/28 0 15/28
2 328 0 0 3/28
POY=Y) | 15128 12/28 1/28 1
h(y)

This joint p.d. of the two r.v.’s (X, Y) can be regented by the formula

3 =012
f(X,y) — (i)()zll(SZ—x-Y) — ); — 0,1'2
Osx+y<2.

ii) To compute P(X + Y < 1), we see that x + y fot the cells
(0, 0), (0, 1) and (1, 0).

Therefore
P(X+Y<1)
=1(0, 0) + f(0, 1) + f(1, 0)
= 3/28 +6/28 + 9/28
=18/28 = 9/14

iii) The marginal p.d.’s are:

X 0 1 2
g(x) | 10/28 15/28 3/29

y 0 1 2
h(x) | 15/28 12/28 1/29
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iv) By definition, the conditional p.d. f(x | 1) is

f(x|1)=P(X=x|Y=1)

_P(X=xandY =1) _ f(x1)

Ay =1) h(1)
Now
hi) = éof(x,l)
_6.,6
28 28
12 3
28 7
Therefore f(x 1)
f(x|1)= h(i)

That is, :gf(x,l), X = 012
(o) :g f(01)= gj (2_68) - %
-}
2= 1(2)=( Z)i0)=0

Hence the conditional p.d. of X giventhat Y =4, i

X 0

1

fx[2) | 172

1/2

vi)  We find that f(0, 1) = 6/28,

9(0) = éo f(0,y)

3 6 1 10
==+ 4+ ==
28 28 28 28

W)= 3 #(x1)

x=0
6 6 12
-+ — 4+0===
28 28 28
v)  Finally,
PX=0]Y=1)
=f(0]1)=1/2
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Now E # E X 1—2

28 28 28

ie.  f(01)% g(0h(2),

therefore X and Y aré&NOT
Satistically independent.

CONTINUOUS BIVARIATE DISTRIBUTIONS

The bivariate probability density function of canibus r.v.’s X and Y is an integral function f(x,gatisfying the
following properties:

i) f(x,y) >0 forall (x,y)

0 00

i) | [ f(xy)dxdy=1 and

HasX <bc<Y<d)
ii)

QD —T

d
[ f(x,y)dy dx.
Cc

Let us try to understand the graphic picture oivaiate continuous probability distribution: Thegion of the XY-
plane depicted by the interval (x1 < X < x2; y1 <Y¥2) is shown graphically:

Y

72

(X1, Y2)

Yif — T~

(X1, Y1)

0

Just as in the case of a continuous univariatatii, the probability function f(x) gives us a eerunder which we
compute areas in order to find various probabdijti] the case of a continuous bivariate situatibe, probability
function f(x,y) gives a SURFACE and, when we coreptlite probability that our random variable X liestvbeen x1
and x2AND, simultaneously, the random variable Y lies betwgk and y2, we will be computing tMOLUME under

the surface given by our probability function f§g, encompassed by this region. The MARGINAL p.af.the
continuous r.v. X is

and that of the r.v. ‘gi(x) = ]: f (X, y) dy
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)= ] f(xy)ax

That is, the marginal p.d.f. of any of the varigbig obtained by integrating out théher variable from the joint p.d.f.
between the limits e and +0.The CONDITIONAL p.d.f. of the continuous r.v. Xwvgin that Y takes the value vy, is
defined to be

f(xy)

f(X|Y):Ty),

where f(x,y) and h(y) are respectively the joird.p.of X and Y, and the marginal p.d.f. of Y, amg) > 0. Similarly,
the conditional p.d.f. of the continuous r.v. Y givthat X = x, is

f(x y)
tHylx)= ,
g(x)
provided that g(x) > 0
It is worth noting that the conditional p.d.f'sis& all the requirements for the UNIVARIATE densfunction.
FINALLY

Two continuous r.v.'s X and Y are said to be Stadly Independent, if and only if their joint dgty f(x,y) can be
factorized in the form f(x,y) = g(x)h(y) for all psible values of X and Y.

EXAMPLE
Given the following joint p.d.f

f(x, y):%(G—x —y),0sx< 2,2 y< 4,
=0, elsewhere

a) Verify that f(x,y) is a joint
density function.

b) Calculate P(X < % Y < 2]
c) Find the marginal p.d.f.
g(x) and h(y).
d) Find the conditional p.d.f.
f(x|'y) and f(y | x).
SOLUTION
a) The joint density f(x,y) will be a p.dff
0] f(x,y) > 0 and
(ii)

J [ 10spaxay=1

Now f(x_,y) is clearly greater than zero for allxday in the given region, and

0 12 4
[ [ f(xy)dx dyzgj [ (6-x-y)dy dx
—c0 —00 0 2
4
2 2
:lj {Gy—xy—y} dx
8, 2 |,
12 1 »1?
=2 (6—2x)dx:[ 6X — X }
8} 8 0
1
=lho-4]=1
1o

Virtual University of Pakistan 195



STA301 - Statistics and Probability Y

Thus f(x,y)hasthe properties of a joint p.d.f.

b) To determine the probability of a value of the (X, Y) falling in the region X < 3/2, Y <5/2,

We find p(x < §’ Y < Ej
2 2
> 54
= [ ] g(6=-x-y)dydx
x=0y=2
13 273
= | {By—xy—y?} dx
80 )
3
,f (15 de -—[15x 2= 2
32
c) The marginal p.d.f. of X is
oix) = [ fly)ay, —w <X <00
14
~[ (6-x-y) dy, 0sxs<2
83
1
|:6y xy——} O<x<2
—E 3 x 0<x<2
4
=0, X<0ORx=2

Similarly, the marginal p.d.f. of Y is

2
h(y) ::—éj (6-x-y)x, 2<sy<4
0

:%(S—y), 2<y<4

=0, elsewhere.

d) The conditional p.d.f. of X given

Y=vy,is
f(x|y)= f E:E;)/) , where h(y) > 0
Hence

f(xly)== (;)(6_)(_)/) _6-x-y
Hev %)

4

,0<sx<2
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and the conditional p.d.f. of Y given

X=x,is
f(y|X):%)’(>)/),whereg(x)>0
Hence

PR

[i)(?)_x) ~ 2(3-x)

Next, we considetwo important properties of mathematical expectatidnictv are valid in the case &VARIATE
probability distributions:

, 2Sy<4

PROPERTY NO. 1

The expected value of the sum of any two randonables is equal to theumof their expected values, i.e.

E(X +Y) = E(X) + E(Y).

The result also holds for thifferenceof r.v.’s i.e.

E(X —Y) = E(X) — E(Y).

PROPERTY NO. 2

The expected value of the product of tiwdependent.v.’s is equal to theroductof their expected values, i.e.
E(XY) = E(X) E(Y).

It should be noted that these properties are ¥alicontinuousrandom variable’s in which case the summations are

replaced byntegrals.

EXAMPLE

Let X and Y be two discrete r.v.’s with the follavg joint p.d

X
2 4
y
1 0.10 0.15
3 0.20 0.30
5 0.10 0.15

Find E(X), E(Y), E(X + Y), and E(XY).

SOLUTION

To determine the expected values of X and Y, wst find the marginal p.d. g(x) and h(y) by addingothe columns

and rows of the two-way table as below:

X
2 4 | h(y)
y
1 0.10 0.15[ 0.25
3 0.20 0.30| 0.50
5 0.10 0.15| 0.25
gx) | 0.40 o0.60[ 1.00
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Now E(X) =2 xj 9(xj)
=2x0.40 + 4 x0.60
=0.80+240=3.2

E(Y) =X yi h(yi)
=1x0.25+3x0.50+5x%0.25
=0.25+1.50 + 1.25
=3.0

Hence
E(X) +E(Y)=3.2+3.0=6.2

In order to compute E(XY) directly, we apply therfula:

(V)= T2l o, by

E(XY)=iZJZ(Xiyj)f(Xi,yj)
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LECTURE NO. 27
*  Properties of Expected Values in the case of BatarProbability Distributiondetaileddiscussion)

¢ Covariance & Correlation
¢ Some Well-known Discrete Probability Distributions:
= Discrete Uniform Distribution
=  An Introduction to the Binomial Distribution

EXAMPLE

Let X and Y be two discrete r.v.’s with the follog joint p.d.

y

2 0.10| 0.20f 0.10
4 0.15| 0.30] 0.15

Find E(X), E(Y), E(X + Y), and E(XY).

SOLUTION

To determine the expected values of X and Y, v find the marginal p.d. g(x) and h(y) by addingiothe columns
and rows of the two-way table as below:

y

1 3 5 a(x)
X

2 | 010] o0.20] 01d o049
4 | o15]| 030] 019 0.6
hy) | 0.25] o050 0.2 1.0

Now E(X) =X xi g(xi)
=2x0.40 +4 x0.60
=0.80+2.40=3.2
E(Y) =Zyj h(yj)
=1x0.25+3x0.50+5x0.25
=0.25+1.50 +1.25
=3.0
Hence
E(X) +E(Y)=32+3.0=6.2

()= T2+, by )

=(2+1)(0.10) + (2 + 3) (0.20) +
(2+5)(0.10) + (4 + 1) (0.15) +
(4 +3) (0.30) + (4 +5) (0.15)

=0.30+1.00 +0.70 +0.75 +
210 +1.35=6.20

= E(X) + E(Y)

In order to compute E(XY) directly, we apply therfula:
E(XY) =23 xy;)flx.y;)
]
In this example,

E(xv):izjz(xiyj)f(xnyj)

199
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= (2x 1) (0.10) + (2 3) (0.20) + (2 5) (0.10) + (4x 1) (0.15) + (4 3) (0.30) + (4x 5) (0.15)

=9.6
Now

E(X) E(Y)

=3.2x 3.0

=9.6

Hence E(XY) = E(X) E(Y) implying that X and Y aredependent.

This was the discrete situation; let us now consateexample of theontinuoussituation:
EXAMPLE

Let X and Y be independent r.v.’s with joint p.d.f

x{1+ 3y?
f(x,y):_(14_y)

0<x<2,0<y<1
=0, elsewhere.

Find E(X), E(Y), E(X +Y) and E(XY). To determine(X) and E(Y), we first find the marginal p.d.f. §@nd h(y) as

below:
[e9) 1 +3 2
g(X)=If(x,y)dy=JJ1—lX 4y dy
—c0 0

1
:%[xy+xy3l=§, for0<x < 2.
h(y)= [f(x,y)dx
2
2 2 2
:J.dezé X_+3xy2
s 4 4 2
0

=£(1+3y2), forO<y<1.
2
Hence

0
E(Y)= _Ty h(y)dy=%iy(1+3y2) dy
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And

E(X+Y)= };T(xw) (x,y)dx dy

0]

21
o) 29y o

00

‘—;I—‘

21 3
XY g y+]] —Xy+j’xy dy dx
1

1
2 2 2 4
:IE[X2y+X2y3]dx+I£ i+3x_y ax

0
2 2
fé(Zx )dx+[ 1()( 3dex
04 2 4
2 2
S ol D A B
2 3 4| 4 8
0 0
4 5 47
=—+—-=—/and
3 8 24
E(XY)= | [xy f(x.y)dx dy
21 2
x{L+3 X 3X
=H(><y)il—y)dydx Jf =X dy dx
00 4
1 2
fl x2y? y fl 5x dx=1 5% _5
04| 2 4 4 12| 6
0 0
It should be noted that
i) E(X) + E(Y) =4/3 +5/8
=47/24 = E(X +Y), and
i) E(X) E(Y) = (4/3) (5/8)
=5/6 = E(XY).
Hence, the two properties of mathematical expextatalid in the case of bivariate probability distitions are

verified.

COVARIANCE OF TWO RANDOM VARIABLES

The covariance of two r.v.'s X and Y is a numericaasure of the extent to which their values ternidd¢rease or
decreas¢ogether It is denoted by XY or Cov (X, Y), and is defined as the expectetligaf the product

[X=EMX)][Y — E(Y)]. Thatis
Cov (X,Y)=E{{X-EX)][Y-EM]}
And the short cut formula is:
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Cov (X, Y) = E(XY) — E(X) E(Y).

If X and Y are independent, then

E(XY) = E(X) E(Y), and

Cov (X, Y) = E(XY) — E(X) E(Y)
=0

It is very important to note that covariance isoz@hen the r.v.’s X and Y are independent butdtsverse is not
generally true. The covariance of a r.v. with its&lobviously its variance.

CORRELATION CO-EFFICIENT OF TWO RANDOM VARIABLES

Let X and Y be two r.v.’s with non-zero varianagaX ando2Y. Then the correlation coefficient which is a e of
linear relationship between X and Y, denotecplyr (the Greek letter rho) or Corr(X, Y), is defined

_ E[X-EX)][Y ~E(X)]
_ Cov()>(< : \:)
J Var(X) var(Y)

If X and Y are independent r.v.’s, theXY will be zero but zero correlation does not nezey imply independence.

Pxy

EXAMPLE

From the following joint p.d. of X and Y, find V@x), Var(Y), Cov(X,Y) andp.

y
0 1 2 3 a(x)

0 0.05 0.05 0.10 0 0.20
1 0.05 0.10 0.25 0.1 0.50
2 0 0.15 0.10 0.0§ 0.30

hy) | 0.10 030 045 0.1% 1.00

Now

E(X) =22 xig(xi)
=0x%0.20 + 1x 0.50 +2x 0.30
=0+0.50+0.60=1.10

E(Y) =Zyjh(yj)
=0x0.10 + 1x 0.30 + 2x 0.45 + 3x 0.15
=0+0.30+0.90 +0.45=1.65

E(X2) =Zxi2g(xi)
=0x%0.20 + 1x 0.50 + 4x 0.30
=1.70

E(Y2) =Zyj2h(y))
=0x0.10 + 1x 0.30 + 4x 0.45 + 9x 0.15
=3.45

Thus
Var(X) = E(X2) — [E(X)]2

=1.70 — (1.10)2 = 0.49,
and

Var(Y) = E(Y2) - [E(Y)]2
= 3.45 - (1.65)2 = 0.7275

Y () o)

= 1% 0.10 + 2% 0.15 + 2x 0.25 + 4x 0.10 + 3% 0.10 + 6x 0.05
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=0.10+0.30 +0.50 + 0.40 + 0.30 + 0.30
=1.90

O  Cov(X,Y) = E(XY) — E(X) E(Y)
=1.90 — 1.1& 1.65 = 0.085, and

___ CouX,Y)
J Var(X) Var(Y)
_ 0085 _ 0085
J (049)(0.7275 0595
= 014

Hence, we can say that there is a weak positieaticorrelation between the random variables XYand
EXAMPLE
If f(x, y)

=x2+xy/3,0<x<1,0<y<2

=0, elsewhere,
Find
Var(X), Var(Y) and Corr(X,Y)
SOLUTION

The marginal p.d.f.’s are

2
g(X)=£ (X2+X—§’j dy=2x2+gx,
O<x<1
and
1 1
h = 2 ﬁj == X,
(y) {E[X +3 dx 3+6
Now
0 O<sy<?2
E(X)= [ xg(x) dx
1
:jx(ZX2 %jdx—l—s,
5 3 18
E(Y)= [ yh(y) dy
2 (1 y 10
Thus :{)y(;}*gjdy—g
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Var(Y)=E[Y -E(Y)]?

=1 (v -1, Ph(y) dy
) ey

Cov(X,Y)
= E{[X — E(X)] [Y = E(Y)]}

12
= (X_l—Sj (y—l_oj (X2+ﬁ) dydx
18 9 3

J
0
(—§x3+§x2— 26 xj dx = -1

O —Fr o —

81" 243 162
Hence
Corr(X,Y)= CovX.Y)
\J Var(X) var(Y)
_ ~1162
J (731620)(26/81)
=-005

Hence we can say that there EBRYweak negative linear correlation between X andhYother words, X and Y are
almost uncorrelated. This brings us to the endhefdiscussion of the BASIC concepts of discretecminuous
Univariate andbivariate probable. We now begin the discussion of some fitihadistributions that are WELL-
KNOWN, and are encounteredri@al-life situations.

DISCRETE UNIFORM DISTRIBUTION

EXAMPLE

Suppose that we toss a fair die and let X den@etimber of dots on the upper-most face. Sincdithisfair, hence
each of the X-values from 1 to 6 is equally likedyoccur, and hence the probability distributioriref random variable
Xis as follows:

P(x)
1/6
1/6
1/6
1/6
1/6
1/6

Total 1

olo|bhlw|N|—]X

If we draw the line chart of this distribution, wbtain Line Chart Representation of the Discratédym Probability
Distribution
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Probability
P(x)
A

26 T

) ‘ ‘ ‘ ‘ ‘ ‘
0 > X
1 2 3 4 5 6

No. of dots on the upper-most face

As all the vertical line segments are of equal higilgence this distribution is called a uniformtdimution.
As this distribution is absolutely symmetrical, iéfere the mean lies at te&act centref the distribution i.e. the mean
is equal to 3.5.

LINE CHART REPRESENTATION OF THE DISCRETE UNIFORM _PROBABILITY DISTRIBUTION
Probability
P(x)
A

2161

N ‘ ‘ L—l
0 » X
1 2

3 4 5 6
No. of dots on the

upper-most face

What about the spread of this distribution? Youereouraged to compute the standard deviation hasvthe
coefficient of variation of this distribution onein own. Let us consider another interesting exampl

EXAMPLE

The lottery conducted in various countries for psgs of money-making provides a good example ofliserete
uniform distribution. Suppose that, in a particltdtery, as many as ten thousand lottery ticke¢sssued, and the
numbering is 0000 to 9999. Since each of these atsribequally likelyto occur, hence we have the following
situation:
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Probability
of Winnina
A
Discrete Uniform Distribution
1/1000T
0000000000 OO OD 'X
OO000O0O0O0O0OO o XoXoxoxe
OO0OO0O0OO0DOOOOO OO OO

Lottery Number

INTERPRETATION

It reflects the fact that winning lottery numbere aelected by a random procedure which makesialbers equally
likely to be selected. The point to be kept in misthat, whenever we have a situation where thiews outcomes are
equally likely, and of a form such that we havaadom variable X with values 0, 1, 2, ... or , athimabove example,
0000, 0001 ..., 9999, we will be dealing with thecdéte uniform distribution.

BINOMIAL DISTRIBUTION

The binomial distribution is a very important dista probability distribution. It was discoveredJames Bernoulli
about the year 1700.We illustrate this distributiath the help of the following example:

EXAMPLE

Suppose that we toss a fair coin 5 times, and wénégrested in determining the probability disttibn of X, where X
represents the number of heads that we obtain.
We note that in tossing a fair coin 5 times:
e every toss results in either a head or a tail,
» the probability of heads (denoted by p) is equédktevery time (in other words, the probability of
heads remainsonstany,
» every throw isndependentf every other throw, and
» the total number of tosses i.e. Biledin advance
The above four points represents filer basicand vitally importanPROPERTIE®f a binomial experiment

PROPERTIES OF A BINOMIAL EXPERIMENT

e Every trial results in a success or a failure.

e The successive trials are independent.

e The probability of success, p, remains constamh fireal to trial.
*  The number of trials, n, is fixed in advanced.
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LECTURE NO. 28
*  Binomial Distribution
e Fitting a Binomial Distribution to Real Data
e  An Introduction to the Hyper geometric Distribution
The binomial distribution is a very important dist probability distribution. We illustrate thisstfibution with the
help of the following example:

EXAMPLE

Suppose that we toss a fair coin 5 times, and wénéerested in determining the probability diaitibn of X, where X
represents the number of heads that we obtain.atéethat in tossing a fair coin 5 times:

e Every toss results in either a head or a tail,

e The probability of heads (denoted by p) is equa¥st@very time (in other words, the probability &falds

remainsconstany,

e Every throw isndependenof every other throw, and

*  The total number of tosses i.e. Siiedin advance
The above four points represents tber basicand vitally importanPROPERTIES®f binomial experiment. Now, in 5
tosses of the coin, there can be 0, 1, 2, 3, 4hmdsls, and the no. of heads is thus a randonblasidich can take one
of these six values. In order to compute the priditieb of these X-values, the formula is:

Binomial Distribution

—_ — [N X~y N—X
Where P(x - X) - (X) p q
n = the total no. of trials
p = probability of success in each trial
g = probability of failure in
each trial (,e.q=1-p)
X = no. of successes in n trials.
x=0,1,2, ...n

The binomial distribution has two parameters, n anih this example, n = 5 since the coin was thréwtimes, p =%
since itis afaircoin,q=1-p=1-%=%Henc

Puting =0 P =x)=(2)e) ()

Px =0)= ())&

Putting x =1
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Similarly, we have:

Hence, the binomial distribution for this partiauexample is as follows. Binomial Distribution imet case of tossing a
fair coin five times:

Number of Headq Probability
P(x)
1/32
5/32
10/32
10/32
5/32
1/32
Total 32/32=1

abDhwnNhEk o X

Graphical Representation of the above binomiatidistion:

P(x)
A
10/32
8/32 T
6.32 I
4132
2132 T
L, X

0 1 2 3 4 5

The next question is: What about the mean andtémelard deviation of this distribution? We can oldte them just as
before, using the formulas

Mean of X = E(X) =XXP(X)
Var(X) = ¥X2 P(X) — EXP(X)]2
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but it has been mathematically proved that foreiiial distribution given by

P(x =x)=(1)p*a™

For a binomial distribution
E(X)=np
and Var(X) = npq

so that S.D.(X):\/n_pq

For the above example, n=5,p=%and q =%
Hence
Mean = E(X) =np =5(%2) =2.5

and S.D.(X)=4/npq = ,/5‘%”%) = \/@) =1.12

We would have got exactly the same answers if vdeapplied the LENGTHIER procedure.
E(X) = 2XP(X) and Var X =2X2 P(X)-[XXP(X)]2
Graphical Representation of the Mean and Standex@ion of the Binomial Distribution (n=5, p=1/2)

P(Ax)

10/32 =
8/3z I
6.32 I
4/3z ™
23z I
| l
1 1 T 1 >)(
0 1 2 3 4 5
1.1Z
FX) S D.(X)

WHAT DOES THIS MEAN?

What this mean is that if fair coins are tossed dNFINITE no. of times, sometimes we will get no head oubof
sometimes/head... sometimes all 5 heads. But oA¥ERAGEwWe should expect to get 2.5 heads in 5 tossekeof t
coin, or, a total of 25 heads in 50 tosses of thie And 1.12 gives a measure of the possitaleability in the various
numbers of heads that can be obtained in 5 togsggou know, in this problem, the number of heeals range from 0
to 5 had the coin been tossed 10 times, the nbheadls possible would vary from 0 to 10 and thedstahdeviation
would probably have been different).

Coefficient of Variation:

CV.= 9x100:12'—152x100: 44.8%

u

Note that the binomial distribution is not alwaysnsnetrical as in the above example. It will be syeimcalonly when
p =q =% (as in the above example).
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P(x)
'y

| L, x
0 1 2 3 4 5
It is skewed to the right if p < q:

P(x)
A

0 1 2 3

D e——
v
X

It is skewed to the leftif p > q:

P(X)
'y

—
—
() e
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But the degree of Skewness (or asymmetiggreasesas n increases. Next, we consider tRéting of a
Binomial Distribution toRealData. We illustrate this concept with the helghef following example:

EXAMPLE

The following data has been obtained by tossingOADED die 5 times, and noting the number of times that w
obtained asix. Fit a binomial distribution to this data.

No.of Sixes| 0O 1 2 3 4 | Total

Frequency | 12 56| 74| 39| 18] 1| 200

SOLUTION

To fit a binomial distribution, we need to find ndap.
Here n = 5, the largest x-value.
To find p, we use the relationshig = np.

The rationale of this step is that, as indicateth@last lecture, the mean of a binonpedbability distribution is equal
to np, i.e.

H=np
But, here, we are not dealing withpeobability distribution i.e. the entirpopulationof all possible sets of throws of a
loaded die --- we only havesampleof throws at our disposal.
As suchyl is not available to us, and all we can do is faee it by its estimateX.
Hence, our equation becoms= np.
Now, we have:

5 = 2 iXi

> fi
_ 0+56+148+117+72+5
B 200
_ 398

=199
" 20C

Using the relationshipx = np, we get 5p = 1.99 or p = 0.398.This valug skems to indicatdearly that the die is not
fair at all' (Had it been a fair die, the probatyilof getting a six would have been 1/6 i.e. 0.1®%Value of p = 0.398 is
very different from 0.167.) Letting the random variableepresent the number of sixes, the above cdlon& yield
the fitted binomial distribution as

b(x ;5,0398) = i (0398 (0602

Hence therobabilitiesandexpected frequenciese calculated as below:

No. of
Sixes (X)

Expected

Probability f(x) frequency

0 J = (0602)° =0.07907] 15.8

5

1 q°p = 5(0602)* (0398) -02613d 525

q3p? = 10(0602)° (0398)? =0.34559  69.1

4qp = (0602)(0398)* = 0.07553 15.1

5
5
Total = 1.00000 200.0

5 p°® = (0398)° =0.00998 2.0

o
L
)
3 (qu2p3 10(0602)(0308)° 022847 457
"
5
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In the above table, the expected frequencies aenadl by multiplying each of the probabilities 290.

In the entire above procedure, we are assumirtghbagiven frequency distribution has the charésties of
the fitted theoretical binomial distribution, comimgy the observed frequencies with the expecteduizacies, we
obtain:

No. of Observed Expected
Sixes Frequency Frequency

X fo fe

0 12 15.8

1 56 52.5

2 74 69.1

3 39 45.7

4 18 15.1

5 1 2.0
Total 200 200.0

The graphical representation of the observed fregjes as well as the expected frequencies is kvl
Graphical Representation of the Observed and Expeet
Frequencies:

Freauency
=== Observed frequency

75 === [ xpected frequency

60

45
30

15

X
o 1 2 3 4 5

The above graph quite clearly indicates that theraot much discrepancy between the observed amdxpected
frequencies. Hence, we can say that it is a reédpgaod fit.

There is a procedure known as the Chi-Square TfeGtoodness of Fit which enables us to determina formal,

mathematical manner whether or not the theoretitsdtibution fits the observed distribution readolyavell. This test
comes under the realm of Inferential Statisticthat area which we will deal with during the 14 lectures of this
course. Let us considereal-life application of the binomial distribution:

AN EXAMPLE FROM INDUSTRY

Suppose that the past record indicates that thpoption of defective articles produced by this éagtis 7%.And
suppose that a lalNEWLYinstituted in this particular country states tthegre should not be more than 5% defective.
Suppose that the factory-owner makes the statethanthis machinery has beewerhauledso that the number of
defectives haBECREASED

In order to examine this claim, the relevant goweent department decides to send an inspector toiegaa sample of
20 items.
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What is the probability that the inspector will dir2 or more defective items in his sample (so thdine will be
imposed on the factory)?

SOLUTION
The first step is to identify the NATURE of theustion, If we study this problem closely, we realthat we are
dealing with a binomial experiment because of thet that all four properties of a binomial expeniare being

fulfilled:

PROPERTIES OF A BINOMIAL EXPERIMENT

*  Every item selected will either be defective (secceskor not defective (i.failure)

e Everyitem drawn is independent of every other item

e The probability of obtaining a defective item i#% is the same (constant) for all items. (This piulity
figure is according to relative frequency definitiof probability.

e The number of items drawn is fixed in advance 2@.hence; we are in a position to apply the binbmia
formula

P(x =)= (1) e

P(X =x) = (%) 007" 095>
Substituting n = 20 and p = 0.07, we obtain:

Now
PX>2)=1-P(X<2)
=1-[P(X=0) + P(X =1)]

=1-(%)007°093°° - ()00 7 093*Y]
=1-1x1x 093° - 20x 007x 093*°
=1- 0234- 0353

= 0413
=41.3%

Hence the probability is SUBSTANTIAL i.e. more thd@% that the inspector will find two or more defee articles
among the 20 that he will inspect. In other wotHsre is CONSIDERABLE chance that the factory Wwélfined.
The point to be realized is that, generally spegkivhenever we are dealing with a ‘success / ®ilsituation, we are
dealing with what can be a binomial experiment.r(EXAMPLE, if we are interested in determining aafythe
following proportions, we are dealing with a BINOMI situation:

e Proportion of smokers in a city smoker success, non-smokers failure.

e Proportion of literates in a community literacy rate, literate- success, illiterate. failure.

e Proportion of males in a city sex ratig.

HYPERGEOMETRIC PROBABILITY DISTRIBUTION

There are many experiments in which the conditibimdependence is violated and the probabilitywfcess does not
remain constant for all trials. Such experimentsaalled hyper geometric experiments.
In other words, a hyper geometric experiment haddllowing properties:

PROPERTIES OF HYPERGEOMETRIC EXPERIMENT

e The outcomes of each trial may be classified imte of two categories, success and failure.

e The probability of success changes on each trial.

e The successive trials are not independent.

e The experiment is repeated a fixed number of times.
The number of success, X in a hyper geometric exgert is called a hyper geometric random variabid ds
probability distribution is called the hyper geonetdistribution. When the hyper geometric randoariable X
assumes a value x, the hyper geometric probablilityibution is given by the formula
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k] [N-k
P(X =x) = xLAnyx
Where ( ) N '
N = number of units in the population, n
n = number of units in the sample, and
k = number of successes in the population.

The hyper geometric probability distribution hasethparameters N, n and k.
The hyper geometric probability distribution is apmgriate when

e arandom sample of size n is draWiTHOUT REPLACEMENTrom afinite population of N units;

ek of the units are of one kind (classified as sasf@nd the remaining N — k of another kind (cfessias
failure).
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LECTURE NO. 29
e Hyper geometric Distribution
(in some detail)
e Poisson Distribution
e Limiting Approximation to the Binomial
e Poisson Process
e Continuous Uniform Distribution

In the last lecture, we began the discussion oHHEERGEOMETRIC PROBABILITY DISTRIBUTION. We now
consider this distribution in some detail. As iradied in the last lecture, there are many experisnenwhich the
condition of independence is violated and the podita of success does not remain constant forti@gdils. Such
experiments are called hyper geometric experiméntsether words, a hyper geometric experiment hasfollowing

properties:

PROPERTIES OF HYPERGEOMETRIC EXPERIMENT

e The outcomes of each trial may be classified ime of two categories, success and failure.

e The probability of success changes on each trial.

e The successive trials are not independent.

e The experiment is repeated a fixed number of times.
The number of success, X in a hyper geometric éxpet is called a hyper geometric random variable its
probability distribution is called the hyper geonetlistribution. When the hyper geometric randaamiable X
assumes a value x, the hyper geometric probabiktyibution is given by the formula

k) [N-k
P(X =x) = xlansx [,
where "
N = number of units in the population,
n = number of units in the sample,
and
k = number of successes in the population.
The hyper geometric probability distribution
has three parameters N, n and k.
e The hyper geometric probability distribution is apgriate when
e arandom sample of size n is draWMiTHOUT REPLACEMENTrom afinite population of N units;
*  kof the units are of one kind (classified as sesgand the remaining N — k of another kind (cfestias
failure).

EXAMPLE

The names of 5 men and 5 women are written on efipaper and placed in a hat. Four names are diAfluat is the
probability that 2 are men and 2 are women? Leegard ‘men’ as success. Then X will denote thalmer of
men. We have N =5 + 5 = 10 names to be drawn fAdsg, n = 4, (since we are drawing a sample dof dinut of a
‘population’ of size 10) In addition, k = 5 (sintieere are 5 men in the population of 10). In thizbfem, the possible
values of X are 0, 1, 2, 3, 4, i.e. n): The hypswmetric distribution is given by

k) (N-k
xJ \ntx
N )
n

P(X =x)=

Since N =10, k =5 and n = 4, hence, in this pgohlthe hyper geometric distribution is given by

wx=mzﬁmgiJ
v
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and the required probability,
i.e P(X=2)is
5)[ 5
—9) = \2/\4:2
P(X =2) =244
4

5](5

10
4

_10x10
- 210
_10
21

In other words, the probability is a little lesath50% that two of the four names drawn will besthof MEN. In the
above example, just as we have computed the pildatfiX = 2, we could also have computed the @iolties of X
=0,X=1,X=3and X =4 (i.e. the probabilitieshaving zero, one, thr&@R four men among the four names
drawn).The students are encouraged to compute giiebabilities on their own, to check that the sefrthese
probabilities is 1, and to draw the line charthaé tdistribution.

Additionally, the students are encouraged to tlaibkut thecentre spreadandshapeof the distribution. Next, we
consider some importaMROPERTIESf the Hyper

geometric Distribution:

PROPERTIES OF THE HYPERGEOMETRIC DISTRIBUTION

*  The mean and the hyper geometric probability distion are

« If N becomesndefinitelylarge, the hyper geometric probability distribatiends to th&INOMIAL
probability distribution.
The above property will be best understood witeneice to the following important points:
e There are two ways of drawing a sample from a i, sampling with replacement, and sampling euith
replacement.
e Also, a sample can be drawn from either a finitpysation or an infinite population.
This leads to the following bivariate table: Witference to sampling, the various possible sitnatare:

Population
Finite Infinite
Sampling
With
replacement
Without
replacement

The point to be understood is that, whenever wesarapling with replacement, the population remaindisturbed
(because any element that is drawn at any one dsaw;placed into the population before the nesin.Hence, we
can say that the various trials (i.e. draws) adefendent, and hence we can use the binomial farr@r the other
hand, when we are sampling without replacement &dimite population, the constitution of the pagtidn changes at
every draw (because any element that is drawnnybae draw is not re-placed into the populatiofoteethe next
draw). Hence, we cannot say that the variousstaa¢ independent, and hence the formula thatpgeoppate in this
particular situation is the hyper geometric formuat, if the population size is much larger than thengle size (so
that we can regard it as an ‘infinite’ populatiotijen we note that, although we are not re-plaaimgelement that has
been drawn back into the population, the populatemains almost undisturbed. As such, we can asshatethe
various trials (i.e. draws) are independent, andeagain, we can apply the binomial formula.

In this regard, the generally accepted rule is thabinomial formula can be applied when we are drawing a sample
from a finite populatiorwithout replacemenand the sample size n is not more than 5 perdehegopulation size N,
or, to put it in another way, when n < 0.05 N.

When n is greater than 5 percent gfthehyper geometriéormula should be used.
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Next, we discuss the Poisson Distribution.

POISSON DISTRIBUTION

The Poisson distribution is named after the Franethematician Sime’on Denis Poisson (1781-1840) piidished
its derivation in the year 1837.THE POISSON DISTRIBON ARISES IN THE FOLLOWING TWO
SITUATIONS:
e ltis alimiting approximation to the binomial diktution, when p, the probability of success isp@mall but
n, the number of trials is so large that the prodpc=p is of a moderate size;
e adistribution in itownright by considering 0ISSON PROCES#here events occuandomlyover a
specified interval ofime or spaceor length
Such random events might be the number of typirr&per page in a book, the number of traffic deots in a
particular city in a 24-hour period, etc.
With regard to thdirst situation, if we assume that n goes to infinitgd gnapproaches zero in such a way thatnp
remains constant, then the limiting form of thedmmal probability distribution is

X
€ y-012..»

Lim b(x:n.p)=
p-0
wheree = 2.71828.
The Poisson distribution has only one parameterO.
The parametgu may be interpreted as the mean of the distribution
Although the theoretical requirement is that n dthdand to infinity, and p should tend to zero, iuPRACTICE
generally, most statisticians use the Poisson appetion to the binomial when
p is 0.05 or less,
& nis 20 or more,
butin fact, theLARGERnN is and th&SMALLERp is, thebetterwill be the approximation. We illustrateis particular
application of the Poisson distribution with théphef the following example:

EXAMPLE

Two hundred passengers have made reservations fairglane flight. If the probability that a pasgenwho has a
reservation will not show up is 0.01, what is thehability that exactly three will not show up?

SOLUTION

Let us regard a “no show” as success. Then thasgentially dinomial experiment with n = 200 and p = 0.01. Since p
is very small and n is considerably large, we séyaily the Poisson distribution, using

p=np = (200) (0.01) = 2.

Therefore, if X represents the number of succegs#showing up), we have

_ €2
P(X =3)= —r
_ 013596) g 140,
3x2x1
e2=__ 1 _01353
(2.71828)°

POISSON PROCESS

may be defined asghysicalprocess governed at leaspiart by someandommechanism.

Stated differently a poisson procesgresents a situation where events ocandomlyover a specified interval ¢iime
or spaceor length Such random events might be the number of taxacatals at an intersection per day; the number
of traffic deaths per month in a city; the numbkraalioactive particles emitted in a given peritiie number of flaws
per unit length of some material; the number ofrtggerrors per page in a book; etc.

The formula valid in the case of a Poisson progess

P(x:x):e_Mxﬂ,
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where

A= average number of
occurrences of the outcome
of interest per unit of time,

t = number of time-units
under consideration, and

X = number of occurrences of the

outcome of interest in t units of time.
We illustrate this concept with the help of thddwling example:

EXAMPLE

Telephone calls are being placed through a ceetethange at random times on the average of foumperte.
Assuming a Poisson Process, determine the prohyathidit in a 15-second interval, there are 3 or noaiis.

SOLUTION

Step-1: Identify theunit of time:
In this problem we take a minute as the unit of time

Step-2: IdentifyA, theaveragenumber of occurrences of the outcome of interesupit of time,
In this problem we have the information that, ondkierage, 4 calls are received per minute, hence:
A=4
Step-3: Identify t, the number of time-units under consad®n. In this problem, we are interested in a é&esd
interval, and since 15 seconds are equal to 1580mwinutes i.e. 1/4 units of time, therefore t = 1/4
Step-4: Computeht: In this problem,

A=4, &

t=1/4,
Hence:

M=4axVa=1

Step-5: Apply the Poisson formula
—At X
e (At
=)

P(X = .

In this problem, sincat = 1, therefore and since we are interested infBae calls in a 15-second interval, therefore

P(X>3)=1-P(X<3)
=1 - [P(X=0)+P(X=1)+P(X=2)]

2 — X
-1-3 €U

x=0 X!
1- é)% (0 e =0.3679)

1-(0.91975) = 0.08025

Hence the probability is only 8% (i.e. a very lowIpawbility) that in a 15-second interval, the telepb@xchange
receives 3 or more calls.

PROPERTIES OF THE POISSON DISTRIBUTION

Some of the main properties of the Poisson didinbiare given below:
e If the random variable X has a Poisson distributigtih parametep, then its mean and variance are given by
E(X) =u and Var(X) =u.
*  (In other words, we can say that the mean of thed®ai distribution iequalto its variance.)
e The shape of the Poisson distributiopdsitively skewedrhe distribution tends to be symmetricajias
becomedarger and larger
Comparing the Poisson distribution with the binomies note that, whereas the binomial distribution loan
symmetric, positively skewedy negatively skewed (depending on whether p = 1/21{2sor p > 1/2), the Poisson
distribution can never be negatively skewed.
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EITTING OF A POISSON DISTRIBUTION TO REAL DATA

Just as we discussed the fitting of the binomistriiution to real data in the last lecture, thésBan distribution can
also be fitted to real-life data. The procedure is vemilar to the one described in the case of tkin@ of the
binomial distribution: The population meanis replaced by the sample meax, and the probabilities of the various
values of X are computed using the Poisson formlifee chi-square test of goodness of ditables us to determine
whether or not it is a good fit i.e. whether or tl¢ discrepancy between the expected frequenaigshe observed
frequencies is small. Next, we discuss some impbrtethematical points regarding Poisson distrdyuti

e 1) The Poisson approximation to the binomial formutaks well when

n > 20 and p < 0.05.

*  2) Suppose that the Poisson is used to approximateitiomial which, irturn, is being used to approximate
the hyper geometric. Then tR®issonis being used to approximate the hyper geometritirgy the two
approximation condition®gether the rule othumbis that the Poisson distribution can be used to
approximate the hyper geometric distribution when®O5N, n > 20, and p <0.05

This brings to thendof the discussion of some of the most important\aall-known Univariate discrete probability
distributions. We now begin the discussion somgnefwell-known Univariate continuous probabilitsttibution.
There are different types of continuous distribnsgi@.g. theiniformdistribution, thenormal distribution, thegeometric
distribution, and thexponentiabistribution. Each one has iisvnshape and itswn mathematical properties. In this
course, we will discuss the uniform distributiordahe normal distribution.

We begin with the continuous UNIFORM DISTRIBUTIOBIgo known as the RECTANGULAR DISTRIBUTION).

UNIFORM DISTRIBUTION

A random variable X is said to be uniformly distried if its density function is defined as

f(x):b—ia, as<xs<b

The graph of this distribution is as follows

f(x)

=

0 a b

The above function is proper probability density function because of the fénettt
i) Since a < b, therefore f(x) > 0

o b
" 1 1 b-a
i) J f(x)dx :J. dx= [x| = =1
b-a b-a"a b-a
Since the shape of the distribution is like thah@éctangle, therefore the total area of thigibistion canalsobe

obtained from the simple formula:
Area of rectangle

-0 a

= (Base) x (Height)

:(b-a)x( L ):1

b-a

Area under the Uniform Distribution
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= Area of the rectangle
= (Base) x (Height)

:(b—a)x(b1 jzl

—a

> X
0 a b

The distribution derives itsamefrom the fact that its density is constanuaiformover the interval [a, b] and is 0
elsewhere. It is also called the rectangular distidon because its total probability is confinedtrectangular region
with base equal to (b — a) and height equal to-2/&). Theparametersof this distribution are a and b with

(b-a)

a+b . .2
H=—- and varianceis 0° =
2 12

PROPERTIES OF THE UNIFORM DISTRIBUTION

Let X has the uniform distribution over [a, b]. Thi#és mean is

The uniform probability distribution providesnaodelfor continuous random variables that awenly distributeaver
a certain interval That is, a uniform random variable is one thgts as likely to assume a value oneinterval as it
is to assume a value in anotherintervalof equal sizeThere isno clusteringof values aroundny value. Instead, there
is aneven spreadver theentireregion of possible values. As far as theal-life application of the uniform
distribution is concerned, the point to be notethat, forcontinuousrandom variables there is afinite number of
values in the sample space, bus@mecasesthe values may appear to be equally likely

EXAMPLE-1

If a short exists in a 5 meter stretch of electrigiae, it may have an equal probability of beimgainy particular 1
centimeter segment along the line.

EXAMPLE-2
If a safety inspector plans to choose a time adaanduring the 4 afternoon work-hours to pay a ssepvisit to a

certain area of a plant, then each 1 minute tinterisal in this 4 work-hour period will have aqually likelychance to
being selected for the visit. Also, the uniformtdizution arises inthe study of rounding off errarstc.
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LECTURE NO. 30

¢ Normal Distribution.
=  Mathematical Definition
= Important Properties
¢ The Standard Normal Distribution
= Direct Use of the Area Table
= |nverse Use of the Area Table
¢ Normal Approximation to the Binomial Distribution

The normal distribution was discovered in 1733. Themal distribution has a bell-shaped curve oftjfpe shown
below:

-00 (00)

Let us begin its detailed discussion by consideit&formal MATHEMATICAL DEFINITION, and its main
PROPERTIES.

NORMAL DISTRIBUTION

A continuous random variable is said to be normdityributed with meap and standard deviatianif its probability
density function is given by

_{HT where
f)e—rel o) | —m<x<wm n=31416~22/7,
o 2m e~271828

For any particular value @f and any particular value of, giving different values to x and we obtain acfetrdered
pairs (x, f(x)) that yield the bell-shaped curveeagi above. The formula of the normal distributi@fies aFAMILY of
distributions depending on the values of the paoametergu ando (as these are the two values that determine the
shape of the distribution).

PROPERTIES OF THE NORMAL DISTRIBUTION

Property No. 1

It can be mathematically proved that, for the ndrdistribution N{1,02), pu represents thmean andoc represents the
standard deviatiomf the normal distribution. A change in the meeshiftsthe distribution to the left or to the right
along the x-axis:

-6 ——e X
H1 H2 H3
Hi<H2<H3

(o Constant)

The different values of the standard deviadipriwhich is a measure dispersior, determine theflatness or
peakednessf the normal curve. In other words, achangehia standard deviation oo flattens it or compressest
while leaving its centre in the same position:
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01<0,<03
(u Constant)

(0 )]

Property No. 2

The normal curve is asymptotic to the x-axis as % co.
Property No. 3

Because of theymmetryof the normal curve, 50% of the area is to thatraf a vertical line erected at the mean, and

50% is to the left.(Since the total area undemibignal curve from e to +oo is unity, therefore the area to the lefiuof
is 0.5 and the area to the rightiofs also 0.5.)

Property No. 4

The density function attains its maximum value atxand falls off symmetrically on each sidepofThis is why the
mean, median and mode of the normal distributienadirequal tqu.

Mean = Median = Mode

Property No. 5

Since the normal distribution is absolutely symmeatr henceu3 , the third moment about the mean is zero.
Property No. 6

For the normal distribution, it can be mathemalycpfoved thay4 = 304

Property No. 7
The moment ratios of the normal distribution cornéto be 0 and 3 respectively:

Moment Ratios:
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NOTE

Because of the fact that, for the normal distrimitB2 comes out to be 3, this is why this value hasibiaken as a
criterion for measuring the kurtosis of any disttibn: The amount of peakedness of tlremal curve has been taken
as astandard and we say that this particular distribution iasochistic. Any distribution for whicf2 is greater than 3
is more peaked than the normal curve, and is cddptbkurtic; Any distribution for whiclf82 is less than 3 is less
peaked than the normal curve, and is called platigku

Property No. 8
No matter what the values pfando are, areas under the normal curve remain in cefiteed proportions within a

specifiednumber of standard deviations on either side. of
For the normal distribution:
e The intervalp = o will always contain 68.26% of the total area.

M-1o 1l M+ 1o

e The intervalu + 20 will always contain 95.44% of the total area.

MH—20 M M+ 20

e The intervaluy = 3o will always contain 99.73% of the total area.

0.00135 0.9973 0.00135

X

H—30 H H+30

Combining the above three results, we have:
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U-36 pU-20 y-o H pt+o u+20 u+3o
582000

0
< 95.44% >

< >

At this point, the student are reminded of the Hioal Rule that was discussed during the first pérthis course ---
that on descriptive statistics. You will recall thiaa the case of any approximately symmetric hishpped frequency
distribution, approximately 68% of the data-valliesbetweenX + S, approximately 95% between th¥ + 2S, and
approximately 100% betweerX + 3S.You can now recognize the similarity betwabha empirical rule and the
property given above. (In case a distribution isadibtely normal, the areas in the above-mentioaedes are 68.26%,
95.44% and 99.73%; in case a distribution approtetganormal, the areas in these ranges wilapproximatelyequal
to these percentages.)

Property No. 9
The normal curve contains points of inflection émh the direction of concavity changes) which are

equidistant from the mean. Their coordinates onXtieplane are

[

respectively.

Points of Inflection

oo m o

Next, we consider the concept of the Standard NbBisribution:

THE STANDARD NORMAL DISTRIBUTION
A normal distribution whose mean is zero and wigiaaedard deviation is 1 is known as the standarchalo
distribution.
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Y,

This distribution has a very important role @@mputing areasunder the normal curve. Theasonis that the
mathematical equation of the normal distributiosascomplicated that it is not possible to findesrender the normal
curve by ordinary integration. Areas under the raricurve have to be found by the more advanced odetf
numerical integrationThe point to be noted is that areas under thmabcurve have been computed float particular
normal distribution whose mean is zero and whosedstrd deviation is equal to 1, i.e. the standardchal distribution.

Areas under the Standard Normal Curve

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0| 0.0000| 0.0040f 0.0080| 0.0120] 0.0159| 0.0199] 0.0239] 0.0279| 0.0319| 0.0359
0.1| 0.0398| 0.0438[ 0.0478| 0.0517| 0.0557| 0.0596[ 0.0636| 0.0675] 0.0714| 0.0753
0.2| 0.0793| 0.0832 0.0871| 0.0910] 0.0948| 0.0987] 0.1026] 0.1064| 0.1103| 0.1141
0.3| 0.1179| 0.1217| 0.1255| 0.1293| 0.1331] 0.1368| 0.1406| 0.1443] 0.1480| 0.1517
0.4| 0.1554| 0.1591f 0.1628| 0.1664| 0.1700] 0.1736| 0.1772] 0.1808| 0.1844| 0.1879
0.5| 0.1915] 0.1950f 0.1985| 0.2019] 0.2054| 0.2083] 0.2123] 0.2157| 0.2190| 0.2224
0.6| 0.2257| 0.2291[ 0.2324| 0.2357| 0.2380] 0.2422| 0.2454| 0.2486| 0.2518| 0.2549
0.7| 0.2580[ 0.2611f 0.2642| 0.2673| 0.2704| 0.2734| 0.2764| 0.2794| 0.2823| 0.2852
0.8| 0.2881] 0.2910f 0.2939| 0.2967] 0.2995| 0.3023] 0.3051] 0.3078| 0.3106] 0.3133
0.9| 0.3159| 0.3186[ 0.3212] 0.3238| 0.3264| 0.3289| 0.3315| 0.3340] 0.3365| 0.3389
1.0] 0.3413] 0.3438] 0.3461] 0.3485[ 0.3508 0.3531| 0.3554f 0.3577| 0.3599| 0.3621
1.1] 0.3643] 0.3665| 0.3686] 0.3708[ 0.3729] 0.3749| 0.3770[ 0.3790| 0.3810| 0.3880
1.2] 0.3849| 0.3869| 0.3888| 0.3907| 0.3925| 0.3944| 0.3962| 0.3990| 0.3997| 0.4015
1.3] 0.4032] 0.4049] 0.4066] 0.4082( 0.4099] 0.4115| 0.4131f 0.4147| 0.4162| 0.4177
1.4] 0.4192] 0.4207] 0.4222] 0.4236[ 0.4251] 0.4265| 0.4279| 0.4292| 0.4306| 0.4319
1.5] 0.4332] 0.4345| 0.4357| 0.4370] 0.4382| 0.4394| 0.4406[ 0.4418| 0.4430] 0.4441
1.6| 0.4452| 0.4463| 0.4474| 0.4485[ 0.4495] 0.4505| 0.4515[ 0.4525| 0.4535| 0.4545
1.7] 0.4554] 0.4564| 0.4573| 0.4582 0.4591| 0.4599| 0.4608[ 0.4616| 0.4625| 0.4633
1.8] 0.4641] 0.4649| 0.4656| 0.4664| 0.4671| 0.4678| 0.4686| 0.4693| 0.4690] 0.4706
1.9] 0.4713] 0.4719] 0.4726] 0.4732[ 0.4738] 0.4744| 0.4750[ 0.4758| 0.4762| 0.4767
2.0] 0.4772) 0.4778] 0.4783| 0.4788| 0.4793] 0.4798| 0.4803| 0.4808| 0.4812] 0.4817
2.1 0.4821) 0.4826] 0.4830| 0.4834| 0.4838] 0.4842| 0.4846[ 0.4850| 0.4854| 0.4857
2.2 0.4861| 0.4865| 0.4868| 0.4871| 0.4875| 0.4878| 0.4881] 0.4884| 0.4887| 0.4890
2.3 0.4893] 0.4896] 0.4898[ 0.4901] 0.4904]| 0.4906| 0.4909| 0.4911| 0.4913] 0.4916
2.4 0.4918] 0.4920] 0.4922| 0.4925| 0.4927] 0.4929| 0.4931| 0.4932| 0.4934| 0.4936
2.5[ 0.4938[ 0.4940[ 0.4941f 0.4943| 0.4945| 0.4946| 0.4948] 0.4949| 0.4951| 0.4952
2.6 0.4953| 0.4955| 0.4956[ 0.4957| 0.4959| 0.4960] 0.4961| 0.4962| 0.4963| 0.4964
2.7 0.4965| 0.4966| 0.4967| 0.4968| 0.4969| 0.4970| 0.4971] 0.4972| 0.4973| 0.4974
2.8 0.4974| 0.4975) 0.4976| 0.4977| 0.4977| 0.4978| 0.4979| 0.4980| 0.4980| 0.4981
2.9| 0.4981] 0.4982| 0.4983| 0.4983| 0.4984| 0.4984| 0.4985[ 0.4985| 0.4986| 0.4986
3.0 | 0.49865| 0.4987| 0.4987| 0.4988| 0.4988| 0.4989] 0.4989| 0.4989| 0.4990] 0.4990
3.1| 0.49903| 0.4991f 0.4991| 0.4991] 0.4992| 0.4992] 0.4992] 0.4992| 0.4993| 0.4993

In any problem involving the normal distributiohetgenerally established procedure is that the alodistribution

under consideration ionverted tdhe standard normal distribution. This processlfedstandardizationThe

formula for converting Ni(, o) to N (0, 1) is:
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THE PROCESS OF STANDARDIZATION
The standardization formula is:

If X'is N (4, 0), then Zis N (0, 1). In other words, the standaation formula given above converts our normal
distribution to the one whose mean is 0 and whtsedsrd deviation is equal to 1.

-1 0 1

M
We illustrate this concept with the help of an ieting example:

EXAMPLE

The length of life for an automatic dishwasherppraximately normally distributed with a mean Id&3.5 years and a
standard deviation of 1.0 years. If this type ahdvasher is guaranteed for 12 months, what fractidghe sales will
require replacement?

SOLUTION

Since 12 months equal one year, hence we needrtpute the fraction goroportion of dishwashers that will cease to
function before a time-span of one year. In otherds, we need to find th@obability that a dishwasher fails before
one year.

1.0 35 X

In order to find this area we nee to standardizenabdistribution i.e. to convert N(3.5, 1) to N@©;

The method is
X -p _X-35
o 1.0

z

The Xwalue representing t
warranty

period is 1.0 so

_10-35_ -25 _
1.0 1

z -2.5
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¢

(o))

-00 l‘.O 3.
0
-% -2.5 0

Now we need to find the area under the normal cfroma z= <« to Z = -2.5. Looking at the area table of the dtad
normal distribution, we find that Area from 0 t&2; 0.4938

V.

0 2.5

Hence: The area from X = 2.5 t® is 0.0062
0.006:
0 2.5 o

But, this means that the area from to -2.5 isals00.0062, as shown in the following figure:

AN

-

z
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This means that the probability of a dishwasheirigdess than a year is 0.0062 i.e. 0.62% --- dgsa than
1%.Hence, the owner of the factory should be chagepy with the decision of placing a twelve-montiagntee on the
dishwasher! Next, we discuss the Inverse use of éide of Areas under the Normal Curve. In the @bexample, we
were required to find a certain area against angsgalue. In some situations, we are confrontetth yuist the opposite
--- we are given certain areas, and we are reqtirédd the corresponding x-values. We illustritis point with the
help of the following example:

EXAMPLE

The heights of applicants to the police force oeetain country are normally distributed with mdai® cm and
standard deviation 3.8 cm. If 1000 persons applyé&ng inducted into the police force, and it baen decided that
not more than 70% of these applicants will be amkgand the shortest 30% of the applicant abetrejected), what
is the minimum acceptable height for the policeéd

SOLUTION:
We have:

-00 17C 00

—>
3.8

We need to compute the x-value to the left of whiblkre exists 30% area

30% 120% 50%

-00 17C 00

>
3.8

The standardization formula can be re-written as
X—H
o

Z =

The Z value to the left of which there exists 3084aais obtained as follows.
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0.5 0.2 03

Z

-00 0 z
By studying the figures inside the body of the aedde of the standard normal distribution, we fihdlt:
. The area betweenz =0
and z = 0.52 is 0.1985, and
. The area betweenz =0

and z = 2.53is 0.2019
Since 0.1985 is closer to 0.2000 than 0.2019, é€rk2 is taken as the appropriate z-value.

-00 0O 0.52

But, we are interested not in the upper 30% butdtver 30% of the applicants.
Hence, we have:

z

-00 -052 O

Since the normal distribution is absolutely symmcatr hence the z-value to the left of which thexests 30% area (on
the left-hand-side of the mean) will be at exatltly same distance from the mean as the z-valdeetaght of which
there exists 30% area (on the right-hand-side®ftlkan).
Substituting z = -0.52 in the standardization folemwe obtain:
X =170+38Z2

=170 + 3.8 (-0.52)

=170-1.976

=168.024 168 cm
Hence, the minimum acceptable height for the pdiicee is 168 cm. Just as binomial, Poisson aneratiscrete
distributions can bétted to real-life data; similarly, the normal distribution can alseFITTED to real data.
This can be done by equatipgo ™ X, the mean computed from the observed frequerstyiblition (based on sample
data), and to S, the standard deviation of the observed #aqy distribution. Of course, this should be donky i
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we are reasonably sure that the shape of the aab&equency distribution is quite similar to tisdthe normal
distribution. (As indicated in the case of theiffigt of the binomial distribution to real data),drder todecidewhether
or not our fitted normal distribution israasonably good fitheproper statistical procedure is the Chi-square Test of
Goodness of Fit.

NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

The probability for a binomial random variable Xtéke the value x is
n —
f(x)=|_ p*a™™,
X
forO<sx<nandg+p=1

The above formula becomes cumbersome to applisit ARGE.  In such a situatioms long as neither p nor q is
close to zerpwe can compute the required probabilities by ypglthe normal approximation to the binomial
distribution. The binomial distribution can be gquidlosely approximated by the normal distributidmen n is
sufficiently large and neither p nor q is closez&ra As a rule othumb the normal distribution provides a reasonable
approximation to the binomial distributigihboth np and nq are equal to or greater than.8.

np>5andng>5

EXAMPLE:

Suppose that a past record indicate that, in épéat province of an under-developed country,dbath rate from
Malaria is 20%. Find the probability that in a peutar village of that particular province, the nioen of deaths is
between 70 and 80 (inclusive) out of a total of p@€@ents of Malaria.

SOLUTION:

Regarding ‘death from Malaria’ as success, we have
n =500
and p = 0.20.

It is obvious that it is very cumbersome to apjy binomial formula in order to compute P(70 < 83).
In this problem,
np =500(0.2) =100 > > > 5, and nq = 500(0.808 > > > 5,

therefore we cahappily apply the normal approximation to the binomiakmigition. In order to apply the normal
approximation to the binomial, we need to keep inchthe following two points:

1) The first point is: The mean and variance of tiimial distribution valid in our problem will begarded as the
mean and variance of the normal distribution thiflithve used to approximate the binomial distribatio

In this problem, we have:

and 4 =np=500x 020=100
o? =npg=500x 020x 080=80

Hence & =./npg=+/80 =894

2) The second important point is:

We need to apply a correction that is known abetinuity Correction. The rationale for this cartien is as follows:
The binomial distribution is essentially a discrdigtribution whereas the normal distribution iscaatinuous
distribution i.e.:

BINOMIAL DISTRIBUTION
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NORMAL DISTRIBUTION

In applying the normal approximation to the binoimiee have the following situation:

THE NORMAL DISTRIBUTION SUPERIMPOSEDON THE BINOMIAL DISTRIBUTION

ATIN

But, the question arises: “How can a set of distuectical lines be replaced by a continuous curve?
In order to overcome this problem, what we do ieef@ace every integral value x of our binomialdam variable by
an interval x - 0.5 to x + 0.5. By doing so, welive the following situation. The x-value 70 éplaced by the
interval 69.5 - 70.5, The x-value 71 is replacedhwyinterval 70.5 - 71.The x-value 72is replacedhe interval 71.5 -
725 i The x-value 80 is replaced by the in&f9.5 - 80.5
Hence:
Applying the continuity correction,

P(70 < X < 80)
is replaced by

P(69.5 < X < 80.5).
Accordingly, the area that we need to computeesattea under the normal curve between the valuésat@ 80.5.

It is left to thestudentdo compute this area, and thus determine the medjpirobability. (This computation
involves a few steps.)

By doing so, the students will find that, in thafrficular village of that province, the probabilthat the number of
deaths from Malaria in a sample of 500 lies betw&eand 80 (inclusive) is 0.0145 i.e. 1¥%:%.

This brings us to the end of the second partisfaburse i.eProbability Theory

In the next lecture, we will begin the third amdtl portion of this course i.mferential Statistics-- that area
of Statistics which enables us to draw conclusabsut various phenomena on the basis of data tedles sample
basis.
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- LECTURE NO. 31
e Sampling Distribution ofX

* Mean and Standard Deviation of the Sampling Distidn of Y
*  Central Limit Theorem

INFERENTIAL STATISTICS

That branch of Statistics which enables us to dranclusions or inferences about various phenomerthe basis of
real data collected on sample basis. In this reghalfirst point to be noted is that statistic#erence can be divided
into two main branches --- estimation, and hypdthessting. Estimation itself can be further deddinto two
branches --- point estimation, and interval estiomat

Statistical Inference

o Hypothesis
Estimation Testing
Point Interval
Estimation Estimation

The second important point is that the conceptashing distributions forms the basis for both mstiion and
hypothesis-testing,

SAMPLING DISTRIBUTION

The probability distribution of any statistic (suah the mean, the standard deviation, the propodicuccesses in a
sample, etc.) is known as its sampling distributiorthis regard, the first point to be noted iattthere are two ways of
sampling --- sampling with replacement, and sangpliithout replacement. In case of a finite popolattontaining N
elements, the total number of possible samplegefrsthat can be drawn from this population wéplacement is Nn.
In case of a finite population containing N elensenthe total number of possible samples of sizeah ¢an be drawn
from this population without replacement.

We illustrate the concept of the sampling distridutf [N

j . with the help of the following exafap
n

EXAMPLE

Let us examine the case of an annual Ministry afnport test to which all cars, irrespective of,dggve to be
submitted. The test looks for faulty breaks, stegrlights and suspension, and it is discovereer dfte first year that
approximately the same numbers of cars have Q,3,,d 4 faults.

The above situation is equivalent to the following:

Let X denotes the number of faults in a car. TheraX take the values 0, 1, 2, 3, and 4, the pibityadif each of these
X values is 1/5. Hence, we have the following plmliy distribution:
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No. of Probability
Faulty Items f(x)
X)
0 1/5
1 1/5
2 1/5
3 1/5
4 1/5
Total 1

In order to compute the mean and standard deviaifothis probability distribution, we carry out tHellowing
computations,

MEAN AND VARIANCE OF THE POPULATION DISTRIBUTION
u=E(X)=Xxf(x)=2
o? =Var(x)=E(X)* -[E(X)]"
=3¢ H(x) - [Ex F(x)]"
=6-22=6-4=2

Practically speaking, only a sample of the card bél tested at any one occasion, and, as suchrevant@rested in
considering the results that would be obtainedsémple of vehicles is tested. Let us considesthuation when only
two cars are tested after being selected at thésida by a mobile testing station. The followingléagives all the
possible situations:

NO. OF FAULTY ITEMS

SeF:ond Car 0 1 5 3 4
First Car
0 0,001 (0,1)] (0,2 (0,3 0,4
1 1,01 1,1)] @2 (@3 (1,4
2 2,01 2,10 2,2 (2,3 (2,4
3 B0 GB1)] B2 33 (3,4
4 4,01 41 42| @43 (4,4

The above situation is equivalent to drawing akgible samples of size 2 from this probability mlsttion (i.e. the
population) WITH REPLACEMENT. From the above list 26 samples, we can work out all the possible $amp
means. These are indicated in the following table:

SAMPLE MEANS

Se.cond Car 0 1 5 3 4
First Car
0 0.0 0.5 1.0 1.5 2.0
1 0.5 1.0 1.5 2.0 2.5
2. 1.0 1.5 2.0 2.5 3.0
3 1.5 2.0 2.5 3.0 3.5
4 2.0 2.5 3.0 35 4.0

It is immediately evident that some of these pdessiamples mean occur several times. In view &f ihiwould seem
reasonable and sensible to construct a frequerstiitdition from the sample means. This is giverihia following
table:
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Sample No. of

Mean Samples
X f
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Total

RINWRORWIN]|E-

N
(631

If we divide each of the above frequencies by thaltfrequency 25, we obtain the probabilitiestef various values
of X.(This is so because every one of the 25 possiblations is equally likely to occur, and hence pinobabilities of
the various possible values of can be computed using the classical definitioppbability i.e. m/n --- number of
favorable outcomes divided by total number of passioutcomes). Hence, we obtain the following pimlits
distribution:

Sample Mean No. of Samplgs Probability

X f P( X =x)
0.0 1 1/25
0.5 2 2/25
1.0 3 3/25
1.5 4 4/25
2.0 5 5/25
2.5 4 4/25
3.0 3 3/25
3.5 2 2/25
4.0 1 1/25

Total 25 25/25=1

The above is referred to as the SAMPLING DISTRIBON of the mean. The visual picture of the sampling
distribution is as follows:
Sampling Distribution ofX for n = 2

P(x)
4
5/25

4/25

3/25
2/25
1/25
0 I L»*

00 05 10 15 20 25 3.0 35 4.0

Next, we wish to compute the mean and standardatiemiof this distribution.
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As we are already aware, for the probability dsttion of a random variable X, the mean is given by
u = E(X) = Xx f(x) and the variance is given bg2 = Var(X) = E(X2) - [E(X)]2
The point to be noted is that, in case of the samplistribution of X, our random variable is not X but.
Hence, the mean and variance of oupsagdistribution are given by

MEAN AND VARIANCE OF THE SAMPLING DISTRIBUTION OF X
#, = E(X)= 2% (%)
0% =Vvar(X)= E(X) -[E(X]
=y %2 f(x)-[Zx f(X)]°

The square root of the variance is the standarhtien, and the standard deviation of a samplirggrithiution is termed
as its standard error. In order to find the meahstandard error of the sampling distribution ¥fin this example, we
carry out the following computations:

In order to find the mean and standard error efshmpling distribution ofX in this example, we carry out
the following computations:

Sample Mean Probability

X f(Cx)=P( X =" x) "X f(Cx) (x)?f(x)
0.0 1/25 0 0

0.5 2/25 1/25 1/50

1.0 3/25 3/25 6/50

1.5 4/25 6/25 18/50
2.0 5/25 10/25 40/50
2.5 4/25 10/25 50/50
3.0 3/25 9/25 54/50
3.5 2/25 7/25 49/50
4.0 1/25 4/25 32/50
Total 25/25=1 50/25=2 250/50=5

Hence, in this example, we have:

Hy = E(>_() =2 xf ()_()
=50/25=2
And

These computations lead to the following two venportant properties of the sampling distribution Xf

Property No.1

In the case of sampling with replacement as welhdle case of sampling without replacement, weeha

In this example: H=H
=2
and
Mz =2
Hence
Property No.2 Hz = H
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In case of sampling with replacement:

In this example:

0 —==—7=1
Jn o 2
and o, =1

o

Henceo, =—

Jn

NOTE:
In case of sampling without replacement from adipiopulation:

g |N—-n
o, =—
JnVN-1
The factor N-n

is known as the finite population correction (fpEhe point to be noted is that, if the sample siz& much smaller than
the population size N, then is approximately edadl, and, as such, the fpc is not required. Heimceampling from a
finite population, we apply the fpc only if the sale size is greater than 5% of the population d\ext, we consider
the shape of the sampling distribution of. As indicated by the line chart, the above sampldistribution is
absolutely symmetric and triangular. But let ussider what will happen to the shape of the sampisgribution with

if the sample size is increased. If in the carstasitead of taking samples of 2 we had takenassible samples of size
3, our sampling distribution would contain 53 = X2Bnple means, and it would be in the followingrfor

SAMPLING DISTRIBUTION
FOR SAMPLES OF SIZB

X No. of Samples| f(" x)
0.00 1 1/125
0.33 3 3/125
0.67 6 6/125
1.00 10 10/125
1.33 15 15/125
1.67 18 18/125
2.00 19 19/125
2.33 18 18/125
2.67 15 15/125
3.00 10 10/125
3.33 6 6/125
3.67 3 3/125
4.00 1 1/125

125 1

The graph of this distribution is as follows:
Sampling Distribution ofX for n = 3
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20/125
16/125
12/125

8/125

4/125

P(x)

A

0

0.0.0 1. 1. 1. 2. 2. 2. 3. 3. 3. 4
00 33 67 00 33 67 00 33 67 00 33 67 00

If in the car tests instead of taking samples wfezhad taken all possible samples of size 4, aup8ag distributions

would contain 54 = 625 sample means, and it woaléhlihe following form:

SAMPLING DISTRIBUTION
FOR SAMPLES OF SIZE 4

X No. of Samples| f(" x)
0.00 1 1/625
0.25 4 4/625
0.50 10 10/625
0.75 20 20/625
1.00 35 35/625
1.25 52 52/625
1.50 68 68/625
1.75 80 80/625
2.00 85 85/625
2.25 80 80/625
2.50 68 68/625
2.75 52 52/625
3.00 35 35/625
3.25 20 20/625
3.50 10 10/625
3.75 4 4/625
4.00 1 1/625

625 1

The graph of this distribution is as follows, SamgIDistribution of X for n = 4
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100/625

80/625

60/625

40/625

20/625

0 X

As in the case of the sampling distribution &f based on samples of size 2, each of these tvihdiSons has a mean
of 2 defective items. It is clear from the abowgufies that as larger samples are taken, the sHage campling
distribution undergoes discernible changes.

In all three cases the line charts are symmefrimatl as the sample size increases, the overafigtmation
changes from a triangular distribution to a bebyséd distribution. When relatively large samples taken, this bell-
shaped distribution assumes the form of a ‘norndidtribution (also called the ‘Gaussian’ distritoui), and this
happens irrespective of the form of the parent fadjmn. (For example, in the problem currently undensideration,
the population of defective items in a car is regtdar.)

This leads us to the following fundamentally impaitttheorem:

CENTRAL LIMIT THEOREM

The theorem states that:

“If a variable X from a population has mearmand finite varianc@?2, then the sampling distribution of the
sample mearX approaches a normal distribution with mgarand variances2/n as the sample size n approaches
infinity.” As n - o, the sampling distribution oK approaches normality.

Due to the Central Limit Theorem, the normal dimition has found a central place in the theory tafistical
inference.(Since, in many situations, the sampl&aige enough for our sampling distribution to praximately
normal, therefore we can utilize the mathematigapprties of the normal distribution to draw infeces about the
variable of interest). The rule of thumb in thigaed is that if the sample size, n, is greater thraequal to 30, then we
can assume that the sampling distribution ¥f is approximately normally distributed. On the etthand, If the
POPULATION sampled is normally distributed, thee #ampling distribution ofX will also be normal regardless of
sample size. In other wordsX will be normally distributed with meam and variances2/n.
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LECTURE NO. 32
®  Sampling Distribution Ofﬁ

¢  Sampling Distribution onl —Yz
We discussed the mean and the standard deviatithre slampling distribution, and, towards the entheflecture, we

consider the very important theorem known as th&ti@eLimit Theorem. Let us now consider tteal-life application
of this concept with the help of an example:

EXAMPLE

A construction company has 310 employees who hawavarage annual salary of Rs.24,000.The standaidtebn of
annual salaries is Rs.5,000.

Suppose that the employees of this company laumiehreand that the government should institute ablgwhich their
average salary should be at least Rs. 24500, apdpse that the government decides to check thdityadf this
demand by drawing a random sample of 100 employettss company, and acquiring information regagdineir
present salaries. What is the probability thag random sample of 100 employees, the average seilaexceed
Rs.24,500 (so that the government decides thate¢heand of the employees of this company is unfodnaied hence
does not pay attention to the demand(althougteatity, it was justified))?

SOLUTION

The sample size (n = 100) is large enough to asshatehe sampling distribution of is approximatelynormally
distributed with the following mean and standardiagon:
and standard deviation

L, = 41 = Rs 24000,

5 =0 [N-n _ 5000 [310-100
* JnV\N-1 100\ 310-1
- = Rs41220

Here we have used finite population correctionda¢fpc), because the sample size n = 1Qfrésiter than 5
percentof the population size N = 310. Sinc¥ is approximately N (24000, 412.20), therefore

X =4, X 24000
g, 41220

X

/=

is approximately N(0, 1).We are required to evadRf X > 24,500).
At x = 24,500, we find that

S = 24500-24000_

=121
412.2C
24000 24500 X
] ]
0 121 g:

Using the table of areas under the standard narorag, we find that the area between z = 0 and 2% is 0.3869.
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0.3869
22000 24500 X
[ | [ |
0 T.o1 >
Hence,
P(X > 24,500)
- P@EZ >1.21)
=05-P(0<Z<1.21)
=0.5-0.3869 =0.1131.
0.3869
0.113
22000 24500 X
| |
0 To1 >

Hence, the chances are only 11% that in a randamplgseof 100 employees from this particular congstarnccompany,
the average salary will exceed Rs.24,500.In othwds; the chances are 89% that, in such a sarhgl@vierage salary
will notexceed Rs.24,500.

Hence, the chances are consideraligj that the governmemnight pay attention to the employees’ demand.

SAMPLING DISTRIBUTION OF THE SAMPLE PROPORTION

In this regard, the first point to be noted is thahenever the elements of a population can besifiled into two
categories, technically called “success” and “f&luwe may be interested the proportion of “successesh the
population. If X denotes the number of successésarpopulation, then the proportion of successéke population is
given by

X

pzﬁ.

Similarly, if we draw a sample of size n from trepplation, the proportion of successes in the sarspjiven by

. X
p=—,
n

where X represents the number of successes irathpls.
It is interesting to note that X istenomialrandom variable and the binomial parameter piisgoealled a proportion of
successes here. The sample proportion has diffeadiés in different samples. It is obviously adam variable and
has a probability distribution.
This probability distribytion of the proportions eficcesses in all possible random samples of size called the
sampling distribution of 0.
We illustrate this sampling distribution with thelfx of the following examples:
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EXAMPLE-1

A population consists of six values 1, 3, 6, 8nél 42.Draw all possible samples of size nwithoutreplacement
from the population and find the proportion of evemmbers in each sample. Construct the samplinighiison of
sample proportions and verify that

) Hp=p
e ~ N - n
iy var(p)=P4. >0
n N-1
SOLUTION
The number of possible samples of size n = 3 thaldcbe selected without replacement from a popnraif size N is

=

Let f) represent the proportion of even numbers in tmepéa Then the 20 possible samples and the propooi
even numbers are given as follows:

Sample] Sample Sample
No. Data Proportion(p)
1 1,3,6 1/3
2 1,3,8 1/3
3 1,3,9 0
4 1,3,12 1/3
5 1,6,8 213
6 1,6,9 1/3
7 1,6,12 2/3
8 1,8,9 1/3
9 1,8,12 2/3
10 1,9,12 1/3
11 3,6,8 2/3
12 3,6,9 1/3
13 3,6,12 2/3
14 3,8,9 1/3
15 3,8,12 2/3
16 3,9,12 1/3
17 6,8,9 2/3
18 6,8, 12 1
19 6,9, 12 2/3
20 8,9, 12 2/3

The sampling distribution of sample proportionisgeg below;
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SAMPLING DISTRIBUTION OF p-

. No. of | Probability | .. P
(O) | sampled () | PT®) | 8°(p)

0 1 1/20 0 0
1/3 9 9/20 3/20 1/20
2/3 9 9/20 6/20 4/20
1 1 1/20 1/20 1/20
20 1 10/20 6/20

Now
Ao~y _ 10
Wy =X pf(p) e h 05, and

o =2p°f(p)-[xpt ()
1

2
Ej =— =005
20

To verify the given relations, we first calculate tpopulation proportion p.Thus:

p= % ;Where X represents the

number of even numbers in the
population. In other words,

3
=—=0.5
P 6

Hence, we find th:

“ﬁ:O'5:p1

Pq N-n _ 025 6-3

n N-1 3 6-1
=025, 005=Var(p)

Hence, two properties of the sampling distributixﬁrf)

are verified.
pgN-n

P n N-1'

The sampling distribution of) has the following important properties.

~

PROPERTIES OF THE SAMPLING DISTRIBUTION OF p

Property No. 1

The mean of the sampling distribution of proporsipdenoted by/,b is equal to the populatiompertion p, that is
p H

My =P
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Property No. 2

The standard deviation of the sampling distributéproportions, called thetandard errorof and dﬁnoted by

o g,
is givenas: P
. a)

« when the sampling is performedth replacement
¢ b) when sampling is dongithoutreplacement from finite population
(As in the case of the sampling distribution fis known as the finite population correction farctfpc)

Property No. 3
SHAPE OF THE DISTRIBUTION

The sampling distribution ofp is tbenomial distribution. However, for sufficientliarge sample sizes, the
sampling distribution of is approximately norma&is n — o, the sampling distribution of approaches normality

:‘h »ﬁ

As a rule of thumb, the sampling distribution of will be approximateljormalwhenever both np and nqg are equal to
or greater than 5.Let us apply this concept te&werld situation: f_,

EXAMPLE-2

Ten percent of the 1-kilogram boxes of sugar iargd warehouse are underweight. Suppose a rdbaiysra random
sample of 144 of these boxes. What is the protiphilat at least 5 percent of the sample boxesbeilinderweight?

SOLUTION

Here the statistic is the sample proportion, theyda size (n = 144) is large enough to assume tti@tsample
proportion is approximately normally distributedthvimean

Mean of the sampling distributionﬁ
l’lf) =p= 010,

Standard Error 01]5

_ [pq _ [(010)(090)
Or=, |—= |~—"2 7
P n 144
03

=— = 0025
12
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Therefore, the sampling distribution of is appneately N(0.10, 0.025); and hence
7-P"H_ P-p
o, 4/ pa/n
_p-010

is approximately N(O, 1). 0.02t

We are required to find the probability that thegmrtion of underweight boxes in the sample is etuar greater than
5% i.e., we require

P(p= 005).

In this regard, a very important point to be natethat, just as we usecantinuity correctiorof + % whenever we
consider the normal approximation to the binomidilstributed random variable X, this situation, since

D,

therefore, we need to use the following continaityrection; We need to usecantinuity correctiorof + —
in the case of the sampling distribution[df 2n

Applying the continuity correction in this prelh, we
have:

P(p > 005)=> P[f’z O'OS_WL‘Q

[ﬁ— 010 _ (0.05-1/288)- 0.10°
0025 ~ 0025

P(z>-214)
=P(-214<72<0)+P(0<Z<w)
0.483¢ + 0.5 = 0.983¢

0.5

-2.14 0 Z

Hence, the probability that East5%,of the sample boxes are under-weiglais high a98% .
The sampling distributions 6X and P pertain to the situation when we are draveitigossible samples of a
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particular size from one particular population. Neve will discuss the case when we are dealing alitpossible
samples drawn frortwo populations, such that the samples from the twmfations aréndependent

In this regard, we will consider the sampling disitions of X, — X, andp, — p, :

We begin with the sampling distribution ofy(l - )?2 :

SAMPLING DISTRIBUTION OF DIFFERENCES BETWEEN MEANS

Suppose we have two distinct populations with ragdp and Mo and variances()'l2 and 0'% respectively.

Letindependentandom samples of sizd3; and N, be selected from the respective populatj@msl the
difference%l_Xz between the means of all possible pairs of sanffemputed.

Then, a probability distribution of the differenc§§_y2 can be obtained. Such a distribution is calledséepling
distribution of the differences of sample megnsy . We illustrate the sampling distribution plf_gz with the help
of the following example.

EXAMPLE

Draw all possible random samples of size nlwith replacementrom a finite population consisting of 4, 6, siarlly,
draw all possible random samples of size nwith replacementrom another finite population consisting of 132,
a) Find the possible differences between the samplnsof the two populations
b) Construct the sampling distribution of>(1 - X2 and compute its mean and variance

2

c) Verify that )
g, + g,

- 2 -
Mx,-x, =H1~H2 anw*y-—x =—+
nl nl

SOLUTION

Whenever we are sampling with replacement fronmi¢efipopulation, the total number of possible sasjs Nn
(where N is the population size, and n is the sarsje).Hence, in this example, there are (3)2e%ible samples
which can be drawn with replacement from each . These two sets of samples and their meangieen
below:

From Population 1 From Population 2

Sampl Saénpl “x | Sampl Sagﬂpl X

eNo- | vae| * | ©NO | value| 2
1 4,4 4 1 1,11 1.9
2 4,6 5 2 1,21 1.%
3 4,8 6 3 1,31 2.9
4 6, 4 5 4 2,11 1.
5 6, 6 6 5 2,2) 2.9
6 6, 8 7 6 2,3] 2.%
7 8,4 6 7 3,1] 2.9
8 8,6 7 8 3,21 2.
9 8,8 8 9 3,31 3.9

a) Since there are 9 samples from the first popula®well as 9 from the second, hence, there app&dible
combinations of x1 and x2
The 81 possible differencesl — x2 are presented in the following table:
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X5 X2
4 5 6 5 6 7 6 7 8
1.0] 3.0] 4.0] 501 4.9 5.( 69 SP 6Jj0 A0
15] 25] 35] 45 3§ 4.1 59 4b 55 Q5
201 20] 3.0 40 3. 4.( 59 4D 5]0 QO
15] 25] 35] 45 39 4.1 59 4pb 55 Q5
201 20] 3.0] 4.0] 3.0 4. 59 4P 5]0 QO
251 15 25] 35 2.5 3.5 4.5 3p 415 55
201 20] 3.0] 40 3. 4.( 59 4D 5]0 QO
251 1.0] 25| 35 239 3.1 49 3p 45 95
3.0] 1.0y 20] 301 2.0 3. 49 3P 4]0 §JO0
b)The sampling distribution gl - )zz is as follows:
o Probability
X2 qany | o | FR-%2) [ af) | )
=d =£(d)
1.0 | 1 1/81 1/81 1.0/81
15 [ 2 2/81 3/81 4.5/81
2.0 T 5 5/81 10/8] 20.0/8L
25 | 6 6/81 15/81 37.5/41
3.0 | LS 1( 10/81 30/41  90.0/p1
35 | 1( 10/81 35/d1  122.5081
40 e 1k 13/81 52/81 208.0J81
4.5 THL S 1( 10/81 45/41 202.581
5.0 |~ 1( 10/81 50/d1  250.0f81
55 |l | 6 6/81 33/8] 181.5/81
6.0 H 5 5/81 30/81 180.0/41
6.5 [ 2 2/81 13/8] 84.5/8}
7.0 | 1 1/81 7/81 49.0/8]
Total --- 81 1 324/81 1431/81
Thus the mean and the variance are
Hz—=x, = Z ()_(1 B )_(2) f(il B )_(2)
=>df(d)= %_4, and
%ix, = 20 (d)-[£af(d)f
1431 (%j =23_16=2=167
81 (81 3 3
c) In order to verify the properties of the sampldistribution ofx X we first need to compute the mead

variance of the first population:
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The mean and standard deviation of the first pajmuiare:

“1:4+—2+8:6, and

o2 (4-6)*+(6-6)° +(8-6)* _8

3 3
of 0% 81,21
n, n, 32 32
4 1 5
= +===
3 3 3
=167
_Oél_XZ

The mean and variance of the second population are:

“2:£3+3:2! and

g2= -2 +(2-2° +(3-2f 2
? 3 3
Now 5z =4=6-2=p, - 4,, and
2 2

0-1+0-2:§_£+2_£

n n, 32 32

4 1_5

=4+ -—_—=—

3 3 3

=167

_Gél‘iz

Hence, two properties of the sampling distributién X, —X_ are satisfied. The sampling disttidi of the
> < 1 2
differences X4 — X, has the following properties:

PROPERTIES OF THE SAMPLING DISTRIBUTION OF Xl - XZ

Property No. 1:
The mean of the sampling distributionja[ -X, denoted b)pX %, is equal to the difference
1772

between population means, that is
Mx,-x, = H1 ~H2

Property No. 2:
In case of sampling with or without replacemfeam two infinite populations, the standard deviation of the sargplin

distribution of X; — X, (i.e.standard errorof X, - X,), denoted by(fyl_yz , is given by

_ |0} o5
0%, %X, 4| = T =
n np

Virtual University of Pakistan 247



STA301 - Statistics and Probability Y

The above expression for the Standard ErroR(if— Yz also holds for finite population when samplingp&formed

with replacement. In case of sampling without replacgrfrem a finite population, the formula for thestard error
of will be suitably modified.

Property No. 3:

Shape of the distribution:
a) If the POPULATIONS are normally distributed, thangpling distribution ole - X2, regardless of sample

2 2
0)
sizes, will benormalwith mean}l; — o and variance— +—2 .
n n
1 2

In other words, the variable
7 = (xl - Xz)_(ﬂ1 ~ i)
2 2
01,92
n, n,

is normally distributed with zero mean and unitizace.

b) If the POPULATIONS ar@on-normaland ifboth sample sizes alarge, (i.e., greater than or equal to 30), then the
sampling distribution of the differences betweerangeis approximately aormal distribution by the Central Limit
Theorem.

In this case too, the variable

7 = (Xl _XZ)_(:Ul _:Uz)
9,0
n n

will be approximatelynormally distributed with mean zero and variance one.
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LECTURE NO. 33
e Sampling Distribution of (continued)
. Point Estimation
« Desirable Qualities of a Good Point Estimator
0 Unbiasedness
o Consistency
We illustrate the real-life application of the sdimg distribution of X, - X, with the hety the following example:

EXAMPLE

Car batteries produced by company A have a meaofifl.3 years with a standard deviation of 0.Gyea similar
battery produced by company B has a mean life®f/dars and a standard deviation of 0.4 years. \gtihe
probability that a random sample of 49 batteriesnffcompany A will have a mean life of at leastyearsmorethan
the mean life of a sample of 36 batteries from canyB?

SOLUTION

We are given the following data:

Population A:

ul = 4.3 yearsgl = 0.6 years,

Sample size: n1 =49

Population B:

2 = 4.0 yearsgp2 = 0.4 years,

Sample size: n2 = 36

Both sample sizes (n1 = 49, n2 = 36) are large ginémi assume that the sampling distribution ofdifferences
is approximately a normal such tha)(l—)(2

MEAN
Mz —x, =H1 ~H,=43-40=03 years
and standard deviation:
2 2
g, o, _ |036 016
n, 49 36
Thus the variable= 0.1086 years

7= ()?1 _iz)_(/'ﬁ ~ 14y
gL

n n,
(X,-X,)-03

0.108¢
is approximately N (0, 1)
We are required to find the probability that theamdife of 49 batteries produced by company A wile a mean life
of at least 0.5 yeatengerthan the mean life of 36 batteries produced bypzomg B, i.e.
We are required to find:

P(X, - X, = 05).
Transforming X, - X, = 05
to z-value, we find that:

_ 05-03_

z=—"""°-184
0.108¢
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0.3 0.5 e

[ | [ |
0 1.64 >

Hence, using the table of areas under normal cwedind:

P(X, - X, = 05)=P(Z = 184)
=05-P(0<Z < 184)
= 05- 04671
= 0.032¢

In other words, (given that theal difference between the mean lifetimes of battesfesompany A and batteries of
company B is

4.3 - 4.0 =0.3years), the probability thatsampleof 49 batteries produced by company A will hawveean life of at
least 0.5 yearongerthan the mean life of sampleof 36 batteries produced by company B, is only@3.3

SAMPLING DISTRIBUTION OF THE DIFFERENCES BETWEEN PR _OPORTIONS

Suppose there are twminomial populations with proportions of successes pl ahdespectively. Letndependent
random samples of sizeg and  be drawn from the respective populations, anddifferences [51 - [32 between
the proport|ons ofall possiblepairs of samples be computed. Then, a probaldigyribution of the differences
pl p2 can be obtained. Such a probability distributisncalled thesampling distributionof the differences

between the proportlonpl - p2 .We illustrate the sampling distribution Wl - p2 with the help of the following
example:

EXAMPLE

It is claimed that 30% of the households in ComryuAiand 20% of the households in Community B hatvieeast one
teenager. A simple random sample of 100 houselfimdseach community yields the following results:
What is the probability of observing a differertbés large odarger if the claims are true?

P, = 034 p, = 013
SOLUTION
We assume that if the claims are true, the samplisigibution of IA)A - [53 is approximately normally distributed

(as, in this example, both the sample sizes age lanough for us to apply the normal approximatiothe binomial
distribution).Since we are reasonably confident tha sampling distribution is approximately nortadistributed,
hence we will be finding any required probab|l|§y¢nmputlng the relevant areas under our normale;wand, in order

to do so, we will first need to convert our varmlf])A pB to Z. In order to convelrf)A pB to Z, weed the

values of MPA PB as well (aj?A PB
It can be mathematically proved that:

PROPERTIES OF THE SAMPLING DISTRIBUTION OF ﬁl - ﬁz

Property No. 1:
The mean of the sampling distribution 6& - [52, denoted by].lﬁ, P is equal to the difference between the
172

population proportions, that}g.p -p, =P Pe.
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Property No. 2:
The standard deviation of the sampling distributjbrf)l - f)z, (i.e. the standard error q@l - f)z) denoted by

Gf)rf)z is given by

_ [P@, P
Opy-p, = f*%

whereq=1-p
Hence, in this example, we have:

W, - p, = 030— 020= 010
2 = (030)(070) , (020)(080) _ 0.0037
PA™Pe 10¢ 10¢

The observed difference in sample proportions is

P — Pg = 034- 013= 021

The probability that we wish to determine is représd by the area to the right of 0.21 in the samgplistribution of
Pa — Ppg.Tofind this area, we compute

;= 021-010_ 011

4 0.0037 006

=183

@ e
0.10 0.21
1 [ | <> Z
0 1.8%

By consulting the Area Table of the standard nomigtiibution, we find that the area between zan@ z = 1.83 is
0.4664. Hence, the area to the right of z = 1.8B0836.
This probability is shown in following figure:

0.466: 0.033¢

. Pa = Po
0.10 0.21

1 1 > Z

0 1.8<
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Thus, if the claim is true, the probability of obgag a difference as larger as or larger thanatteially observed is
only 0.0336 i.e. 3.36%. The students are encodrégery tointerpret this result with reference to the situation at
hand, as, in attempting to solve a statistical fgmob it is very important not just to apply variciggmulae and obtain
numerical results, but iaterpretthe results with reference to the problem undesicieration. Does the result indicate
that at leasbne of the two claims is untrue, or does it imply sénieg else? Before we close the basic discussion
regarding sampling distributions, we would likedraw the students’ attention to the following twgpiortant points:
* We have discussed various sampling distributionth weference to the simplest technique of random
sampling, i.esimple random sampling
« And, with reference to simple random samplinghibidd be kept in mind that this technique of sampls
appropriate in that situation when the populatsimimogeneous
e Let us consider the reason why the standard deniafi the sampling distribution of any statistikigwn as
its standareerror:
To answer this question, consider the fact thatsaaystic, considered as astimateof the corresponding population
parameter, should be el®sein magnitude to the parameter as possible. Tlierdifce between the value of the
statistic and the value of the parameter can bardeg as aerror --- and is called ‘sampling error’. Geometrically,
each one of these errors can be representadrigontal line segmeritelow the X-axis, as shown below
Sampling Distribution of

x|

< > ¢ >

The above diagram clearly indicates that therevaneus magnitudes of this error, depending on faver how close
the values of our statistic are in different sarsple

The standard deviation oK gives us astandard’value of this error, and hence the te@tandardError’.

Having presented the basic ideas regarding samgigtgbutions, we now begin the discussion reqayd?OINT
ESTIMATION:

POINT ESTIMATION

Point estimation of a population parameter provaean estimatesinglevalue calculated from the sample that is
likely to be close in magnitude to the unknown paeter.

DIFFERENCE BETWEEN ‘ESTIMATE’ AND ‘ESTIMATOR'’

An estimateis a numerical value of the unknown parameterinbthby applying a rule or a formula, called an
estimator to a sample X1, X2, ..., Xn of size n, taken fromogulation. In other words, an estimator standstfe
rule or methodhat is used to estimate a parameter whereas iamatsstands for theumerical valueobtained by
substituting the sample observations in the ruldeiformula.

For instance:

If X1, Xa, ..., Xy is @ random sample of size n from a populatioh wieary, theny =1 i x. Is an estimator gf,
I
Ni=1
and” x, thenumerical valueof ~ X, is an estimate qgi (i.e. a point estimate qf).
In general, the (the Greek let®ris customarily used to denote an unknown parantied¢ could be a mean, median,

proportion or standard deviation, while an estimaf® is commonly denoted b@, or sometimes by T.

It is important to note than estimatolis always astatisticwhich is afunctionof the sample observations and heisce
a random variablas the sample observations are likely to vary feample to sample.

In other words:
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In repeatedsampling, an estimator isandom variableand has @arobability distribution which is known as its
sampling distributionHaving presented the basic definition of a pestimator, we now consider somesirable
qualitiesof a good point estimator. In this regard, thenptd be understood is that a point estimator isittered a
good estimator if it satisfiegarious criteria Three of these criteria are:

DESIRABLE QUALITIES OF A GOOD POINT ESTIMATOR

* unbiasedness
e consistency
« efficiency

UNBIASEDNESS

An estimator is defined to be unbiased if the stigtused as an estimator has its expected valued &mjthe true value
of the population parameter being estimated. lerotords, letB be an estimator of a paraméerhen B will be

called an unbiased estimatorE(e) =0.i E(e) * 9, the statistic is said to be a biased estimator

EXAMPLE

Let us consider the sample meafias an estimator of the population mgafihen we have =

. _ 1n
and@=X==3% X;.
n|:l

Now, we know thatE(X) =M
ie. E(é) =0.

Hence, X is anunbiasedestimator gf.. Let us illustrate the concept of unbiasednessomgidering the example of
the annual Ministry of Transport test that was pméesgtin the last lecture:

EXAMPLE

Let us examine the case of an annual Ministry oh3part test to which all cars, irrespective of dgsje to be
submitted. The test looks for faulty breaks, stegriights and suspension, and it is discoverezt #fie first year that
approximately theame numbeof cars have 0, 1, 2, 3, or 4 faults. The abotteaton is equivalent to the following:
If we let X denotehe number of faultg a car, then X can take the values 0, 1, 2n8,4a and th@robability of each
of these X values is 1/5. Hence, we have the fotigyprobability distribution:

No. of Probability
Faulty Items f(x)
X)
0 1/5
1 1/5
2 1/5
3 1/5
4 1/5
Total 1

MEAN OF THE POPULATION DISTRIBUTION
u=E(X)=Xxf(x)=2

We are interested in considering the results tlmatldvbe obtained if aampleof only two cars is tested.
You will recall that we obtained 52 = 25 differguiissible samples, and, computing the mean of easgilpe sample,
we obtained the following sampling distribution of:
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Sample Mean Probability
X P( X =x)
0.0 1/25

0.5 2/25

1.0 3/25

1.5 4/25

2.0 5/25

2.5 4/25

3.0 3/25

3.5 2/25

4.0 1/25
Total 25/25=1

We computed the mean of this sampling distributaorg found that the mean of the sample meansoinees out to be
equal to 2 --- exactly the same as the mean gbdpelation. We find that:

- (<) 50
= f =—=2=
pr =Y x f(X)==2=u

i.e the mean of the sampling distribution Xfis equal to the population mean. By virtue otpioperty, we say that

the sample mean is &MNBIASEDestimate of the population mean. It should bedttat this property,

alwaysholds WUy = regardlessof the sample size. Unbiasedness is a propertyehaires that the probability
X )

distribution of © be necessarilgenteredat the paramet@r irrespective of the value of n.

VISUAL REPRESENTATION OF THE CONCEPT OF UNBIASEDNES S

x|

@
H

E(X) = M implies that the distribution g denterecatp.What this means is that, although many of theviddal
sample means are eitherder-estimatesr over-estimatesf the true population mean, in the long run,dtier-
estimatedalancethe under-estimates so that thean valuef the sample means comes out to be equal to the
population mean.

Let us now consider some other estimators whickgsssthe desirable property of being unbiaseds@hmple median
is also an unbiased estimatonofvhen the population is normally distributed (IfeX is normally distributed, then
Also, as far as p, tharoportion of successés the sample is concerned, we have consideriaditmomial random
variable X (which denotes the number of successedrials), we have:

E()Z):/J.)

n
n
L p
n

| <

E(p) E(x)

=
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Hence, the sample proportion is@ambiasedestimator of the population parameter p. But Asafathe sample variance
S2 is concerned; it can be mathematically provedl B{S2)% c2.Hence, the sample variance S2 lsiasedestimator

of 62.For any population parametand its estimatoB , the quantityE 6)— B is known as the amount bfas.
This quantity is positive iiE(e) > 9, and is negative iE(e) < 9, and, hence, the estimator is said to be positively

biased WhenE(e) >0 and negatively biased wth(G) < 0 .Since unbiasedness is a desirable quality, wedvoul

like the sample variance to be anbiasedestimator ofc2.In order to achieve this end, the formula of saenple
variance ignodifiedas follows:
Modified formula for the sample variance:
)2
, O (x=x%)
n-1

S

Since E(s2) =02, hence s2 is an unbiased estimatoo®MWhy is unbiasedness considedesirableproperty of an
estimator? In order to obtain an answer to thistioe, consider the following: With reference te #stimation of the
population meam, we note that, in aactual study, the probability is very high that the medfwur sample i.e X will
either be less thgnor more than.

Hence, in an actual study, we can never guarahé&etr X will coincide withp.

Unbiasedness implies that, although in an actudlystwvecannotguarantee that our sample mean will coincide wijth
our estimatiorprocedure(i.e. formula) is such that, irepeatedsampling, theaveragevalue of our statistiovill be
equal tou.

The next desirable quality of a good point estimaconsistency

CONSISTENCY

An estimator0 is said to be a consistent estimator of the paerfief, for any arbitrarily small positive quantity e,

Lim P||6-6|<e|=1
n- o
In other words, an estimatdd is called a consistent estimator ®fif the probability thatB is very close td,

approaches unity with an increase in the sample $izshould be noted that consistency isrge sampleproperty.
Another point to be noted is that a consistentregtirmay or may nobe unbiased.

The sample meag :}i X which is an unbiased estimator jof is a consistent estimator of the magaithe
ni=1

sample proportion is also a consistent estin@dtthe parameter_p of a population that has arhial distribution.

The median imot a consistent estimator pfwhen the population Bas a skewed distribution. Saraple variance

n
st =13 (x,-xF,
ni=
though abiasedestimator, is a consistent estimator of the pdmriavariances2. Generally speaking, it can be proved
that a statistic whose STANDARD ERRQ@IRcreasesvith anincreasein the sample size, will be consistent.
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LECTURE NO. 34

* Desirable Qualities of a Good Point Estimator:
= Efficiency
*  Methods of Point Estimation:
= The Method of Moments
=  The Method of Least Squares
= The Method of Maximum Likelihood
* Interval Estimation:
=  Confidence Interval fop
As a sample is only part of the population, it is obvious that tleeger the sample size, theorerepresentative we
expect it to be of the population from which it leeen drawn. In agreement with the above argumentyill expect
our estimator to be close to the correspondingmaeter if the sample sizelsrge. Hence, we will naturally be happy if
the probability of our estimator being close to plagameteincreaseswith an increase in the sample size.sish
consistency is a desirable property.
Another important desirable quality of a good p@stimator iEFFICIENCY:

EFFICIENCY

An unbiased estimator is defined todfécientif the variance of its sampling distributionsshaller tharthat of the
sampling distribution ofny other unbiased estimator of the same parametethér words, suppose that there are two
unbiased estimators, &nd T, of the same parameéeThen, the estimator,; Will be said to benore efficienthan T, if

Var (Ty) < Var (T).

In the following diagram, since Var (T1) < Var (T2)

hence T1 isnore efficienthan T2 :

Sampling
Distribution of T 1

Sampling
o Distribution of T ,

-
Therelative efficiencyf T; compared to 7(where both Tand T, are unbiased estimators) is given by the ratio
E = Var(T,)
f A
var(T,)

And, if we multiply the above expression by 100, etain the relative efficiency ipercentagdorm. It thus provides
a criterion forcomparingdifferent unbiased estimators of a parameter. Battsample mean and the sample median
for a population that hasrmrmaldistribution, are unbiased and consistent estirmaifu but the variance of the
sampling distribution of sample meanssiisaller thanthe variance of the sampling distribution of saenpledians.
Hence, the sample mean is meficientthan the sample median as an estimatpr Dfie sample mean may therefore
bepreferredas an estimator.

Next, we consider variousethods of point estimatioA point estimator of a parameter can be obtaineseveral
methods. We shall be presenting a brief accoutiteofollowing three methods:

METHODS OF POINTESTIMATION

*  The Method of Moments

e The Method of Least Squares

*  The Method of Maximum Likelihood
These methods give estimates which miéfier as the methods are based on diffeteebriesof estimation.
THE METHOD OF MOMENTS
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The method of moments which is due to Karl Pea(&867-1936), consists of calculating a fewmentof the sample
values ancquatingthem to the corresponding moments of a populathors gettingas manyequations as are needed
to solve for the unknown parameters. The procesudescribed below:

Let X1, X2, ..., Xn be a random sample of size n feppopulation. Then the rth sample moment about izer

1 z X'r
m, = nl ,r=12...
and the corresponding rth population moment is We the tehthese moments and get manyequations as we
need to solve for the unknown parameters. Theatig examptésfillustrate the method:

EXAMPLE-1

Let X be uniformly distributed on the interval @, Find an estimator & by the method of moments.
SOLUTION

The probability density function of the given unifodistribution is

f(x):%, O0<x<#@

Since the uniform distribution has only one parameti.e.8), therefore, in order to find the maximum likeldtb
estimator oB by the method of moments, we need to consider ambequation.
The first sample moment about zero is

XX
1 n '
And, the first population moment about zero is
0
0 0 2
Wy = [x.F(x)dx :jx.} dx=1 X128
0 0 0 Bl 2| 2
Matching these moments, we obtain: 0
X; _6 -
2% 9 or 6=2X.
n 2

Hence, the moment estimator@®is equal ICQY
ie. A

6 = 2X.

In other words, the moment estimatorbas just twice the sample mean. It should be niteti for the above uniform
distribution, the mean is given by

. 6
5
(7
(This is so due to thabsolutesymmetry of the uniform distribution around thduea E )
Now, U= Q implies thatg = 2U .

In other words, if we wish to have tegactvalue off, all we need to do is to multiply the populatioranp by 2.
Generally, it is not possible to determinend all we can do is to draw a sample from tlebgbility distribution, and
compute thesamplemean X. Hence, naturally, the equation will be replabgdhe equation

(As 2x provides amstimateof 8, hence a ‘hat’ is placed on top@®j

It is interesting to note hat &xagyly the same quantity as what we obtained as an dstiofi® by the method of
moments!(The result obtained by the method of masemincides with what we obtain through simple logic

EXAMPLE-2

Let X1, X2... Xn be a random sample of size n fromamal population with parametepsando2. Find these
parameters by the method of moments.
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SOLUTION

Here we need two equations as therew@oaunknown parameterg, ando?2. The first two sample moments about zero
are

m'1:%2 X, =X and m, :%Z:Xf.

Thecorrespondingwo moments of a normal distribution are
'ul =p and’'y2 =02 +u2.
( 02 ='p2-'pl2="p2 -p2)

To get the desired estimators by the method of mésnevematchthem.
Thus, we have :

1 2 2_1 2

H==>» X ando“+u-==>» X

2% SO,
Solving the above equatiosanultaneouslywe obtain:

nzizxi =X, and
n

&2 :%iz—iz :%z(xi -Xf =2

as the moment estimators faranda?® A shortcoming of this method is that the momestineators are, in general,
inefficient

THE METHOD OF LEAST SQUARES

The method of Least Squares, which is duGaniss(1777-1855) andiarkov (1856-1922), is based on the theory of
linear estimation. It is regarded as one of importantmethods of point estimation. An estimator foundhigimizing
the sum of squared deviations of the sample vdhoes somefunctionthat has been hypothesized d# $or the data,

is called the least squares estimator. The mettoldast-squares has already been discussed in agmevith
regression analysis that was presented in Lectorel Bl

You will recall that, when fitting a straight line= a+bx to real data, ‘a’ and ‘b’ were determirigdminimizingthe
sum of squared deviations between the fitted Imetae data-points.

The y-intercept and the slope of the fitted liree fa’ and ‘b’ ardeast-square estimatésespectively) of the y-intercept
and the slope of thERUEine that would have been obtained by considettiegentire population of data-points, and
not just a sample.

METHOD OF MAXIMUM LIKELIHOOD

The method of maximum likelihood is regarded asM@STimportantmethod of estimation, and is theostwidely
used method. This method was introduced in 1928ibfRonald A. Fisher (1890-1962).The mathematieahhique of
finding Maximum Likelihood Estimators is a litlvancedand involves the concept of the Likelihood Fubrcti

RATIONALE OF THE METHOD OF MAXIMUM LIKELIHOOD (ML)

“To considereverypossible value that the parameter might have,fandachvalue, compute thprobability that the
given sample would have occurred if thagrethe true value of the parameter. That value ef glrameter for which
the probability of a given sample gseatest is chosen as an estimate.” An estimate obtaiyetthib method is called
the maximum likelihood estimate (MLE). It should beted that the method of maximum likelihood is lagable to
bothdiscrete and continuous random variables.

EXAMPLES OF MLE's IN CASE OF DISCRETE DISTRIBUTIONS

Example-1:
For the Poisson distribution given by
el
P(X=x)= ‘I’  X=012,......,
X

the MLE ofp is™ X (the sample rﬁean).
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EXAMPLE-2
For the geometric distribution given by the MLE affHence, the MLE of p is equal to the reciproddhe mean.

EXAMPLE-3
For the Bernoulli distribution given by

P(X=x)=p*q™, x=01,
the MLE of p is (the sample mean).

EXAMPLES OF MLE's IN CASE OF CONTINUOUSDISTRIBUTIONS

Example-1
For the exponential distribution given by

f(x)=6*, x>0, >0 ,

the MLE of@ is (the reciprocal of the sample msei(a,n )
EXAMPLE-2

For thenormal distribution with parametefs ando2, thejoint ML estimators oft ando2 is the sample mean

and the sample variance(@&ich is not an unbiased estimatora#).As indicated many times earlier, thermal
distributionis encountered frequently in practice, and, is tegard, it is both interesting and importantdterthat, in
the case of thifrequentlyencountered distribution, tlsemplestformulae (i.e. the samplaeanand the sample
variance fulfill the criteria of the relativeladvancedmethod of maximum likelihood estimation !The lasample
among the five presented above (the one ondneal distribution) points t@notherimportant fact --- and that is :
The Maximum Likelihood Estimators are consistent afficient butnot necessarily unbiase@s we know, S2 isot
an unbiased estimator o®.)

EXAMPLE

It is well-known that human weight is an approxietpthormally distributed variable. Suppose thatase interested in
estimating the mean and the variance of the weigh&glult males in one particular province of amtoyt A random
sample of 15 adult males from this particular papah yields the following weights (in pounds):

1315 1369 1338 130.1 133.9
1352 1296 1344 1305 134.2
131.6 136.7 1358 1345 1327

Find the maximum likelihood estimates & = and62 =o2.
SOLUTION

The above data is that of a random sample of $iZeoin N(1, 02). It has been mathematically proved that thatjoi
maximum likelihood estimators ¢f ando2 are X and S2. We compute these quantities for thisqdar sample, and
obtain” X = 133.43, and S2 = 5.10 .These are the Maximukeliiood Estimates of the mean and variance of the
population of weights in this particular exampleavithg discussed the concept of point estimatiosaome detail, we
now begin the discussion of the concepintérval estimation

As stated earlier, wheneversiagle quantity computed from the sample acts as an asiof a population parameter,
we call that quantity point estimate e.g. the sample mean is a point atiof the population mean

The limitation of point estimation is that we have no way of as@eing how close our point estimate is to theetru
value (the parameter).

For example, we know that  is an unbiased estinwt |1 i.e. if we had taken all possible samples of di@aar size
from the population and calculated the mean ohesample, then the mean of the sample meansouldwave been
equal to the population meam){ but in an actual survey we will be selectingyomhe sample from the population and
will calculate its mean

We will have no way of ascertaining how close ftasticular is tp.. Whereas a point estimate is a single value tttat a
as an estimate of the population parameteerval estimationis a procedure of estimating the unknown parameter
which specifies aange of values within which the parameter is expectedid. A confidence intervals an interval
computed from the sample observations x1, x2....ith & statement of howonfidentwe are that the intervaloes
contain the population parameter.

We develop the concept of interval estimation with help of the example of the Ministry of Transpest to which

all cars, irrespective of age, have to be submitted
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EXAMPLE

Let us examine the case of an annual Ministry oin3part test to which all cars, irrespective of agaye to be
submitted. The test looks for faulty breaks, stegrlights and suspension, and it is discoveresr dfie first year that
approximately thesame numbeof cars has 0, 1, 2, 3, or 4 faults. You will hé¢hat when we drew all possible
samples of size 2 from this uniformly distributempplation, the sampling distribution oK wastriangular:
Sampling Distribution ofX for n = 2
P(x)
A
5/25

4/25
3/25
2/25
1/25 I
0 0. 0. 1 1. 2. 2. 3. 3

But when we considered what happened to the shiaje sampling distribution with if the sample sigencreased
we found that it was somewhat like a normal disitiitm:
Sampling Distribution ofX for n = 3
P(x)
A
20/125

A3

16/125
12/125
8/125

4/125
0

x|

0. 0.0 1. 1. 1. 2. 2. 2. 3. 3. 3. 4
00 33 67 00 33 67 00 33 67 00 33 67 00

And, when we increased the sample size to 4, thelgsg distribution resembled a normal distributiewenmore
closely, Sampling Distribution oK for n = 4
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P ()
A
100/625

80/62
60/62
40/62

20/62
0

It is clear from the above discussion thati@ger samples are taken, the shape of the samplinghditn of ~ X

undergoesliscernible changes

In all three cases the line charts are symmetrina#l,as the sample size increases, the overaligtoafion changed
from a triangular distribution to kell-shapeddistribution. In other words, for large sample® are dealing with a
normalsampling distribution of .In other words: Wheampling from an infinite population such that saenple size

n is large, X is normally distributedvith mearu and variance o2

o? n
ie~Xis Nl #,—].
e Xis [/1 n]
Hence, the standardized version ¥fi.e.

z=X"H
g

N

is normally distributed with mean O and varianceel Z is N(O, 1). Now, for the standard normadtdbution, we
have: For the standard normal distribution, we have

0.0250 0.4750 0.4750 0.0250

-1.96 0 1.96

The above is equivalent to P(-1.96 < Z < 1.96)
=0.4750 + 0.4750 = 0.95
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-1.96 0 1.96

In other words:

Pl - 196< ;” <196|= 095
Jn

The above can be re-written as:

P[— 196 L <X -u<196

n

%ﬂq
N—e
I
o
O
ol

Or

or
g

Jn

P(X +196-L > > X - 1.960J = 095

n

or

Jn Jn

The above equation yields the 95% confidence iatdor i :
The 95% confidence interval faris

P[X— 196 L <u<X+ 1960] = 095

o g o g
X-196——, X +196—— |.
[ Jn JnJ

In other words, the 95% C.I. faris given by

2 (0)
X +196—
Jn

In areal-life situation, the population standard deviation isallg not knownand hence it has to lestimated
It can be mathematically proved that the quantity

< 2
2 _ 2 (X — X)
S ===
n-1
is an unbiased estimator @2 (the population variance). (just as the samplarme is an unbiased estimatonf
In this situation, the 95% Confidence Interval fiois given by:

_ s B ).
The points P(X - 1'96ﬁ <pH<X+ 1.96\/ﬁj =95%

- S - S
X -196— and X +196—
Jn Jn

are called the lower and upgenits of the 95% confidence interval.
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LECTURE NO. 35
*  Confidence Interval fop (continued).
e Confidence Interval fop1-p2.
In the last lecture, we discussed the construaifahe 95% confidence interval regarding the mefaa jpopulation i.e.
M.

EXAMPLE-1

Consider a car assembly plant employing somethiry 25,000 men. In planning its future labour regmients, the
management wants an estimate of the number ofldatyper man each year due to iliness or absenteeis
A random sample of 500 employment records showsotlmving situation:

Number of Days Los§ Number of Employegs
None 48
lor2 43
3or4 90
5 or 6 186
7 0r8 78
9to 12 34
13 to 20 21
Total 500

Construct a 95% confidence interval for the meambyer of days lost per man each year due to illoesdsenteeism.

SOLUTION

»  The point estimate qf is™ X, which in this example comes out to b¢ = 5.38 days
» In order to construct a confidence interval iopive need to compute s, which in this example comnéso be
s = 3.53 days.
Hence, the 95% confidence interval fpcomes out to be

196x 353 196x 353
538—-——— ,538+ ———
( 500 500 j

or 5.38+ 0.31 days

=5.07 days to 5.69 days.
In other words, we can say that the mean numbelag$é lost per man each year due to illness or &dxsism lies
somewhere between 5.07 days and 5.69 days, anstabésnent is being made on the basis of 95% camdil A very
important point to be noted here is that we shbeldery careful regarding the interpretation offience intervals
When we set 1a = 0.95, it means that the probability is 95% thatinterval

from X —196-> to X +196-—
Jn Jn

will actually contain the true population meatn other words, if we construct a large numbeintérvals of this type,
corresponding to the large number of samples tleatan draw from any particular population, thenafu¢very 100
such intervals, 95 will contain the true populatioeanu whereas 5 will not.
The above statement pertains to the overall sinati repeated sampling --- once a sample haslhcheen chosen
from a population, X computed and the interval constructed, thenittterval either containg, or does not contain.
So, probability that our interval correspondingsémple values have actually occurred, is either(o@eecent per cent),
or zero. The statement 95% probability is validodbefany sample has actually materialized. In otf@ds, we can say
that our procedure of interval estimation is sugdt,tin repeated sampling, 95% of the interval$ eohtaini. The
above example pertained to the 95% confidenceviaitéor p1.In general; the lower and upper limits of the aderfce
interval forp are given by

— S
Xizq/zﬁ

Where the value ofa@2 depends on how much confidence we want to haweri interval estimate.
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P Z

~Zy Zy12

The above situation leads to theo()1100% C.I. foru . If (1-a) = 0.95, thena/2 = 1.96 whereas , If (&) = 0.99, then
za/2 = 2.58 and If (I¢) = 0.90, thena/2 = 1.645 .

(The above values ofiZ2 are easily obtained from the area table of taedard normal distribution).An important to
note is that, as indicated earlier, the above ftarfor the conference interval is valid when we saenpling from an
infinite population in such a way that the samjite % is large. How large should n be in a prat8iaation?

The rule of thumb in this regard is that whenever3®, we can use the above formula.

CONFIDENCE INTERVAL FOR u THE MEAN OF AN INFINITE POPULATION

For large n (1 30), the confidence interval is given by
— S
X*Z, o—
a/2
/ vn

is the sample mean

D x

where X =

and

is the sample standard deviation.

EXAMPLE-1

The Punjab Highway Department is studying the icgféttern on the G.T. Road near Lahore. As pathefstudy, the
department needs to estimate the average numlvehifles that pass the Ravi Bridge each day. Agansample of
64 days gives X = 5410 and s = 680. Find the 90cpat confidence interval estimate forthe average number of
vehicles per day.

SOLUTION

The 90% confidence interval faris
— S
X*Z,0——

a/2 '
/ AN

%= 5410,
s =680, n = 64 and z0.05 = 1.645.

where

Substituting these values, we obtain

5410z (1645) 080
\ 64
or 5410+ (1.645) ( 85)
or 5410+ 139.8
or 5270.2 to 5549.8
or, rounding the above two figures correct to tearast whole number, we have
5270 to 5550

Hence, we can say that the average number of eshicht pass the Ravi bridge each day lies somevidetween 5270
and 5550, and this statement is being made onasie bf 90% confidence.
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EXAMPLE-2

Suppose a car rental firm wants to estimate theageenumber of miles traveled per day by eachsofats rented in
one particular city. A random sample of 110 cardee in this particular city reveals that the mé&arel distance per
day is 85.5 miles, with a standard deviation oBl8iles.

Compute a 99% confidence interval to estimate

SOLUTION

Here, n= 110X = 85.5, and S = 19.3. For a 99% level of confitkera z-value of 2.575 is obtained.

< S - S
X_Za/ZﬁSHSXJfZa/zﬁ
193

855—- 2575——< U <855+ 2575
v110 H :

855-47<u<855+4.7
80.8<pu<902

The point estimate indicates that the average nuwibmiles traveled per day by a rental car in thasticular city is
85.5. With 99% confidence, we estimate that theufaion mean is somewhere between 80.8 and 90e% pér day.
Next, we consider a very interesting and importaay of interpreting a confidence interval. An Img@ot Way of
Interpreting a Confidence Interval, Because offéue that

. o
0y is equalto T
n

Hence,

Xtz is equalto

(0)
alz\/ﬁ
X*Z,,20%

(where 05 represents the standard erroXofHence The C.I. fop can be defined as Xa certain number of
standard errors ofX . efining a Confidence Interval as:

“A point estimate plus/minus a few times the staddaror of that estimate”, The question ariseoWHnany times?”
The answer is:That depends on the level of confiddhat we wish to have. In the case of 99% conéideni/2 ~ 2.5,
(so that, in this case, we can say that our confidénterval is

X+210;);

Similarly,
in the case of 95% confidencey/2 ~ 2, (so that, in this case, we can say thatcmnfidence interval is

and so on. X + ZOX ) :

Another important point to be noted is that:

It is a matter of common sense that, in any sibmatihe narrower our confidence interval, the bette

(Ideally, the width of a confidence interval shoblelzero --- i.e. we should simply have a poinieste.)

It would be quite unwise to say: “I am 99.999% cdexfit that the mean height of the adult males isfgharticular city
lies somewhere between 4 feet and 12 feet.” _!

The important question is: How do we achieve aavaonfidence interval with a high level of confice?

To answer this question, we should have a closér &b the expression of the confidence interval:

XxtZ,,,04
This expression shows clearly that if the quanz'(x /205 is small, we will achieve a narroanfidence interval.

This quantity will be small if either Oy issmall Z,,, is small.
Now,

Oy is equalto 9
X \/_ ’
n

and hence Oy will be small if the sample size niigda
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On the other handZy /2  will be small ié flevel of confidence ti-is relatively low. As far as the first point thaftn
being small is concerned, it should be noted thahany real-life situations, due to practical doaisits, we cannot
increase the sample size beyond a certain limitif¥sg not have the resources to be able to dratatvedy large
sample --- our budget may be limited, the time-gmat our disposal may be short, etc. As far asdigend point, that
of fixing a relatively low level of confidence, @®ncerned, this is in our own hands, and we caadidevel of
confidence as low as we wish --- but, obviouslyyilt not make much sense to say; “I have estim#tatithe mean
height of adult males of this particular city lesmewhere between 5 feet, 6 inches and 5 feethéspand | am
saying this with 20% confidence.” _!

The gist of the above discussion is that, in aay-liée situation, given a particular sample siae, need to strike a
compromise between how low a level of confidenaewa tolerate, or how wide an interval can we tier

Next, we consider the confidence interval for tietence between two population meansjike2:

CONFIDENCE INTERVAL FOR THE DIFFERENCE BETWEEN THE MEANS OF TWO POPULATIONS

For large samples drawn independently from two faimns, the C.I. fopl —p2 is given by

2 2
o S .S,
(X1_X2)izu/2 =
n n
where

Subscript 1 denotes the first population, and suflits? denotes the second population. We illustifaiteconcept with
the help of a few examples:

EXAMPLE-1:

The means and variances of the weekly incomespeesi of two samples of workers are given in thieviohg table,

the samples being randomly drawn from two diffefactories:

Factory | Sample Sizd Meah Variande
A 160 12.80 64
B 220 11.25 47

Calculate the 90% confidence interval for the difierence in the incomes of the workers from the factories.

SOLUTION

1. If both n1 and n2 are large, the confidence liraits given by

(%, —%2) %24,

2. We know that

za/2 = 1.645 for 90% confidence

0.05 0.90 0.05

~Zg2= -1.645 0 Za/2:1.645

3.Hence, Substituting the values in the formula, b&in

64 47
(12.80-11.2531.645 , | — +——
160 220

704+ 021
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or 1.55+1.645

or 1.55¢+ 1.645 v 061

or 1.55+ 1.28

or 0.27 and 2.83
Hence we can say that we are 90% confident thaty@average, the difference in the incomes ofubekers from the
two factories lies somewhere between Rs.0.27 artl &

EXAMPLE-2

Suppose a study is conducted in a developed cotmtegtimate the difference between middle-incohwppers and
low-income shoppers in terms of the average ameaméd on grocery bills per week by using couporandam
samples of 60 middle-income shoppers and 80 lowArEshoppers are taken, and their purchases ariéoneonfor 1
week. The average amounts saved with coupons, bhsasveample sizes and sample standard deviatiengigen
below:

Middle-Income Low-Income
Shoppers Shoppers
n, = 60 n =80
X, =$5.84 X, =$2.67
S =%1.41 $=$0.54

Use this information to construct a 98% confideimterval to estimate the difference between themaaounts saved
with coupons by middle-income shoppers and low+imeshoppers.
SOLUTION:

The value ofz 1 associated with a 98% level officemce is 2.33.
a

0.01 0.98 0.01

-Zgo= -2.33 0 Zu/2:2.33

Using this value, we can determine the confidentarval as follows:

2 2
(584 - 267)- 2.33 1417 , 054
60 80
S Hi~ Mo
2 2
< (584 - 267)+ 233, 141", 054
60 80

317 - 045 < p; - U, <317 + 045
272 < p,—-pH, < 362

Hence, the 98% confidence interval for the diffeesetween the mean amounts saved with couponsidglem
income shoppers and low-income shoppers is ($£352). The point estimate for the difference iramsavings is
$3.17. Note that a zero difference in the poputati®@ans of these two groups is unlikely, becausentimber zero is
not in the 98% range. The data seems to provideoagsindication that, on the average, the middé®me shoppers
are saving a little more than the low income shogpe
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LECTURE NO 36
e Large Sample Confidence Intervals for p and p1-p2
*  Determination of Sample Size (with reference tenvél Estimation)
e Hypothesis-Testing (An Introduction)
In the last lecture, we discussed the construeti@hthe interpretation of the confidence intervatq. andul - p2. We
begin today’s lecture by focusing on the confideimtervals for p and p1-p2. First, we considerdbafidence interval
for p, the proportion of successes in a binomigiybation:

CONFIDENCE INTERVAL FOR A POPULATION PROPORTION (P)

For a large sample drawn from a binomial populatiba C.I. for p is given by

A A

N 1-p
px Zy 12
where
P = proportion of “successes” in the sample
n = sample size
za/2 = 1.96 for 95% confidence

= 2.58 for 99% confidence
(In a practical situation, the criterion for decigiwhether or not n is sufficiently large is thiabdth np and nq are
greater than or equal to 5, then we say that offic®ntly large).We illustrate this concept witte help of a few
examples:

EXAMPLE-1

As a practical illustration, let us look at a syneg teenagers who have appeared in a juvenilet toge times or
more. A survey of 634 of these shows that 291 grkans (one or both parents dead). What propoofiadi teenagers
with three or more appearances in court are orgh@hs estimate is to be made with 99% confidence.

SOLUTION

In this problem, we have n = 634, and
P =291/634 = 0.459,

A=1-DP -gsa,
Hence, the 99% confidence limits for p are:
0459 x 0541
0.459+ 2.58 T~ 634
=0.459+ 0.051

=0.408 and 0.510
Hence, we estimate that the percentage of teenafjhis type who are orphans lies between 40.8pet and 51.0
per cent. It should be noted that, in this probleappily, the confidence interval has come oute@ietty narrow, and
this is happening in spite of the fact that theslef confidence is very high ! This very desirabieiation can be
ascribed to the fact that the sample size of 6@4dky large.

EXAMPLE-2

After a long career as a member of the City Couil Scott decided to run for Mayor.

The campaign against the present Mayor has beeargstiith large sums of money spent by each candmtate
advertisements. In the final weeks, Mr. Scott hdkegwhead according to polls published in a legdiaily
newspaper. To check the results, Mr. Scott’s s@iflucts their own poll over the weekend priohi® ¢lection. The
results show that for a random sample of 500 vé@@eswill vote for Mr. Scott. Develop a 95 perceahfidence
interval for the population proportion who will \eofor Mr. Scott. Can he conclude that he will wie tHection?

SOLUTION

We begin by estimating the proportion of voters wiib vote for Mr. Scott. The sample included 500ers and 290
favored Mr. Scott. Hence, the sample proportid29i8/500 = 0.58. The value 0.58 is a point estiroétbe unknown
population proportion p.

The 95% Confidence Interval for p is:
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0581- 058
500

= 058+ 196

= 058+ 0043
= (0537, 0623

The end points of the confidence interval are 0&3F 0.623. The lower point of the confidence wdérs greater than
0.50. So, we conclude that the proportion of voierthe population supporting Mr. Scott is greabert 50 percent. He
will win the election, based on the polling results

EXAMPLE-3

A group of statistical researchers surveyed 216faecutives of fast-growing small companies. Gsl$6 of these
executives had a management-succession plan ie.plaspokesman for the group made the statementmbay
companies do not worry about management succeasiess it is an immediate problem. However, thexpaeted
exit of a corporate leader can disrupt and unfataseompany for long enough to cause it to losedmentum.

Use the survey-figure to compute a 92% confidentarval to estimate the proportion of all fast\giog
small companies that have a management-succedaion p

SOLUTION

The point estimate of the proportion of all fastaging small companies that have a management-ssioces
plan is the sample proportion found to be 0.51tHat particular sample of size 210 which was sueddyy the group
of researchers. Realizing that the point estimaghnthange with another sample selection, we tatiewa confidence
interval, as follows:

The value of n is 21(
piso.51
and
G=1-p=049.

Because the level of confidence
is 92%, the value of g, = 1.75.

0.04 0.92 0.04

Zg=-175 0 z,,=1.75

The confidence interval is computed as:

051- 175 f—(05 1)(049) <p
210
< 051+ 175, |(051)(049)
210

0.51-0.06 < p< 0.51+0.06
0.45<p<0.57
P(045< p< 057)= 092
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CONCLUSION

It is estimated with 92% confidence that the prtipo of the population of fast-growing small compes
that have a management-succession plan is betwégmfd 0.57.

Next, we consider the Confidence Interval for diféerence in the population proportions (p1 — p2):

CONFIDENCE INTERVAL FOR P1-P2

For large samples drawn independently from twoimial populations, the C.I. for p1-p2 is given by
A A f’l(l_ f’l) f’z (1_ f’z)
(BL = P2)% Za /2 +
where Ny n,

subscript 1 denotes the first population, and siiis2 denotes the second population.
We illustrate this concept with the help of an egéam

EXAMPLE

In a poll of college students in a large univers§0 of 400 students living in students’ residen@®stels) approved a
certain course of action, whereas 200 of 300 stsdest living in students’ residences approveéstimate the
difference in the proportions favoring the couréadation, and compute the 90% confidence intererttiis difference.

SOLUTION
Let Pr bethe proportion of students favogrihe course of action in the first sample (he. sample of resident

students). And, let be the proportiontafients favouring the course of action in the sdaample (i.e. the
sample of students%ot residing in students’ resids).

Then
. 300
p,=—— =075
And 40C
_ 200
=== 067
P2=30c

O Difference in proportions
=p,— P, = 0.75-0.67=0.08

The required level of confidence is 0.90. Theref®d®5 = 1.645, and hence, the 90% confidencevialtéor p1 — p2 is
90% C.I. for p1-p2:

(P, - p,) (1645 | P % 4 P2 G

n n,
or 008% (1.645)\/(0'75)(025) + (067)(033)
400 300
or 0.08 (1.645)
or 0.08+ (1.645) (0.0347)
or 0.08+ 0.057
or 0.023 t0 0.137

Hence the 90 per cent confidence interval for p24s (0.023, 0.137). In other words, on the basB0% confidence,
we can say that the difference between the prapwtof resident students and non-resident studérigavor this
particular course of action lies somewhere betw&d% and 13.7%.Evidently, this seems to be a ratfae interval,
even though the level of confidence is not extrgrhé@h. Hence, it is obvious that, in this examgknple sizes of
400 and 300 respectively, although apparently dartge, are not large enough to yield a desirablyaw confidence
interval.

In the last lecture, we discussed the constru@iwhinterpretation of confidence intervals. Nex¢, @onsider the
determination of sample size. In this regard, it point to be noted is that, in any statistisaidy based on primary
data, the first question is what is going to bedize of the sample that is to be drawn from thgupation of interest?
We present below a method of finding the sample sizuch a way that we obtain a desired levelrefipion with a
desired level of confidence, first, we considerdbtermination of sample size in that situation mvhe are trying to
estimat@, the population mean:
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Sample size for Estimating Population Mean
In deriving the 100(1ed) per cent confidence Interval fpr we have the expression

_Za/zis X_ﬂsza/za]zl_a
Jn Jn

which implies that the maximum allowable differemegweenX andy is:

- o
X=H|=Zg2—>
%= 200
where o is the standard error oX when sampling is performed with replacement ofybation is very large
Jn

(infinite). The quantit% X—H ‘ is also called the error of the estimaX’ and is denoted by e. Thus a 10@(Lper

cent error bound for estimatipgis given byzm2 o In other words, in order to have a 100f}-per cent \confidence

n
that the error is estimatingwith X to be less than e, we need n such that
e=z,,— 2
Jn
n=z °
or =~ %a/2 e

2
or n= Zai29
e

Hence the desired sample size for being 10@)%-confident that the error in estimatipgvill be less than e, when
sampling is with replacement or the populationepparge, is given by

2
n= Za/za
e

It is important to note that the population stadddeviationo is generally not known, and hence, its estimafeusd
either from past experience or from a pilot sangblsize n > 30. In case of fractional result, iaigays to be rounded
to the next higher integer for the sample size.

EXAMPLE
A research worker wishes to estimate the mearpopalation using a sample sufficiently large thegt probability will

be 0.95 that the sample mean will not differ frdva true mean by more than 25 percent of the stdrdiasiation. How
large a sample should be taken?

SOLUTION
If the sample mean is not being allowed to diffenf the true mean by more than 25%afith a probability of 0.95,
then 254 o
e=|X-y|=——-—=—, and z,,, = 196.
‘ 'Ll ‘ 10(: 4 al2

Substituting these values in the formula

2
V4 o
n= (L) , we get

e

(1.96><0
n=| ———

ol/4
Hence the required sample size is 62, (the nexignimteger), as the sample size cannot be fraation

2
j = 614656.
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Next, we consider the determination of sample Bizbat situation when we are trying to estimaténhp, proportion of
successes in the population:

SAMPLE SIZE FOR ESTIMATING POPULATION PROPORTION

The large sample confidence interval for p is gilbgn
- Pq
P=2Z4/2
n
This implies that€ = Z 4 /- ﬂ
n
Therefore, solving for n, we obtain
2A A
n= (20/2) Pq

e2

Since the values of) and q are not known as the sample has not yet beentee|age therefore use an estimate
[5 obtained from pilot sample information.
EXAMPLE

In a random sample of 75 axle shafts, 12 havefasifinish that is rougher than the specificatioth allow.
How large a sample is required if we want to be ¥#fident that the error in usiné; to estinqais less than 0.05?

Solution:
e=|p-p =005
Here
p= 12_ 016,
75

q:l—f)— 0.84 and 20025: 196
(-a/2= 0025

Substituting these values in the formula

2

Z ~a

n= (a_lzj Pg, we obtain
e

2
196
n=|——| x(016)(084)= 20652
005
which, upon rounding upward, yields 207 as therddssample size. As stated earlier, InferentiaiStes can be
divided into two parts, estimation and hypothesitihg. Having discussed the concepts of pointiatedval
estimation in considerable detail, We now begindiseussion of Hypothesis-Testing:

HYPOTHESIS-TESTING IS A VERY IMPORTANT AREA OF STAT ISTICAL INFERENCE

It is a procedure which enables us to decide om#sés of information obtained from sample datativeto accept or
reject a statement or an assumption about the wdlaepopulation parameter. Such a statement amgsson which
may or may not be true is called a statistical liypsis. We accept the hypothesis as being truen vtliee supported by
the sample data. We reject the hypothesis whesahgple data fail to support it. It is importantutederstand what we
mean by the terms ‘reject’ and ‘accept’ in hypotbéssting. The rejection of a hypothesis is tolaecit false. The
acceptance of a hypothesis is to conclude tha¢ tisansufficient evidence to reject it. Acceptamioes not necessarily
mean that the hypothesis is actually true. Thechamncepts associated with hypothesis testingiaceissed below:

NULL AND ALTERNATIVE HYPOTHESES

NULL HYPOTHESIS

A null hypothesis, generally denoted by the sym#@] is any hypothesis which is to be tested foisjie rejection or
nullification under the assumption that it is true.
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A null hypothesis should always be precise suchhasgiven coin is unbiased’ or ‘a drug is ineffgetin curing a
particular disease’ or ‘there is no difference testw the two teaching methods’. The hypothesisusllysassigned a
numerical value. For example, suppose we thinkttimtaverage height of students in all collegeé&is This statement
is taken as a hypothesis and is written symboiiced| HO ;u = 62'. In other words, we hypothesize tipat 62'.

ALTERNATIVE HYPOTHESIS

An alternative hypothesis is any other hypothesisciv we are willing to accept when the null hypatiseHO is
rejected. It is customarily denoted by H1 or HA. nAll hypothesis HO is thus tested against anratere hypothesis
H1. For example, if our null hypothesis is H@ = 62', then our alternative hypothesis may be H1#:62' or H1 :u <
62'.

LEVEL OF SIGNIFICANCE

The probability of committing Type-I error can alse called the level of significance of a test. Nawhat do we mean
by Type-I error? In order to obtain an answer tis tjuestion, consider the fact that, as far asattteal reality is
concerned, HO is either actually true, or it iséalAlso, as far as our decision regarding HO recemed, there are two
possibilities --- either we will accept HO, or wélweject HO. The above facts lead to the follogiable:

Decision
Reject b
Accept R (or accept
Hai)
. Correct Wrong
Hois - .
true decision decision
True (No error) | (Type-I error)
Situatio
. Wrong Correct
n Hois decision decision
false (Type-ll (No error)
error)

A close look at the four cells in the body of thmee table reveals that the situations depictethéyop-left corner and
the bottom right-hand corner are the ones wherar@eaking a correct decision. On the other harsituation
depicted by the top-right corner and the bottortitheind corner are the ones where we are takingamrect decision.
The situation depicted by the top-right cornerhaf &bove table is called an error of the first lané Type I-error,
while the situation depicted by the bottom left-tiaorner is called an error of the second kind dyjge Il-error.

In other words:

TYPE-I AND TYPE-Il ERRORS

On the basis of sample information, we may rejamtilahypothesis HO, when it is, in fact, true ce@ may accept a null
hypothesis HO, when it is actually false. The philitg of making a Type | error is conventionallgmibted bya and
that of committing a Type Il error is indicated Byln symbols, we may write

o = P (Type | error)
= P (reject HO|HO is true),
B = P (Type Il error)

P (accept HO|Ho is false).
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LECTURE NO. 37

e Hypothesis-Testing (continuation of basic concepts)
e Hypothesis-Testing regarding(based on Z-statistic)

In the last lecture, we commenced the discussidhetoncept of Hypothesis-Testing. We introdudeddoncepts of
the Null and Alternative hypotheses as well as ¢bacepts of Type-l and Type-ll error. We now cowménthe
discussion of the basic concepts of hypothesigatgst

TEST-STATISTIC

A statistic (i.e. a function of the sample data cotaining any parameters), which provides a basisesting a null
hypothesis, is called a test-statistic. Every statistic has a probability distribution (i.e. sdimg distribution) which
gives the probability that our test-statistic veiisume a value greater than or equal to a spevdiee OR a value less
than or equal to a specified value when the nugldtlyesis is true.

ACCEPTANCE AND REJECTION REGIONS

All possible values which a test-statistic may assican be divided into two mutually exclusive greupne group
consisting of values which appear to be consistéthit the null hypothesis (i.e. values which app®asupport the null
hypothesis), and the other having values which teatie rejection of the null hypothesis. The fgsbup is called the
acceptance region and the second set of valugmigrkas the rejection region for a test. The t@&acregion is also
called the critical region. The value(s) that sepes the critical region from the acceptance regsnalled the critical
value(s):

Crical 0 Trtical Z
Value Value
T > )
Critical Acceptance Critical
Region Region Region

The critical value which can be in the same urstshe parameter or in the standardized units, Betdecided by the
experimenter. The most frequently used valuesi,ofhe significance level, are 0.05 and 0.01, i.eebcent and 1
percent. Bya = 5%, we mean that there are about 5 chancedimflidcorrectly rejecting a true null hypothesis.

RELATIONSHIP BETWEEN THE LEVEL OF SIGNIFICANCE AND THE CRITICAL REGION

The level of significance acts as a basis for deitdng the CRITICAL REGION of the test. For exampiewe are
testing HO:u = 45 against H1u # 45, our test statistic is the standard normalaldei Z, and the level of significance is
5%, then the critical values are Z = +1.96 Coroesiing to a level of significance of 5%, we have:

Virtual University of Pakistan 274



STA301 - Statistics and Probability Y

2.5% 2.5%
I
-1.9¢ 0 1.9¢ <2
Eriticar< Acceptance %riticaT
Reaior Region Region

ONE-TAILED AND TWO-TAILED TESTS

A test, for which the entire rejection region liaonly one of the two tails — either in the rightl or in the left tail — of
the sampling distribution of the test-statisticcé&dled a one-tailed test or one-sided test. Atailed test is used when
the alternative hypothesis H1 is formulated inftikowing form:

H1:6>60
or

H1:6<60
For example, if we are interested in testing a klygsis regarding the population mean, if n is laged we are
conducting a one-tailed test, then our alternatiygothesis will be stated as

H1:p>po
or

H1:p<po
In this case, the rejection region consists ofegitil z-values which are greater thanotar less than —@ (wherea is
the level of significance):
If HO :pu>p0

H1:p<po

Then (in case of large n):

REJECTION —7, 0
REGION

REJECT HO if z<-a

HO :p <p0
H1:p>po
Then (in case of large n):
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a

0 Zy REJECTION
REGION

REJECT HO if z> an/2

If, on the other hand, the rejection region is diéd equally between the two tails of the samplirsgribution of the
test-statistic, the test is referred to as a tviledaest or two-sided test.

In this case, the alternative hypothesis H1 isipads:

H1:p#po

meaning thereby

H1 :p <pO orp >p0
If HO : u=u0

H1:p#po
Then (in case of large n):

n/? a/?
REJECTION 0 > REJECTION,
REGION 2072 %2 REGION

REJECTHO if z<-a/2 or z>a/2

The location of critical region can be determinety@after the alternative hypothesis H1 has beatedt It is important
to note that the one-tailed and the two-tailedstekffer only in location of the critical regionpnin the size. We
illustrate the concept and methodology of hypotwssting with the help of an example:

EXAMPLE

A steel company manufactures and assembles dedlatlzar office equipment at several plants in di@aar country.
The weekly production of the desks of Model A aril has a mean of 200 and a standard deviatid®.oRecently,
due to market expansion, new production methode baen introduced and new employees hired. The piesident
of manufacturing would like to investigate whetlieere has been a change in the weekly productidgheoflesks of
Model A. To put it another way, is the mean numbgiesks produced at Plant-I different from 200tre 0.05
significance level? The mean number of desks predilest year (50 weeks, because the plant wasdshut 2 weeks
for vacation) is 203.5. On the basis of the abamult, should the vice president conclude thattlleee has been a
change in the weekly production of the desks of &d@d

SOLUTION:

We use the statistical hypothesis-testing procetiunevestigate whether the production rate hasiged from 200 per
month.

Step-1:
Formulation of the Null and Alternative Hypotheses:

The null hypothesis is “The population mean is.200

The alternative hypothesis is ‘The mean is diffiéfeom 200" or “The mean is not 200.”
These two hypotheses are written as follows:

HO :p = 200
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H1:p# 200

Note:

This is a two-tailed test because the alterndiiy@othesis does not state a direction. In otherdsoit does
not state whether the mean production is greatar #00 or less than 200. The vice president onlytsveo find out
whether the production rate is different from 200.

Step-2:
Decision Regarding the Level of Significance (itee Probability of Committing Type-I Error):
Here, the level of significance is 0.05.
This isa, the probability of committing a Type-I error (ifle risk of rejecting a true null hypothesis).

Step-3:

Test Statistic (that statistic that will enabletasest our hypothesis):
The test statistic for a large sample mean is

_X-u
Z_U/—\/ﬁ

Transforming the production data to standard uaitgalues) permits the use of the area table ofthedard normal
distribution.

Step-4:
Calculations:

In this problem, we have n = 50, X =203.5, andy = 16.
Hence, the computed value of z comes out to be:

,= X-p _2035-200 _ 155
J/\/ﬁ 16/\/%

Step-5:
Critical Region (that portion of the X-axis whichraopels us to reject the null hypothesis):Since ithis two-tailed test,
half of 0.05, or 0.025, is in each tail.

The area where HO is not rejected, located betwretwo critical values, is therefore 0.95.
Applying the inverse use of the Area Table, we fimalt, corresponding to = 0.05, the critical values are 1.96 and -
1.96, as shown below:

-1.96 5 0 | +1.9¢€
. Scaleto z .
Region o Ho is not rejecte Region of
rejection rejection
Critical Critical
Value Value
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DECISION RULE FOR THE 0.05 SIGNIFICANCE LEVEL THE D ECISION RULE IS, THEREFORE

Reject the null hypothesis and accept the alter@dtypothesis if the computed value of z is nowveeh —1.96 and
+1.96. Do not reject the null hypothesis if zgdlletween —1.96 and + 1.96.

Step-6:
Conclusion:
The computed value of z i.e. 1.55 lies between6-ar&d + 1.96, as shown below:

Computed
value of z

3 ®
-1.96 0 155 1.96 z scale

> , P G
Reject Hp Do not reject Hy Reject Hy

Because 1.55 lies between -1.96 and + 1.96, therefiodoes not fall in the rejection region, arehbe HO is not
rejected. In other words, we conclude that the fagjmn mean is not different from 200. So, we wotégort to the

vice president of manufacturing that the sampleewe does not show that the production rate at{Plaas changed
from 200 per week. The difference of 3.5 units letvthe historical weekly production rate and tlelpction rate of

last year can reasonably be attributed to chartoe above example pertained to a two-tailed testut&ow consider a
few examples of one-tailed tests:

EXAMPLE

A random sample of 100 workers with children in dare show a mean day-care cost of Rs.2650 andndast
deviation of Rs.500. Verify the department’'s clathmt the mean exceeds Rs.2500 at the 0.05 levél this
information.

SOLUTION
In this problem, we regard the department’s cldivat the mean exceeds Rs.2500, as H1,
and regard the negation of this claim as HO.
Thus, we have
i) HO : p < 2500
H1 :p > 2500 (exceeds 2500)

(Important Note: We should always regard that higpsis as the null hypothesis which contains thelesjgn.)

ii) We are given the significance levelcat 0.05.
iii) The test-statistic, under HO is
7 = X — g
S/+/n

which is approximately normal as n = 100 is largeugh to make use of the central limit theorem.
iv) The rejection region is
Z>70.05=1.645
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0.0

Z
0 £0.05 REJECTI5N
=1.645 REGION
V) Computing the value of Z from sample informatios, find
_ 2650-2500 150 _
5004100 50

vi) Conclusion:
Since the calculated value z = 3 is greater thé#5].hence it falls in the rejection region, ameréefore, we reject HO,
and may conclude that the department’s claim ipstipd by the sample evidence.
An Interesting and Important Point:
Fora =0.01, &n = 2.33.
As our computed value of Z i.e. 3 is even gredtant2.33, the computed value oiX is highly significant.
(With only 1% chance of being wrong, the departriseciaim was correct).
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LECTURE NO. 38

e Hypothesis-Testing regardind. - 2 (based on Z-statistic)
. Hypothesis Testing regarding p (based oreiistic)

In the last lecture, we discussed the basic coadapblved in hypothesis-testing. Also, we applibis concept to a
few examples regarding the testing of the poputatieanu. These examples pointed to the six main stepdviadan
any hypothesis-testing procedure.

GENERAL PROCEDURE FOR TESTING HYPOTHESES

Testing a hypothesis about a population parametehies the following six steps:

e  State your problem and formulate an appropriatehygdothesis HO with an alternative hypothesis which
is to be accepted when HO is rejected.

«  Decide upon a significance level of the testwhich is the probability of rejecting the Null plgthesis if it is
true.

*  Choose a test-statistic such as the normal disioibuthe t-distribution, etc. to test HO.

«  Determine the rejection or critical region in sukhvay that the probability of rejecting the nullpmoghesis
HO, if it is true, is equal to the significance é&wa. The location of the critical region depends ugimaform
of H1 (i.e. whether we are carrying out a one-thtkest or a two-tailed test). The critical valuefd]) separate
the acceptance region from the rejection region.

e Compute the value of the test-statistic from thesa data in order to decide whether to accepeject the
null hypothesis HO.

e Formulate the decision rule (i.e. draw a conclusamfollows:

a) Reject the null hypothesis HO, if the computellie of the test statistic falls in the rejectregion.
b) Accept the null hypothesis HO, otherwise.

IMPORTANT NOTE

It is very important to realize that when applymfypothesis-testing procedure of the type expthaimve, we always
begin by assuming that the null hypothesis is true.

IMPORTANT NOTE:

As s2 is an unbiased estimatora# whereas S2 is a biased estimator, hence we wikaldo use this estimator
wheneveio2 is unknown. However, when n is large, s2 is apipnately equal to S2, as explained below:

We know that

s :M =Y (x-%)* =(n-1)s’

n-1
whereas

s? :M:Z(x—i)z =nS.

n
Hence
(h-1)s® =nS*= S? = (n-1) s? :(1—1}32
n n
— 5 0.
Now, as n— o, n
Hence, if nis large,
S?=g?

Hence, in case of a large sample drawn from a jagipal with unknown variance2, we may replace2 by S2.We
now consider the case when we are interestedtingebe equality of two population means.
We illustrate this situation with the help of tlwléwing example.
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EXAMPLE

A survey conducted by a market-research organizdii® years ago showed that the estimated houdgenfor
temporary computer analysts was essentially theesasmthe hourly wage for registered nurses. Thes, y& random
sample of 32 temporary computer analysts from actios country is taken. The analysts are contduyet@lephone
and asked what rates they are currently able tairolih the market-place A similar random sample3éfregistered

nurses is taken. The resulting wage figures aredis the following table:

Registered Nurses

21.75
22.00
18.00
23.50
22.70
21.50
23.80
25.60
24.10

Computer Analysts
$24.10 $25.00 $24.25

23.75 22.70
2425 21.30
22.00 22.55
23.50 23.25
2280 22.10
24.00 24.25
23.85 23.50
2420 22.75
2290 23.80
23.20

23.55

$20.75
23.80
22.00
21.85
24.16
21.10
23.75
22.50
25.00
22.70
23.25
21.90

$23.30
24.00
21.75
21.50
20.40
23.25
19.50
21.75
20.80
20.25
22.45
19.10

$22.75
23.00
21.25
20.00
21.75
20.50
22.60
21.70
20.75
22.50

Conduct a hypothesis test at the 2% level of sicaifce to determine whether the hourly wages ofciraputer

analysts are still the same as those of registauesks.

SOLUTION

Hypothesis Testing Procedure:
Step-1:

Formulation of the Null and Alternative Hypotheses:

HO:pl-p2=0
HA:pl—-p2#£0
(Two-tailed test)

Step-2:

Level of Significance:
a=0.02
Step-3:

Test Statistic:

)- (1,

_:uz)

Z (X1_>_(

Step-4:
Calculations:

Computer Analysts:

2
2
Ul

2
9, 9%
n n

The sample size, sample mean and sample standaatiaie for each of the two samples are given below

nl = 32
X1 = $23.14
S12 = 1.854

Registered Nurses:
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n2 = 34
X2 = $21.99
S22 = 1.845

Since the sample sizes are larger than 30, heheeyrtknown population varianced2 ando22 can be replaced by
S12 and S22. Hence, our formula becomes:

7 (Xl - )?2)—(/,11 _/Jz)

n1 n2

Hence, the computed value of Z comes out to be :

- (2314-2199)-(0) _ 115 _ 343

1854 1845 0335
\ 32 34

Critical Region:
As the level of significance is 2%, and this isv@+tailed test, hence, we have the following sitrat

Step-5:

Z,o]_ =-2.33 0 Z.()]_ = +2.33
Hence, the critical region is given by
|Z2]>2.33
Step-6:
Conclusion:

As the computed value i.e. 3.43 is greater thanahelated value 2.33, hence, we reject HO.

Z

Zo1=-2.33 Z=0 Zo1=+2.33
Calculated Z = 3.43
I I )?1_)?2
1b=C X, =X, =11E

Virtual University of Pakistan 282



STA301 - Statistics and Probability Y

The researcher can say that there is a signifidiffierence between the average hourly wage ofrgpoeary computer
analyst and the average hourly wage of a tempoegigtered nurse. The researcher then examinesathple means
and uses common sense to conclude that, on thege/etemporary computer analyst earn more than demp
registered nurses. Let us consolidate the aboveepbiy considering another example:

EXAMPLE
Suppose that the workers of factory B believe thataverage income of the workers of factory A exisetheir average

income. A random sample of workers is drawn froroheef the two factories, an the two samples yibkl following
information:

Sample .
Factory Size Mean | Variance
A 160 12.80 64
B 220 11.25 47

Test the above hypothesis?
SOLUTION

Let subscript 1 denote values pertaining to Facfgrand let subscript 2 denote values pertainingaotory B. Then,
we proceed as follows:
Hypothesis-testing Procedure:

Step 1:
HO :pl <p2 (orpl -p2 <0)
HA : pl >p2 (orpl -p2 > 0).

Step 2:
Level of significance

=5%.

Steps 3 & 4:

X,-X,—-0 _ 1280-1125
2 2

s .8 64,47
n, n, V160 220

Z=

= _=""=199
Step5: 061 0.78
Critical Region:
Since it is a right-tailed test, hence the crlitregion is given by
Z>270.05
i.e.Z>1.645

Step 6:
Conclusion:

Since 1.99 is greater than 1.645, hence HO shaouldjlected in favour of HA. The sample evidence dw@ssolidated
the belief of the workers of factory B. Next, wens@er the case when we are interested in conduatbest regarding
p, the proportion of successes in the populatidde illustrate this situation with the help of tl@léwing example:

EXAMPLE
A sociologist has a hunch that not more than 50%efchildren who appear in a particular juveniert three times

or more are orphans. To test this hypothesis, gleaof 634 such children is taken and it is fouhdtt341 of these
children are orphans, (one or both parents dead). the above hypothesis using 1% level of sigmifie.
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SOLUTION

Hypothesis-testing Procedure:

Step 1:

HO: p<0.50
HA: p>0.50
(one-tailed test)

Step 2:
Level of significancea = 1%

Step 3:
Test statistic:
1_
_ Xt5-np,
N Poll—Po

(where + % denotes the continuity correction)

Step 4:
Computation:

Here np0 =634 (0.50) =317

and X =341
Hence X > np0 so use X - ¥

. 341-1-317 _ 235
/634050)(050) 1259

So

Step 5: =1.87

Critical region:
Sincea = 0.01, hence the critical region is given by
Z>2.33
Step 6:
Conclusion:
Since 1.87 < 2.33,
Hence the computed Z does not fall in the critiegion. Hence, we conclude that the sociologistisch is acceptable.
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LECTURE NO. 39

e Hypothesis Testing Regarding p1-p2 (based on Zsttgt
*  The Student’s t-distribution
«  Confidence Interval fop based on the t-distribution

In the last lecture, we discussed hypothesis-tgstigarding p, the proportion of successes in arbial population.
Next, we consider the case when we are interestéesting the equality of two population proportofVe illustrate
this situation with the help of the following exalep

EXAMPLE

A leading perfume company in a western country mdgedeveloped a new perfume which they plan tokeaunder

the name 'Fragrance'. A number of comparison tedisate that 'Fragrance' has very good marketrpiade The Sales
Departments of the company want to plan their sgpaso as to reach and impress the largest possgheents of the
buying public. One of the questions is whether leefume is preferred by younger or older women.sEhare two
independent populations, a population consistinghef younger women and a population consistinghef dlder

women. A standard scent test will be used wherkh sampled woman is asked to sniff several perfumms,of which

is 'Fragrance', and indicate the one that she bkst

A total of 100 young women were selected at randamd, each was given the standard scent test. Tveéribe 100

young women chose 'Fragrance' as the perfume tkey best. Two hundred older women were selectedratom,

and each was given the same standard scent tetste @00 older women, 100 preferred 'Fragrance

Test the hypothesis that there is no differencevéenb the proportions of younger and older women \whefer

‘Fragrance’.

SOLUTION

We designate p1 as the proportion of younger wowtem prefer 'Fragrance' and p2 as the proporticoider
women who prefer 'Fragrance'.
Hypothesis-Testing Procedure:
Step-I

HO : p1 = p2 (i.e. p1l-p2=0)

(There is no difference between the proportiongoaing women and older women who prefer
'Fragrance’.)

H1: pl# p2 (i.e. pl-p2Z 0)

(The two proportions are not equal.)

Step-2:

Level of Significance
o =0.05.

Step-3:

Test Statistic

7= (fjl_ij)_O

P -+
cHe| .
N Ny
where the combined or pooled pl’OpOl’ti(ﬁl, is gibgn
c!?

. _ Total numberof successem the two samplesombined
°  Total numberof observatiasin the two samplesombined

X +X,

n, +n,

This can also be written as
B, = NP+ Ny P,
c
Ny + n,

which means thddc is the weighted meap]ofand P2; 1 amin2 acting as the weights.
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Important Note:
In this example, as the hypothesized value of pd is equal to zero; therefore bot? nd D are estimgatihe
Pnp%s fo gs%im

common population proportion p. Hence, we use taga proportion of the two s ate p.

(The rationale is that the pooled estimajr is edtelp estimator of the common Population proportpr(as
compared with [3; OF P, ), as it is based on n1 + n2 olatiEms (i.e. based on a greater amount of infoniti
Step-4:

Calculations:

X1lis the number of Preferring 'Fragrance' = 20isnthe number is the sample = 100.

ﬁl:&—ﬁzozo

n, 100
X2 is the number of preferring 'Fragrance' = 1isthe number is the sample = 200.
~ _ X, 100
p,=22=""=050
n, 200

Now, the pooled or weighted proportionf)c, s computed as follows:

. _X;+X, _ 20+100 _120 _

p. = =——=1040
n,+n, 100+200 300
Computation:
Z = (f)l - ﬁZ)_ 0
YR EEE
cHc nl n2
- 0.20 - 0.50
1 1
0.40)(060) —+ —
\/( )( )(100 200 j
_ - 0.30 - 500
0.06

Step-5:

Critical Region

Since H1 does not state any direction (such as ) <he test is two-tailed. Thus, the criticalues for the .05 level
are —1.96 and + 1.96. Two-Tailed Test, Areas oeB&n and Non-rejection, .05 Level of Significance

.025 .95 .025
N "4
"1.96 196 <
Hois Hy is not Ho is
« rejected rejected «* rejected >
Step-6:
CONCLUSION

The computed z of —=5.00 is in the area of rejectibat is, to the left of —1.96. Therefore, thel tyypothesis is rejected
at the .05 level of significance.
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In other words, we conclude that the proportioryafing women in the population who prefer 'Fragrarcceot equal
to the proportion of older women in the populatisho prefer 'Fragrance'.(The difference betweentii® sample
proportion i.e. 0.30 is so large that it is highlglikely that such a large difference could be doechance (i.e.
attributable to sampling fluctuations).)

In fact, the value z = -5.00 is even larger thaB82the critical value lying on the left tail dfet sampling distribution if
o = 0.01. As such, we can say that our statistigghly significant.(In such a situation, the statiss said to be highly
significant because of the fact that we are allgwas small a risk of committing Type-I error as 1%.

Now, consider another situation:

Suppose that the computed value of our test-dtatisines out to be such that it falls between -a86 -2.58. In such a
situation, we will reject HO at the 5% level of sificance, but we cannot reject HO at the 1% leVkis means that, if
we are willing to allow as much as 5% risk of cortiimg type | error, then we say that we are gomgeject HO. But if
we are willing to allow only 1% risk of committingype | error, then we conclude that the sample duésprovide
sufficient evidence to reject H0.Going back to ¢ixample of the perfume, obviously, the company ddud interested
in determining, which category of women prefers {erfume in greater numbers than the other?

The data clearly indicates that the proportion ofiven who prefer this particular perfume is higlmethie population of
older women. (This is the reason why the compui@dev of our test-statistic has come out to be mematLet us
consolidate the above ideas by considering anetkemple:

EXAMPLE

A candidate for mayor in a large city believes thatppeals to at least 10 per cent more of theageld voters than the
uneducated voters. He hires the services of atakifig organization, and they find that 62 of 1@u@ated voters
interviewed support the candidate, and 69 of 1¥unated voters support him at the 0.05 signifiedecel.

Step-1:

The null and alternative hypothesis is
HO : p1 - p2 >0.10, and
H1:pl-p2<0.10, where pl = proportddeducated voters, and p2 = proportion of unethetgoters.

Step-2:
Level of Significance:
o =0.05.

Step-3:

Test Statistic: a a
- - 010

z=(P-p)-0

PGy , PG,
n n,

which for large sample sizes, is approximately @ééad normal.

Important Note
In this example, as the hypothesized value of pd is not equal to zero, therefore are note esingdhe same

guantity, and, as such, we do not use in the faarntithe test statistic.

Step-4:
Computation:
Here P =62 _ 062, so thatq, = 0.38
1710 7 17
p =99 - 046 so that g, = 054
27 5c - 27 B
Thus 7= (062 - 046)- 010
\/ (062)(038) , (046)(054)
100 150
_ 006 _ 006 _ jge
1/0.002356 + 0.001656 0063
Step-5:
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Critical Region:
As this is a one-tailed test, therefore the critiegion is given by
Z<-z0.05=-1.645
Step-6:
Conclusion:
Since the calculated value z = 0.95 does notiiahé critical region, so we accept the null hyesta
HO : p1 — p2 > 0.10.The data seems to supportahdidate’s view.
Until now, we have discussed in considerable detééirval estimation and hypothesis-testing basedhe standard
normal distribution and the Z-statistic.
Next, we begin the discussion of interval estimatigpothesis-testing based on the t-distribution.

t-DISTRIBUTION
We begin by presenting the formal definition of tkdistribution and stating some of its main prdiesr

The Student'’s t-Distribution:

The mathematical equation of the t-distributionssfollows:

1 X2 ~(v+1)/2

f(X):i 1+— , —00 <X <00
W 22)t

2'2

This distribution has only one parametemhich is known as the degrees of freedom of -tthisttibution

PROPERTIES OF STUDENT'S t-DISTRIBUTION

The t-distribution has the following properties:

i) The t-distribution is bell-shaped and symmetriowtithe value t = 0, ranging frompes-to co.

i) The number of degrees of freedom determines thpesbf the t-distribution.

Thus there is a different t-distribution for eaahmber of degrees of freedom.

As such, it is a whole family of distributions.

The t-distribution, for small values of, is flatter than the standard normal distributishich means that the t-
distribution is more spread out in the tails theithie standard normal distribution.

Standard Normal
Distribution
t-distribution

! 3 degrees of

As the degrees of freedom increase, the t-distdbhutecomes narrower and narrower, until, as dsea infinity, it
tends to coincide with the standard normal distidsu

(The t-distribution can never become narrower tihe@standard normal distribution.)

iii) The t-distribution has a mean of zero, wken2. (The mean does not exist when 1.)

iv) The median of the t-distribution is also equatéoo.

v) The t-distribution is unimodal.The density of tistribution reaches its maximum at t = 0 and tthesmode of the
t-distribution is t = 0.

(The students will recall that, for any hump-shapgeimetric distribution, the mean, median and meréesqual.)

vi) The variance of the t-distribution is given Q'/Z = forv > 2,

v-2
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It is always greater thanl, the variance of thadaed normal distribution. (This indicates that tftéstribution is more
spread out than the standard normal distribution.)

Forv < 2, the variance does not exist. Next, we disdusspplication of the t-distribution in statisticaierence ---

those situations where we need to carry out intes@mation and hypothesis - testing on the bafsike t-distribution.
(Situations where the t-distribution is the appraigr sampling distribution)

With reference to interval estimation and hypotkéssting aboup, it has been mathematically proved that, if the
population from which the sample has been drawroisnally distributed, the population variance i«known, and the
sample size is small (less than 30), then thessitati

t:m
S
Jn
- 2
(where s= M)
n-1

Follows the t-distribution having n-1 degrees efflom. First, we discuss the construction of a idente Interval for
| based on the t-distribution with the help of aareple:

EXAMPLE
The masses, in grams, of thirteen ball bearings aeeandom from a batch are
21.4,23.1, 25.9, 24.7, 23.4, 24.5, 25.0, 22.9,25%6.4, 25.8, 23.2, 21.9

Calculate a 95% confidence interval for the meassvaf the population, supposed normal, from whitdsé¢ masses
were drawn.

SOLUTION
The 95% confidence interval for the mean massepthpulationy, is given by

X+ t01/2(n—l) =

(The derivation of the above confidence intervalesy similar to that of the confidence intervat fobased on the z-
statistic.)
Now, in this problem, the sample meXnand s come out to be:

_&_3147_ 2421
n 13
s= Z(X_Y)ZZ ZXZ (ZX)
n-1 n

3743 =4/312=177

?
The question is: ‘How do we findta/z(n‘l) ’

For this purpose, we will need to consult the taiflareas under the t-distribution:
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TABLE OF AREAS UNDER THE T-DISTRIBUTION

Upper Percentage Points of the t-Distribution
v a 0.25]| 0.10 0.05 0.025 0.01 0.00p 0.00
1 1.000] 3.078] 6.314] 12.706] 31.821] 63.657] 318.310
2 0.816] 1.886] 2.920 4.303 6.965 9.925 22.327
3 0.765] 1.838] 2.353 3.182 4.541 5.841 10.214
4 0.741] 1.533] 2.132 2.776 3.747 4.604 7.173
5 0.727] 1.476] 2.015 2.571 3.365 4.032 5.893
6 0.718] 1.440|] 1.943 2.447 3.143 3.707 5.208
7 0.711] 1.415|] 1.895 2.365 2.998 3.499 4,785
8 0.706] 1.397|] 1.860 2.306 2.896 3.355 4501
9 0.703] 1.383] 1.833 2.262 2.821 3.250 4,297
10 0.7001 1.372] 1.812 2.228 2.764 3.169 4,144
11 0.697] 1.363] 1.796 2.201 2.718 3.106 4.025
12 0.695] 1.356] 1.782 2.179 2.681 3.055 3.930
13 0.6941 1.350] 1.771 2.160 2.650 3.012 3.852
14 0.692] 1.345] 1.761 2.145 2.624 2.977 3.787
15 0.691] 1.341) 1.753 2.131 2.602 2.947 3.733
Upper Percentage Points of the t-Distribution
N 0.25 0.10 0.05 0.025 0.01] 0.00p 0.0011
16 0.690] 1.337| 1.746 2.120 2.583 2.921 3.686
17 0.689] 1.333] 1.740 2.110 2.567 2.898 3.646
18 0.688] 1.330] 1.734 2.101 2.552 2.878 3.610
19 0.688] 1.328] 1.729 2.093 2.539 2.861 3.579
20 0.687] 1.325| 1.725 2.086 2.528 2.845 3.552
21 0.686] 1.323] 1.721 2.080 2.518 2.831 3.527
22 0.686] 1.321| 1.717 2.074 2.508 2.819 3.505
23 0.685] 1.319] 1.714 2.069 2.500 2.807 3.485
24 0.685] 1.318] 1.711 2.064 2.492 2.797 3.467
25 0.684] 1.316] 1.708 2.060 2.485 2.787 3.450
26 0.684] 1.315] 1.706 2.056 2.479 2.779 3.435
27 0.684] 1.314] 1.703 2.052 2.473 2.771 3.421
28 0.683] 1.313] 1.701 2.048 2.467 2.763 3.408
29 0.683] 1.311] 1.699 2.045 2.462 2.756 3.396
30 0.683] 1.310|] 1.697 2.042 2.457 2.750 3.385
40 0.681] 1.303| 1.684 2.021 2.423 2.704 3.307
60 0.679] 1.296] 1.671 2.000 2.390 2.660 3.232
120 0.677] 1.289| 1.658 1.980 2.358 2.617 3.160
0 0.674] 1.282| 1.645 1.960 2.326 2.576 3.090

The above table is an abridged version of the thplEisher and Yates, and the entries in this tabdevalues ofd,(v)

for which the area to their right under the t-dimition withv degrees of freedom is equaldpas shown below:
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/X

0 Lty

Now, in this problem, since n — 1 = 12, and tharéedevel of confidence is 95%, therefore, théntitail area is 2%2%,
and, hence, (using the t-table) we obtain

t0.025 (12): 2.179

Substituting these values, we obtain the 95% cenfid interval fop1 as follows:

2421+ 217 177]

V13
or 24,21+ 2.179 (0.49)
or 24,21+ 1.07 or 23.14 to 25.28

Hence, the 95% confidence interval for the meansnudighe ball bearings calculated from the givemgle is (23.1,
25.3) grams.
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LECTURE NO. 40

* Tests and Confidence Intervals based on the tioligiton

In the last lecture, we introduced the t-distribotiand began the discussion of statistical infegdoased on the t-
distribution. In particular, we discussed the camsgtion of the confidence interval forin that situation when we are
drawing a small sample from a normal populationifg@unknown variance2. When the parent population is normal,
the population variance is unknown, and the sarsigie n is small (less than 30), then the confidentval forp is
given by

- S

X+t —

a/2(n-1) \/ﬁ

where X = is the sample mean _ Z(X —X)Z is the sample standard deviation n = sample side@, ) is
n N n-1

found by looking in the t-table under the approjgriealue ofa againsy = n—1;

a/2 = 0.005 if we desire 99% confidence:

-t 0005(v) O t 0005(v)
o/2 = 0.025 if we desire 95% confidence

-t 0025(v) O t 0025(v)

a/2 = 0.05 if we desire 90% confidence:

0.0t 0.0t
0.9C

- toos(v) 0 toos(v)

Next, we discuss hypothesis - testing regardingriban of a normally distributed population for wh@2 is unknown
and the sample size is small (n < 30).
This procedure is illustrated through the followegample:
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EXAMPLE-1

Just as human height is approximately normallyritsted, we can expect the heights of animals of particular
species to be normally distributed. Suppose tlattHfe past five years, a zoologist has been irgbin an extensive
research-project regarding the animals of one @dati species. Based on his research-experieneezdblogist
believes that the average height of the animathisfparticular species is 66 centimeters. Hecsela random sample
of ten animals of this particular species, and,;jupeasuring their heights, the following data itaoied.

63, 63, 66, 67, 68, 69, 70, 70, 71, 71

In the light of these data, test the hypothesis tha mean height of the animals of this particidpecies is 66
centimeters.

SOLUTION:
Hypothesis-Testing Procedure:

i) We state our null and alternative hypotheses as
HO :p =66 and H1 p # 66.

i) We set the significance level at= 0.05.
iii) Test Statistic:
The test-statistic to be used is

— )z_,uo
~ s/Vn

which, if HO is true, has the t-distribution with-nl = 9 degrees of freedom.

t

Important Note:

As indicated in the previous discussion, we alwbggin by assuming that HO is true.(The entire
mathematical logic of the hypothesis-testing praceds based on the assumption that HO is true.)
iv) CALCULATIONS

Individual No. | x Xi°
1 63 | 3969
2 63 | 3969
3 66 | 4356
4 67 | 4489
5 68 | 4624
6 69 | 4761
7 70 | 4900
8 70 | 4900
9 71 | 5041
10 71 | 5041

Total 678 | 46050

Now X = & = ES = 67.8 inches,
n 1C
1

and §° = ' — T
n-1 n-1 n
= é [46050- 459684 = 9.0667

S$=+/9.0667= 301 inches.
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_X~Ho
0 t= Tin
_ 678-66
301410
(18) (31623
301

=1.89
V) Critical Region:
Since this is a two-tailed test, hence the cilitiegion is given by
| t|>10.025(9) = 2.262.

-2.262 0 2.262
REJECT ACCEPT REJECT
< > < > < >

vi) Conclusion:
Since the computed value of t = 1.89 does noiréthe critical region, we therefore do not rejel€ and may conclude
that the mean height of the animals of this paldicspecies is 66 centimeters.

Next, we consider the construction of the confaeimterval foul-y2 in that situation when we are drawing
small samples from two normally distributed popigias having unknown but equal variances:
We illustrate this concept with the help of thdduling example:

EXAMPLE:
A record company executive is interested in esfimgathe difference in the average play-length afgsopertaining to
pop music and semi-classical music. To do so, ahéamly selects 10 semi-classical songs and 9 gagss

THE PLAY-LENGTHS (IN MINUTES) OF THE SELECTED SONGS ARE LISTED IN THE FOLLOWING
TABLE

Semi-Classic Music Pop Music
3.80 3.88
3.30 413
3.43 411
3.30 3.98
3.03 3.98
4.18 3.93
3.18 3.92
3.83 3.98
3.22 4.67
3.38
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Calculate a 99% confidence interval to estimatedifference in population means for these two typfeecordings.
SOLUTION:
In this problem, we are dealing with a t-distriloatiwvith n1+n2 - 2 =10 + 9 — 2 = 17 degrees ofdoem. The table t-

value for a 99% level of confidence and 17 degoédseedom is t005.17 = 2.898.
Calculations:

Semi-Classical Music Pop Music
n = 10 np = 9

X1=3.465 X5=4.064
S, =.0.3575 S,=.0.2417

Hence:

‘- \/ (3579°(9) + (24177(8)

10+9-2
_ \/ 1.1503+ 0.4674
17

= %1777 =+/0.0952
The confide:n(&ér}ferval is

(3465- 4064)

+(2898)(031) %% = - 0599+ 0411

ietheC.l.is:
-1010< 4, — (4, <—188

With 99% confidence, the record company executare @onclude that the true difference in populatiwerage length
of play is between —1.01 minutes and —188 minZi&o is not in this interval, so she could conclticket there is a
significant difference in the average length ofygiane between semi-classical music and pop musigs recordings.
Examination of the sample results indicates that pwsic songs’ recordings are longer. The resudkt @nclusion
obtained above can be used in the tactical andegicaplanning for programming, marketing, and pitn of

recordings.

EXAMPLE

From an area planted in one variety of guayuleitder producing plant), 54 plants were selectedradom. Of these,
15 were off types and 12 were aberrant. Rubberepéages for these plants were:

6.21, 5.70, 6.04, 4.47, 5.22, 4.45, 4.94,

Offtypes | 5'g8' 582, 6.09. 6.06. 5.59. 6.74. 5.45
4.28,7.71,6.48, 7.71, 7.37, 7.20, 7.46,

Aberrant | ")y’ §'93 5.91 5.51. 6.36 (1

Test the hypothesis that the mean rubber percemtatie Aberrants is at least 1 percent more thanntean rubber
percentage of off types. Assume the populationsubber percentages are approximately normal ane leawal
variances. Let subscript 1 stand for Aberrants,langubscript 2 stand for off types. Then, we peatas follows:
i) We formulate our null and alternative hypotheses a
HO:pl-p2>1,
and
Hl:pl-p2<1
i) We set the significance level@at= 0.05.
iii) The test-statistic, if klis true, is
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t= (X1‘Y2)_(U1‘Hz)

1 1
S, [—+—
P n np

which has a Student’s t-distribution with
v=n+n-—2,ie. 25 degrees of freedom.
iv) Computations:

We have
o = XX _ 8092 _ 674,
n, 12
g, = 2% - 8425_ oo,
And n, 15
2
5, -5 = 2 - 223)
ny
2
= 56ZL6402—m
=561.640z—-54E.670¢
=15.9697
2
Slo-n) =y -2
2
2
= 4789779~ (8‘;25)
=47€977¢—-47%204z
=5.7731
Z(Xl - X1)2 + Z(Xz - 72)2
Nows; =
n+n,-2
- 5.9697+5.7737
12+15-2
= 0.8697,
so that

s, =v0.8697= 093

Hence, the computed value of our test statisticesoout to be

674-562)-1_ 012

1 1 036
093 | —+—
v) Critical Region: 12 15
Since this is a left-tailed test, therefore théi@al region is given by
t <-t0.05(25)i.e. t<-1.708

Dt=( =033

vi) Conclusion:

Since the computed value of t = 0.33 falls in tbeeptance region, therefore we accept HO. We magigde
that the mean rubber percentage of the Aberraras isast 1 percent more than the mean rubber page of Off
types.

T-DISTRIBUTION IN THE CASE OF PAIRED OBSERVATIONS
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In testing hypotheses about two means, until novhaxe used independent samples, but there are sitaagions in
which the two samples are not independent. Thigp&apvhen the observation are found in pairs suahttie two
observations of a pair are related to each othairing occurs either naturally or by design. Nakyairing occurs
whenever measurement is taken on the same umtlimidual at two different times. For example, sogp ten young
recruits are given a strenuous physical trainimggmmme by the Army. Their weights are recordeatgethey begin
and after they complete the training. The two obe@ons obtained for each recruit i.e. the beford-after
measurement constitute natural pairing. The ab®watural pairing.

EXAMPLE:
Ten young recruits were put through a strenuoussiphly training programme by the Army. Their weightsre
recorded before and after the training with théofeing results:

Recruit 1 2 3 4 5 6 7 8 9 10
Weight before | 125 | 195| 160 | 171 | 140 | 201 | 170 | 176 | 195 | 139
Weight after 136 | 201 | 158 | 184 | 145| 195| 175| 190| 190 | 145

Usinga = 0.05, would you say that the programme affdatsaiverage weight of recruits?

Assume the distribution of weights before and aftebe approximately normal. When the observativom two
samples are paired, we find the difference betwbentwo observations of each pair, and the tesistain this
situation is:

_d_:ud
~s,/4n
_d-o0
s, /\n

t

_
s, /Jn
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LECTURE NO. 41

e Hypothesis-Testing regarding Two Population Mearihé Case of Paired Observations (t-distribution)

. The Chi-square Distribution

. Hypothesis Testing and Interval Estimation Regayda Population Variance (based on Chi-square

Distribution)

In the last lecture, we began the discussion obthgsis-testing regarding two population meanfiindase of paired
observations. It was mentioned that, in many sibnat pairing occurs naturally. Observations aso ghaired to
eliminate effects in which there is no interest. For example, suppose we wish to test which of types$ (A or B) of
fertilizers is the better one. The two types ofifieer are applied to a number of plots and thsules are noted.
Assuming that the two types are found significadifferent, we may find that part of the differenoay be due to the
different types of soil or different weather comgtits, etc. Thus the real difference between thiigers can be found
only when the plots are paired according to theesgypes of soil or same weather conditions, etc.
We eliminate the undesirable sources of variatiptaking the observations in pairs. This is paifygdesign.
We illustrate the procedure of hypothesis-testemprding the equality of two population means & ¢hse of paired
observations with the help of the same examplewieaquoted at the end of the last lecture:

EXAMPLE
Ten young recruits were put through a strenuoussipll training programme by the Army. Their weightsre
recorded before and after the training with théofeing results:

Recruit 1 2 3 4 5 6 7 8 9 10
Weight before | 125| 195| 160 | 171 | 140| 201 | 170 | 176 | 195 | 139
Weight after 136|201 | 158 | 184 | 145| 195| 175| 190| 190 | 145

Usinga = 0.05, would you say that the programme affdutsaverage weight of recruits? Assume the distobubf
weights before and after to be approximately normal

SOLUTION
The pairing was natural here, since two observateme made on the same recruit at two differenéginthe sample

consists of 10 recruits with two measurements ah.€ghe test is carried out as below:
Hypothesis-Testing Procedure:

i) We state our null and alternative hypotheses as
HO:pd=0and
H1:pd#0

i) The significance level is setat= 0.05.

iii) The test statistic under HO is

_
s, /A0’

which has a t-distribution with n — 1 degrees etftom.

t

iv) Computations:

. Weight Difference, ¢ (after 2
ReCIUIt 5 ofore | After|  minus before) dh
1 125 136 11 121
2 195 201 6 36
3 160 158 -2 4
4 171 184 13 169
5 140 145 5 25
6 201 195 6 36
7 170 175 -6 25
8 176 190 5 196
9 195 190 14 25
10 139 145 -5 36
> 1672 | 1719 6 673
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d _Z_d = 4_7 =47,
n 1C
—\2
2:Z(d_d) = 1 ZdZ_(Zd)Z
d n-1 n-1 n
2 _
g P (47)7 | _ 673-2209 _ 5023
9 10 9
so that

Sy =+/ 5023 = 709.

Hence, the computed value of our test-statisticesoout to be :

d 47 _(47)(316) 200,

t= =
s/~n 709410 709

v) The critical region is |& t0.025(9)
=2.262.

vi) Conclusion:
Since the calculated value of t = 2.09 does nbirfahe critical region, so we accept HO and ncayclude
that the data do not provide sufficient evidencmtlicate that the programme affects average weight

From the above example, it is clear that the hygmithtesting procedure regarding the equality aimaen
the case of paired observations is very similahéot-test that is applied for testing
HO : p = 0.(The only difference is that when we are testl0 1 = 0, our variable is X, whereas when we are tgstin
HO : ud=0, our variable is d.)

HYPOTHESIS-TESTING PROCEDURE REGARDING TWO POPULATI ONS
MEANS IN THE CASE OF PAIRED OBSERVATIONS

When the observations from two samples are paitedrenaturally or by design, we find the differerfsetween the
two observations of each pair. Treating the diffieess as a random sample from a normal populatidtnmeanud =

pl -p2 and unknown standard deviatiod, we perform a one-sample t-test on them. Thislied a paired difference
t-test or a paired t-test.

Testing the hypothesis

HO : pl =p2 against
HA : ul # 2 is equivalent to testing HQud = 0 against
HA : ud # 0.
Let d = x1 — x2 denote the difference between the $amples observations in a pair. Then the samglen and
standard deviation of the differences are
—=\2
__>d (d-d)
d= Z_ and Sy = Z—
n n-1

where n represents the number of pairs.
Assuming that

1) d, d, ..., d,is a random sample of differences, and

2) the differences are normally distributed,
the test-statistic

a—o: d
sqy//n s4/4/n

follows a t-distribution withv = n — 1 degrees of freedom. The rest of the pruoeefbr testing the null hypothesis HO :

pd = 0 is the same
EXAMPLE

t=
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The following data give paired yields of two vaigstof wheat.

Variety | 45| 32| 58| 57] 60 38 4y 51 42 38
Variety I 47| 34| 60| 59 63 44 49 58 46 41
Each pair was planted in a different locality.
a) Test the hypothesis that, on the average, the gfevariety-1 is less than the mean yield of ei2.
State the assumptions necessary to conduct #tis te
b) How can the experimenter make a Type-| error?
What are the consequences of his doing so?
c) How can the experimenter make a Type-Il error?
What are the consequences of his doing so?
d) Give 90 per cent confidence limits for the differe in mean yield.

Note: The pairing was by design here, as the yields tieetad by many extraneous factors such as feriftland,
fertilizer applied, weather conditions and so forth

SOLUTION:
a) In order to conduct this test, we make the folluyvassumptions:
ASSUMPTIONS
% The differences in yields are a random sample fitwerpopulation of differences,

% The population of differences is normally distriedit
i) We state our null and alternative hypotheses as

HotHg 20 (or py2p,),

i.e. the mean yields are equal and
Hyipg <O (or by <pp).
i) We select the level of significance@t= 0.05.
iii) The test statistic to be used is
d-0 d

oA s/

where d = X, = X, and sd2 is the variance of the wfiffees di.

t=

If the populations are normal, this statistic, wihis true, has a Student’s t-distribution with«d) d. f.
iv) Computations:

Let X1li and X2i represent the yields of Varietyahd Variety Il respectively. Then the necessary
computations are given below:

Xii | Xz di = Xgi — Xai a2
45 47 -2 4
32 34 -2 4
58 60 -2 4
57 59 -2 4
60 63 -3 9
38 44 —6 36
47 49 -2 4
51 53 -2 4
42 46 -4 16
38 41 -3 9
> — -28 94
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Now a:—.:_—:—z.&and

15.

(o]

= 1.7333, so that = 1.32
-28 _(-28)(31623 _

d
t= = = =-671
sq//n  132/,/10 132
V) As this is a one-tailed test therefore, theaaltregion is given by

t <t0.05(9) =-1.833
vi) Conclusion

O

Since the calculated value of t = —6.71 falls ia thitical region, we therefore reject HO. The adgbresent sufficient
evidence to conclude that the mean yield of vatlety less than the mean yield of variety-2.

b) The experimenter can make a Type-I error by rigjgat true null hypothesis.

In this case, the Type-I error is make by rejectimg null hypothesis when the mean yield of varietg actually not
different from the mean yield of variety-2.

In so doing, the consequences would be that webeibaying that variety-2 is better than variegtthough in reality
they are equally good.

c) The experimenter can make a Type-II error by piieg of false null hypothesis.

In this case, the Type-II error is made by acceptire null hypothesis when in reality the meandyied variety-1 is
less than the mean yield of variety-2 and the cgumsece of committing this error would be a losspofential

increased yield by the use of variety-2.

d) The 90% confidence limits for the difference in meal —p2 in case of paired observations, are given by

dxt; (0) - Ir
Substituting the values, we get
132

- 28+ 1833 ——
410

or-2.8+0.765
or -3.565 to -2.035

Hence the 90% confidence limits for the differencenean yieldspl —u2, are (-3.6, -2.0) .
Until now, we have discussed statistical inferereggarding population means based on the Z-statistiwell as the t-
statistic.

Also, we have discussed inference regarding tipeilption proportion based on the Z-statistic.
In certain situations, we would be interested iawdng conclusions about the variability that existthe population
values, and for this purpose, we would like to gayut estimation or hypothesis-testing regarding glopulation
varianceo?2.

Statistical Inference regarding the populationasce is based on the chi-square distribution.
We begin this topic by presenting the formal dlebifomi of the
Chi-Square distribution and stating some of itsmpobperties:

THE CHI-SQUARE (x2) DISTRIBUTION

The mathematical equation of the Chi-Square distiol is as follows:

1 1 -
f(X):m(X)(V/Z) leX/2 g<x<oo

This distribution has only one parametewhich is known as the degrees of freedom of thieSguare distribution.
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PROPERTIES OF THE CHI-SQUARE DISTRIBUTION

The Chi-SquarexR) distribution has the following properties:

1. It is a continuous distribution ranging from Git® .

The number of degrees of freedom determines thpesbfithe chi-square distribution. Thus there diféerent chi-
square distribution for each number of degreeseafdom. As such, it is a whole family of distrilouts.

2. The curve of a chi-square distribution is posiinekewed.

The skewness decreaseyascreases.

f(x)

0 2 4 6 8 1C 12 14

X2-distribution for various values ofv

As indicated by the above figures, the chi-squastildution tends to the normal distribution as thenber of degrees
of freedom approaches infinity.

3. The mean of a chi-square distribution is equal, tthe number of degrees of freedom.

4. Its variance is equal to2

5. The moments about the origin are given by

H=V

M= V(V + 2)
Ha=vlv+2)v+4)
#i=v(v+2)v +4)v +6)

Having discussed the basic definition and propewiethe chi-square distribution, we begin the wlsion of its role in
interval estimation and hypothesis-testing. We megith interval estimation regarding the variandeaonormally
distributed population:

EXAMPLE:

Suppose that an aptitude test carrying a totaDaharks is devised, and administered on a largelptipn of students,
and, upon doing so, it was found that the markbefstudents were normally distributed. A randoma of size n =

8 is drawn from this population, and the samplaeslare 9, 14, 10, 12, 7, 13, 11, 12.

Find the 90 percent confidence interval for theyafion variances2, representing the variability in the marks of the
students.

SOLUTION:
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The 90% confidence interval foR is given by

Sa-x) _ 3l -x)

X20.05( n-1) X20.95( n-1)

The above formula is linked with the fact that & weep 90% area under the chi-square distributichd middle, then
we will have 5% area on the left-hand-side, anda&& on the right-hand-side, as shown below:

X2(N-1)-DISTRIBUTION

In order to apply the above formula, we first néedalculate the sample meq, which is

Then, we obtain
8
o\2
3 (X =X =(9-1107 + (14-11 +...+ (12-12 =36
i=1
Next, we need to find :
1) the value of2 to the left of which the area under the chi-squhstribution is 5%

2) the value o2 to the right of which the area under the chi-sgulistribution is 5%
For this purpose, we will need to consult the taiflareas under the chi-square distribution.

THE CHI-SQUARE TABLE

The entries in this table are values obtig®), for which the area to their right under the shitare distribution with
degrees of freedom is equaldo

Upper Percentage Points of the Chi-square Distribut  ion
va 0.99] 0.98] 0.975] 0.95| 0.10f 0.05] 0.03] 0.02] 0.01
1 ]0.0002] 0.001] 0.001] 0.004] 2.71] 3.84] 5.02] 5.41] 6.64
2 0.020] 0.040] 0.051) 0.103] 4.61] 5.99] 7.38] 7.82] 9.21
3 0.115] 0.185] 0.216] 0.352] 6.25] 7.82] 9.35] 9.84] 11.34
4 0.297] 0.429] 0.484] 0.711] 7.78] 9.49] 11.14] 11.67| 13.28
5 0.554] 0.752] 0.831] 1.145| 9.24] 11.07] 12.83] 13.39] 15.09
6 0.87] 1.13] 1.24] 1.64] 10.64] 12.59] 14.45] 15.03| 16.81
7 1.24] 1.56] 1.69] 2.17] 12.02| 14.07] 16.01] 16.62] 18.48
8 1.65] 2.03] 2.18] 2.73] 13.36] 15.51} 17.54] 18.17] 20.09
9 2.09] 2.53] 2.70] 3.32] 14.68] 16.92] 19.02] 19.68| 21.67
10 2.56] 3.06] 3.25] 3.94| 15.99] 18.31] 20.48] 21.16] 23.21
11 3.05] 3.61] 3.82] 4.58] 17.28] 19.68| 21.92] 22.62| 24.72
12 3.57] 4.18] 4.40] 5.23| 18.55] 21.03| 23.34] 24.05| 26.22
13 4.11] 4.76] 5.01] 5.89] 19.81] 22.36] 24.74] 25.47] 27.69
14 4.66] 5.37] 5.63] 6.57|] 21.06] 23.68] 26.12] 26.87] 29.14
15 5.23] 5.98] 6.26] 7.26] 22.31] 25.00] 27.49] 28.26] 30.58
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Chi-Square Table (continued):

v 0.99] 0.98] 0.975] 0.95| 0.10] 0.05] 0.025] 0.02] 0.01
16 5.81] 6.61] 6.91] 7.96] 23.54] 26.30] 28.84] 29.63] 32.00
17 6.41] 7.26] 7.56] 8.67] 24.77] 27.59] 30.19] 31.00] 33.41
18 7.02] 7.91] 8.23] 9.39] 25.99] 28.87] 31.53] 32.35] 34.81
19 7.63] 8.57] 8.91] 10.12| 27.20] 30.14] 32.85] 33.69| 36.19
20 8.26] 9.24] 9.59] 10.85] 28.41] 31.41}] 34.17] 35.02 37.57
21 8.90] 9.92] 10.28] 11.59| 29.62] 32.67| 35.48] 36.34] 38.93
22 9.54] 10.60] 10.98] 12.34] 30.81] 33.92| 36.78] 37.66] 40.29
23 | 10.20] 11.29] 11.69] 13.09] 32.01] 35.17] 38.08| 38.97| 41.64
24 | 10.86] 11.99] 12.40] 13.85] 33.00] 36.42] 39.36] 40.27] 42.92
25 | 11.52] 12.70] 13.12] 14.61] 34.38] 37.65] 40.65| 41.57] 44.31
26 | 12.20] 13.41] 13.84] 15.38] 35.56] 38.88] 41.92| 42.86] 45.64
27 | 12.88] 14.12] 14.57| 16.15] 36.74] 40.11] 43.19] 44.14] 46.96
28 | 13.56] 14.85| 15.31] 16.93] 37.92| 41.34] 44.46] 45.42| 48.28
29 | 14.26] 15.57] 16.05] 17.71] 39.09] 42.56] 45.72] 46.69] 49.59
30 | 14.95] 16.31] 16.79| 18.49] 40.26] 43.77] 46.98] 47.96] 50.89

From thex2-table, we find that
X20.05 (7) = 14.07
and
%20.95 (7) = 2.17
Hence the 90 percent confidence intervald®ris

X20.05(7) X2095(7)
36 , 36
or — <0 " <——
14.07 2.17

o 256<0°<16.61

Thus the 90% confidence interval fof is (2.56, 16.61).

If we take the square root of the lower limit adlvas the upper limit of the above confidence inédrwe obtain (1.6,
4.1).

So, we may conclude that, on the basis of 90%idente, we can say that the standard deviadi@f our
population lies between 1.6 and 4.1 .We can oldagonfidence interval foo by taking the square root of the end
points of the interval foo2, but experience has shown tatannot be estimated with much precision for ssethple
sizes.

The formula of the confidence interval fo2 that we have applied in the above example isthasehe fact that:
If"X and S2 are the mean and variance (respectivélg) mndom sample X1, X2, ..., Xn of size n drawnnfra
normal population with varianag2, then the statistic

< \2
(X, -Xf _nS _(n-1)&
a? a? o?
follows a chi-square distribution with (n — 1) degs of freedom.
Next, we consider hypothesis - testing regardiregptbpulation variance?2 :
We illustrate this concept with the help of an egpéan

EXAMPLE

The variability in the tensile strength of a typesteel wire must be controlled carefully. A samplethe wire is
subjected to test, and it is found that the samgl@nce is S2 = 31.5. The sample size was n =b$6rgations.

Test the hypothesis that the population varian@5iagainst the alternative that the variance éatgr than 25. Use a
0.05 level of significance.
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SOLUTION

a)i) We have to decide between the hypotheses
HO :02 = 25, and
H1:02>25

i) The level of significance is = 0.05.

n
iii) The test statistic i9(2 = 5 which under t, has g*distribution with (n-1) degrees of freedom, assumi
Oo
that the population is normal.
iv) We calculate the value gf from the sample data as

2 = nS _16(315)
ag 25
v) The critical region ix2 >x20,05,(15): 25.00 (one tailed test)
vi) Conclusion.
Since the calculated value 2 falls in the acceptance region, so we accephollr
Hypothesis, i.e. we have reasonable evidence tdwde thaio2 = 25.The Chi-Square
Distribution with 15 degrees of Freedom:

f(x)

= 2016.

0.0¢

o
20.1¢  25.0( X

. > >
Acceptance Regio Critical Region

The above example points to the following generatedure for testing a hypothesis regarding theulaipon variance
02: Suppose we desire to test a null hypothesishidOthe variance2 of a normally distributed population has some
specified value, sag02. To do this, we need to draw a random sampleX¥, ..., X, of size n from the normal
population and compute the value of the sampleamas & If the null hypothesis §i: 6® = 0% is true, then the

statisticx2 = ng’ has ax-distribution with (n—1) degrees of freedom.
2
Oo
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LECTURE NO. 42

e The F-Distribution
¢ Hypothesis Testing and Interval Estimation in ortde€ompare the Variances of Two Normal
Populations (based on F-Distribution)
Before we describe you statistical inference basethe F-distribution, let us consolidate the idéaypothesis-testing
regarding the population variance with the helpmExample:

EXAMPLE

The manager of a bottling plant is anxious to redihe variability in net weight of fruit bottled.ver a long period, the
standard deviation has been 15.2 gm. A new madkimetroduced and the net weights (in grams) inrdiedomly
selected bottles (all of the same nominal weight) @87, 966, 955, 977, 981, 967, 975, 980, 953, Yauld you
report to the manager that the new machine haster lperformance?

SOLUTION

i) We have to decide between the hypotheses
HO:0=15.2, i.e. the standard deviation is 15.2gm
H1:0 < 15.2 i.e. the standard deviation has been exluc
i) We choose the significance leveloat 0.05.
iii) The test-statistic is

< \2
2 _ nSZ _ Z(XI _X)
T2 T 2
Op Op
which under K, has g2 -distribution with (n — 1) degrees of freedom,uasing that the weights are normally

distributed.
iv) Computations.

X

n=10.>Xi=9713, 2 X2i = 9435347
v) The critical region i¥ 2 <x20.95 (9) = 3.32 (the lower 5% point)
NOW
nS =Y (X; = X)? = ¥X3% — &X)%n
= 0435347 — (971%)0 = 1110.1
11101 11101
O 2= = = 481

(152 23104

vi) Conclusion:

Since the calculated value x#f = 4.81 does not fall in the critical region, weetéfore cannot reject the null
hypothesis that the standard deviation is 15.2 gethheence we would not report to the manager tleahéw machine
has a better performance.

The above example points to the fact that, if wehato test a null hypothesis HO that the variam2eof a normally
distributed population has some specified valug,o€?, then, (having drawn a random sample X1, X2 Xn.pf size
n from the normal population), we will compute trsue of the sample variance S2.

The mathematics underlying this hypothesis-tegtimgedure states that:

2 n
If the null hypothesisHO : C)'2 =0 s true, then the statisti@(2 = — has ax’distribution with (n—1)

Op
degrees of freedom.
A point to be noted is that, since the random Wi is distributed as chi-square, therefore weitg2.
If we do so, our equation of the chi-square disttion can be written as

f(Xz):m(/Yz)(V/Z)_l-e_XZ/z’ 0< y? <o

It should be obvious that the standard deviatiorthef normal population will be tested in the sanmeyvas the
population variance is tested.
Next, we begin the discussion of statistical infieeregarding the ratio of two population variances

As this particular inference is based on the Frthistion, therefore we begin with the discussidntize
mathematical definition and the main propertiethefF-distribution.
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THE F-DISTRIBUTION

The mathematical equation of the F-distributioassollows:

£ = T+ 2], ) e

- , 0<Xx<o
r (Vl/z) r (VZ/Z) [l+ vV, X/VZ] (vi+v,)/2

This distribution has two parameters andv2, which are known as the degrees of freedom oFttistribution.The F-
distribution having the above equation hatedegrees of freedom in the numerator @2dlegrees of freedom in the
denominator. It is usually abbreviated ag15§2).

PROPERTIES OF F-DISTRIBUTION

1. The F-distribution is a continuous distributiongarg from zero to plus infinity.
2. The curve of the F-distribution is positively skesl.

f(F
0 F
But as the degrees of freedorhandv2 become large, the F-distribution approachesithmal distribution.
f(F)
A
F
0
3. Forv2 > 2, the mean of the F-distribution is
V,
v, -2
which is greater than 1.
4 Forv2 > 4, the variance of the F-distribution is
2
2 _ 2V2(V1+V2 _2)
2
V1(V2 _2) (Vz _4)
5. The F-distribution fow1 > 2,v2 > 2 is unimodal, and the mode of the distributioth v1 > 1 is at

v, (Vl B 2)

v (v, +2)
which is always]less than 1.
6. If F has an F-distribution with1 andv2 degrees of freedom, then the reciprocal has distibution withv2 andvl
degrees of freedom. Next, we consider the tablegbef-distribution. As the F-distribution involveso parameters,
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vl andv2, hence separate tables have been construct&ddoRY2 % and 1% right-tail areas respectively, rasve
below:

The F-table pertaining to 5% right-tail areas is asfollows:

Upper 5 Percent Points of The F-Distribution i.e.Fq o5 (V1, Vo)

VZV1 1 2 3 4 5 6 s | 12| 24| »

T |161.4]1995|215.7|224.6|230.2| 234.0| 238.9] 243.9| 249.0| 254 .3

2 |1851|19.00[19.16]19.25[19.30]19.33[19.37| 19.41[19.45] 19.50

3 [10.13] 955 | 9.28] 9.12| 9.01] 894 88k 8.44 8ps 853
2 | 771 ] 6.04| 659 639 626 616 6d4 5p1 5[77 963
5 |661| 5.79| 5.41] 51d 50p 49 442 4p8 43 436
6 1599 | 5.14| 4.76] 45 439 428 445 4po 3lsa 367
7 | 559 | 4.74| 435 414 391 387 343 3b7 31 323
8 | 532 | 4.46| 407] 384 369 358 344 3p8 3z Ao3
9 | 512 | 426 3.86] 364 348 337 343 3p7 20 471
10 | 4.96 | 410 3.71] 349 33% 3226 3d7 2p1 2[7a 254
11 | 484 | 398 359 33d 320 30b 2495 249 21 440
12 | 4.75 | 388 3.49] 32d 311 30b 245 2p9 250 430
13 | 467 | 380 3.41] 314 308 292 247 260 282 421
14 | 460 | 3.74| 3.34] 311 296 28 240 253 2B5 413
15 | 454 | 368 3.29] 30d 290 27b 244 248 2k9 do7

xl 1 2 3 4 5 6 8 12| 24| o

16 | 449 | 3.63| 3.24] 3.01 284 278 249 2h2 24 7o
17 4.45 3.59 3.20 2.96 2.81 2.7D 2.85 2.B8 2]19 1196
18 | 441 | 355| 3.16] 2904 271 266 241 2B2 2[5  1lo2
19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.B1 2111 1188
20 | 435 | 3.49] 3.10] 284 271 260 245 2b8 2los 1lsa
21 4.32 3.47 3.07 2.84 2.68 2.5|7 2.42 2.P5 2]05 1181
22 | 430 | 3.44] 3.05| 283 266 255 240 2b3 2lo3 1l7s
23 4.28 3.42 3.03 2.80 2.64 2.58 2.38 2.p0O 2]00 176
24 4.26 3.40 3.01 2.78 2.6% 2.5 2.36 2.8 1198 1473
25 4.24 3.38 2.99 2.79 2.6 2.4P 2.34 2.6 1196 1471
26 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.5 1195 1}.69
27 4.21 3.35 2.96 2.73 2.57 2.4b6 2.30 2.13 1193 167
28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1191 1}.65
29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1190 1].64
30 4.17 3.32 2.92 2.69 253 2.4p 2.37 2.99 1189 1162
40 4.08 3.23 2.84 2.6]1 2.4% 2.34 2.18 2.0 1179 1151
60 4.00 3.15 2.76 2.52 2.3Y 2.2b 2.10 1.p2 1170 1139
120 | 3.92 3.07 2.68 2.458 2.29 2.1/ 2.2 1.83 1161 1}.25
w | 384 ] 2.99| 260 234 221 21b 144 1t3 1ijp2 1oo
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Similarly, the F-table pertaining to 2%2% right-taikas is as follows

Upper 2.5 Percent Points of the F-Distribution i.eFg 25 (V1, V2)

: < 2 3 4 5 6 8 12 24 o
2
1 647.8 799.5 864.2 899.6 921.8 937.1 956.7 976.7 997.2 1018
2 38.51 39.00 39.17 39.25 39.30 39.33 39.37 39.41 39.46 39.50
3 17.44 16.04 15.44 15.10 14.88 14.73 14.54 14.34 14.12 13.90
4 12.22 1065 998 9.60 9.36 9.20 898 8. 75 851 8.26
5 10.07 8.43 7.76 7.39 7.15 6.98 6.76 6.52 6.28 6.02
6 881 7.26 6.60 6.23 599 582 560 537 512 4.85
7 807 654 589 552 529 512 490 467 4.42 4.14
8 757 6.06 542 505 482 465 443 420 3.95 3.67
9 7.21 571 5.08 472 448 432 410 387 361 3.33
10 6.94 546 483 447 424 407 3.8 362 337 3.08
11 6.72 5.26 463 428 404 3.88 366 343 317 2.88
12 6.55 5.10 447 412 389 3.73 351 328 3.02 272
13 6.41 497 435 400 377 360 339 315 2.89 260
14 6.30 486 424 389 366 350 329 305 279 249
15 6.20 477 415 380 358 341 320 296 2.70 240
Upper 2.5 Percent Points of the F-Distribution i.eFg o25 (V1, V) (Continued):
N 1 2 3 4 5 6 8 12 24 o
2
16 6.12 469 408 373 350 334 312 289 263 232
17 6.04 462 401 366 344 328 3.06 282 256 225
18 598 456 395 361 338 322 301 277 250 219
19 592 451 390 356 333 317 296 272 245 213
20 587 446 386 351 329 313 291 268 241 2.09
21 583 442 382 348 325 3.09 287 264 237 2.04
22 579 438 3.78 344 322 3.05 284 260 233 200
23 575 435 3.75 341 3.18 3.02 281 257 230 1.97
24 572 432 3.72 338 3.15 299 278 254 227 194
25 569 429 369 335 313 297 275 251 224 191
26 566 427 367 333 310 294 273 249 222 1.88
27 563 424 365 331 308 292 271 247 219 1.85
28 561 422 363 329 306 290 269 245 217 1.83
29 559 420 361 327 304 288 267 243 215 181
30 557 418 359 325 3.06 287 265 241 214 1.79
40 542 4.05 346 3.13 290 274 253 229 201 164
60 549 393 334 3.01 279 263 241 217 188 148
120 515 3.80 323 289 267 252 230 205 176 131
0 502 369 312 279 257 241 219 194 164 1.00
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0.02
0 Fo.025 >
And, the F-table pertaining to 1% right-tail arésaas follows:
Upper 1 Percent Points of the F-Distribution i.e. ko1 (V1, V2)
V1
1 2 3 4 5 6 8 12 24 )
V2
1 4052 5000 5403 5625 5764 5859 5982 6106 6235 6366
2 9850 99.00 99.17 99.25 99.30 99.33 99.37 99.42 99.46 99.50|
3 ] 3412 30.82 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12
4 | 21.20 18.00 10.69 1598 15.52 15.21 14.80 14.37 13.93 13.46
5 ]16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.02
6 |13.75 1092 9.78 915 8.75 847 810 7.72 7.31 6.88
7 11225 955 845 785 746 719 6.84 647 6.07 5.65
8 |11.26 865 759 7.01 6.63 6.37 6.03 567 528 4.86
9 11056 8.02 6.99 642 6.06 580 547 511 473 4.31
10 | 10.04 756 6.55 599 564 539 506 4.71 433 3.9
1" 9.65 721 6.22 567 532 507 474 440 4.02 3.61
12 933 693 595 541 506 482 450 416 3.78 3.36
13 9.07 6.70 574 520 486 462 430 396 3.59 3.17
14 886 6.51 556 503 469 446 414 380 3.43 3.00
15 868 6.36 542 489 456 432 400 3.67 3.29 287
Upper 1 Percent Points of the F-Distribution i.e. ko1 (V1, V2) (continued)
V1
1 2 3 4 5 6 8 12 24 o
V2
16 853 6.23 529 477 444 420 389 355 318 275
17 840 6.11 518 4.67 434 410 379 345 3.08 2.65
18 828 6.01 509 458 425 401 371 337 3.03 257
19 818 593 501 450 417 394 363 330 292 249
20 810 585 494 443 410 387 356 3.23 2.86 242
21 8.02 578 487 437 404 381 351 317 280 2.36
22 795 572 482 431 399 376 345 312 275 2.31
23 788 566 476 426 394 371 341 3.07 270 2.26
24 782 561 472 422 390 367 336 3.03 266 221
25 7.77 557 468 418 3.86 3.63 332 299 262 217
26 7.72 553 464 414 382 359 329 296 2.58 213
27 768 549 460 411 378 356 3.26 293 2.55 2.10
28 7.64 545 457 4.07 375 353 323 290 252 2.06
29 760 542 454 404 373 350 320 287 249 203
30 756 539 451 4.02 370 347 317 284 247 2.01
40 731 518 431 383 351 329 299 266 229 1.80
60 7.08 498 413 365 334 312 282 250 212 1.60
120| 6.85 479 395 348 317 296 266 234 194 1.38
) 6.63 461 378 332 3.02 280 251 218 1.79 1.00
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0 0.0 >

Fo.o1

Having discussed the basic definition and the rpadperties of the F-distribution, we now begin thecussion of the
role of the F-distribution in statistical inferenéerst, we discuss interval estimation regardimg tatio of two
population variances:

CONFIDENCE INTERVAL FOR THE VARIANCE RATIO g12/022

Let two independent random samples of size n1 &nldentaken from two normal population with varia;yoé2 and
022 and let s12 and s22 be the unbiased estimdtork2candc22.
Then, it can be mathematically proved that the tian

2/ 2
F = S.I. /Jl
2 | g2
has an F-distribution with (n1 — 1, n% — 1) degrefeseedom.
The confidence interval far12/022 is given by

2 2
s 1 s
2 2 F,,0n,-1n-1)
2 v o Tanz\'2 1
S; Fa/2(nl_1’ n, _1) S;
We can also find a confidence interval &it/o2 by taking the square root of the end points efahove interval.
We illustrate this concept with the help of thdduling example:

EXAMPLE

A random sample of 12 salt-water fish was takemwl, e girth of the fish was measured. The standexdation s1
came out to be 2.3 inches. Similarly, a random $armp10 fresh-water fish was taken, and the giftthe fish was
measured. The standard deviation of this samples2&ame out to be 1.5 inches. Find a 90% conrdelémerval for
the ratio between the 2 population varianc&2/022. Assume that the populations of girth are normal

SOLUTION

The 90% confidence interval fol2/022 is given by

= S E (h-1n -1
822 FO.OS(nl -1 n, —1)’ 322 0.05(n2 ], n )

Here s12 =(2.3)2 =5.29,
s22 =(1.5)2 = 2.25,
nl-1=12-1=11and n2-1=10-1=9
Hence,
F0.05(n1-1,n2-1)=F0.05(11,9)=3.1
and
F0.05(n2-1,n1-1)=F0.05(9,11)=29
With reference to the F-table, it should be notet tf it is an abridged table and the F-valuesrarteavailable for all
possible pairs of degrees of freedom, then theimed|F-values are obtained by the method of intetpm. In this
example, for the lower limit of our confidence int&l, we need the value of F0.05(11, 9), but in db®ve table
pertaining to 5% right-tail area, values are avdddorvl = 8 andv1 = 12, but not fowl = 11. Hence, we can find the
F-value corresponding tel = 11 by the method of interpolation: The F-vatweresponding t#2 =9 andvl = 8 is
3.23 whereas the F-value corresponding2o= 9 andvl = 12 is 3.07.If we wish to find the F-value m@ponding to
v2 = 9 andvl = 10, we can find the arithmetic mean of 3.23 &@¥ which is 3.15.If we wish to find the F-value
corresponding tw2 = 9 andvl = 11, we can find the arithmetic mean of 3.15 ari¥ which is 3.11, which, upon
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rounding, is equal to 3.1.The above method of pakation is based on the assumption that the Fegahetween any
two successive F-values (printed in any row offktable) are equally spaced between the two giedues.

If we do not wish to go through the rigorous pragedof interpolation, we can note theit = 11 is close tol = 12,
and hence, we can consider that F-value which sporeds tov1 = 12 (which in this case is 3.07 ~ 3.1 ----- dhathe
same as what we obtained above (correct to onendégilace) by the method of interpolation). Goirark to our
example, the 90% confidence interval is

529( 1 ) 529 (2.9)

or (0.76, 6.81). 225\31) 225

Taking the square root of the end points (0.761)58e obtain the 90% confidence interval &vc2 as (0.87, 2.61).
Next, we discuss hypothesis - testing regardingetipeality of two population variances: Suppose thathave two
independent random samples of size n1 and n2 fsrembrmal populations with varianced2 andc22, we wish to
test the hypothesis that the two variances arele@ibha main steps of the hypothesis - testing ptooe are similar to
the ones that we have been discussing earlierllMgérate this concept with the help of an example:

EXAMPLE

In two series of hauls to determine the numbeplahkton organisms inhabiting the waters of a lake,
following results were found:
Series I: 80, 96, 102, 77, 97, 110, 99, 88, 103, 1089
Series Il: 74, 122, 92, 81, 104, 92, 92
In series |, the hauls were made in successidmeagdme place. In series Il, they were made iemdifft parts scattered
over the lake. Does there appear to be a greatiabildy between different places than betweerfedént times at the
same place?

SOLUTION

If X denotes the number of plankton organisms paulhthen for each of the two series, X can berassuto be
normally distributed.
Hypothesis-testing Procedure:
Step 1:
HO : 0122022 i.e.022< 012
HA: 012 <022 i.e.022 >012
Step 2: Level of significancea = 0.05
Step 3: Test-statistic:
Since both the populations are normally distribyteshce, the statistic

E= 322/022

2 2
S /01
will follow the F-distribution having (n2 - 1, n11) degrees of freedom.
Step 4 :Computations:

X1 | X2 Xo | X5
80 6400 74 5476
96 9216 122] 14884
102 10404 92 8464
77 5929 81 6561
97 9409 104] 10814
110 12100 92 8464
99 9801 92 8464
88 7744 657] 63124
103 10609
108 11664
960 93276
Now
512 :i Zx 2 _(le)2
n -1 ! n,
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and
52: 1 zx 2_(2)(2)2
2
T
= % [93276- 92164
= %[111@ =124
-
Similarly 322 -_1 1 ZXZZ —(ZnLZ)
27 2 |
=
= i 63129- @
7-1 7
= é [63129- 6166414]
= % [146486] = 24414
2
HenceF = S% —% =197
52 124

Step 5 : Critical Region:

F > F0.05 (6, 9) = 3.37
Step 6:Conclusion:
Since 1.97 is less than 3.37, we do not rejectdd®;data does not provide sufficient evidence thcate that there is
greater variability (in the number of plankton angans per haul) between different places than bervaifferent times
at the same place.
Let us consider another example:

EXAMPLE

Two methods of determining the moisture contenéarfiples of canned corn have been proposed andhaethbeen
used to make determinations on proportions takem feach of 21 cans. Method | is easier to apptyappears to be
more variable than Method II.

If the variability of Method | were not more tha® per cent greater than that of Method II, thenwaild prefer

Method I.

The sample results are as follows:

n,=n, =21 X, =50 X, =53
< \2 - \2
Z(xl _xl) =720 Z(Xz - xz) =340
Based on the above sample results, which methodtvyou recommend?

SOLUTION

In order to solve this problem, the first pointi® noted is that, in this problem, our null anémiative hypotheses will
be
HO: 012< 1.25022
and
H1:012 > 1.25022.
Null and Alternative Hypotheses:
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In this problem, we need to test

HO :012< 1.25022

against

H1:012 > 1.25022.

This is so, because 1.222 means 125% aj22, and this means 25% greater tli@2. You are encouraged to work
on this point on their own. The second point towbted is that, in this problem, our test-statiginot but is

2

F=—3 _
1255,

Test Statistic:

2
F=—2L
.
125s,

(Under the null hypothesis, s12/ 1.25 s22 has-distfibution withvl =v2 = 21-1 = 20 degrees of freedom.)
This is so because, (in accordance with the fadthhs an F-distribution with (n1 — 1, n2 — 1) éegrof freedom),
it can be shown that:

2 2
F:Sl/a-l
2/0.2
S;/0,
If we have
HO:012/022 =k
then
1
F:Sl_ _
S
2

has an F-distribution with (n1 - 1, n2 - 1) degreéfreedom. (In this problem, k = 1.25.)You areeuraged to work
on this problem also on their own, and to carrytbetrest of the steps of the hypothesis-testioggmure (which are
the usual ones), and to decide whether to acceptreject the null hypothesis.
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LECTURE NO. 43

¢ Analysis of Variance

¢ Experimental Design
Earlier, we compared two-population means by usingo-sample t-test. However, we are often requicecompare
more than two population means simultaneously. Vightrbe tempted to apply the two-sample, t-testlt@assible
pairwise comparisons of means. For example, if vewo compare 4 population means, there W:Elé} =6
separate pairs, and to test the null hypotheatsathfour population means are equal, we woutiiiersix two-sample
t-tests. Similarly, to test the null hypothesistth@ population means are equal, we would need

10
=45
2

Separate two-sample t-tests. This procedure of ingnmultiple two-sample t-tests for comparing meawsuld
obviously be tedious and time-consuming. Thus esef two-sample t-tests is not an appropriategdare to test the
equality of several means simultaneously. Evidemtly require a simpler procedure for carrying big kind of a test.
One such procedure is the Analysis of Varianceoéhtced by Sir R.A. Fisher (1890-1962) in 1923:

ANALYSIS OF VARIANCE (ANOVA)

It is a procedure which enables us to test the tingsis of equality of several population means
(i.e.
HO:pl=p2=pu3=...... =pk
against
HA: not all the means are equal)
The concept of Analysis of Variance is closely tetbwith the concept of Experimental Design:

EXPERIMENTAL DESIGN

By an experimental design, we mean a plan usedlliect the data relevant to the problem under stadych a way as
to provide a basis for valid and objective infereabout the stated problem. The plan usually iregud

. the selection of treatments whose effects are tstidied,

. the specification of the experimental layout, and

. the assignment of treatments to the experimemigs.u
All these steps are accomplished before any exgatins performed. Experimental Design is a veryt @aea. In this
course, we will be presenting only a very basiooibtiction of this area. There are two types ofglesi

SYSTEMATIC AND RANDOMIZED DESIGNS

In this course, we will be discussing only the mized designs, and, in this regard, it should dted that for the
randomized designs, the analysis of the collectt@ @ carried out through the technique known aslysis of
Variance.
Two of the very basic randomized designs are:

e The Completely Randomized (CR) Design,

e The Randomized Complete

«  Block (RCB) Design
We will consider these one by one. We begin withdimplest design i.e. the Completely Randomizérl)) ([@esign:

THE COMPLETELY RANDOMIZED DESIGN (CR DESIGN)

A completely randomized (CR) design, which is tirepdest type of the basic designs, may be defired design in
which the treatments are assigned to experimemiéd sgompletely at random, i.e. the randomizat®mdne without

any restrictions. This design is applicable in thiddation where the entire experimental matesaiomogeneous (i.e.
all the experimental units can be regarded as k&imndar to each other). We illustrate the concefpthe Completely

Randomized (CR) Design (pertaining to the case ve@®h treatment is repeated equal number of timigs)the help

of the following example.

EXAMPLE
An experiment was conducted to compare the yieldhree varieties of potatoes. Each variety asgassi at random
to equal-size plots, four times. The yields weréodlew:

Variety
A B C
23 18 16
26 28 25
20 17 12
17 21 14
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Test the hypothesis that the three varieties dtpes are not different in the yielding capabditie
SOLUTION

The first thing to note is that this is an examplehe Completely Randomized (CR) Design. We asuiiaing that all
twelve of the plots (i.e. farms) available to us fbois experiment are homogeneous (i.e. similathwggard to the
fertility of the soil, the weather conditions, etand hence, we are assigning the four varieti¢setdwelve plots totally
at random. Now, in order to test the hypothesis tita mean yields of the three varieties of pota®equal, we carry
out the six-step hypothesis-testing procedurej\andyelow:
Hypothesis-Testing Procedure:
i) HO :pA=pB =puC

HA : Not all the three means

are equal

i) Level of Significance:
o =0.05
iii) Test Statistic:
_ MS Treatments

MS Error
which, if HO is true, has an F distribution with = k-1 =3 -1 =2 and2 = n-k = 12 — 3 = 9 degree of freedom

iv) Computations:

The computation of the test statistic presentedv@biovolves quite a few steps, including the foromatof what is
known as the ANOVA Table.

First of all, let us consider what is meant by ANMOVA Table (i.e. the Analysis of Variance Table).

In the case of the Completely Randomized (CR) Deslge ANOVA Table is a table of the type givendvel

ANOVA TABLE IN THE CASE OF THE COMPLETELY RANDOMIZE D (CR) DESIGN

. Sum off Mean
Source of Variation d.g Square$ Squarg ]

Between treatments k-1 SST MST | MST/MSE
Within treatments (Error) n-k SSE MSE --

Total n-1 TSS -- --

Let us try to understand this table step by step:
The very first column is headed ‘Source of Vadatj and under this heading, we have three distoatces
of variation:

‘Total’ stands for the overall variation in the twe values that we have in our data-set.

Variety
A B C
23 18 16
26 28 25
20 17 12
17 21 14

As you can see, the values in our data-set are®30, 17, 18, 28, and so on. Evidently, thera v&riation in these
values, and the term ‘Total’ in the lowest row foé tANOVA Table stands for this overall variation.

The term ‘Variation between Treatments’ standstlier variability that exists between the three \taseof potato that
we have sown in the plots.

(In this example, the term ‘treatments’ standstifierthree varieties of potato that we are tryingdmpare)
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(The term ‘variation between treatments’ pointshi® fact that:

It is possible that the three varieties or, attléa® of the varieties are significantly differefitom each other with
regard to their yielding capabilities. This variipibetween the varieties can be measured by miggsthe differences
between the mean yields of the three varieties.)

The third source of variation is ‘variation withtreatments’. This point to the fact that even ifyoane particular
variety of potato is sown more than once, we dogebthe same yield every time

Variety
A B C
23 18 16
26 28 25

20 17 12
17 21 14

In this example, variety A was sown four times, #melyields were 23, 26, 20, and 17 --- all diffeareEom one
another! Similar is the case for variety B as vaslvariety C. The variability in the yields of \et§i A can be called
‘variation within variety A’.

Similarly, the variability in the yields of varietB can be called ‘variation within variety B’. Als the
variability in the yields of variety C can be callévariation within variety C'. We can say that tterm ‘variability
within treatments’ stands for the combined effetttlee above-mentioned three variations. The ‘vaatwithin
treatments’ is also known as the ‘error variatiohis is so because we can argue that if we aréngothe same
variety in four plots which are very similar to éaather, then we should have obtained the same frimin each plot!

If it is not coming out to be the same every time,can regard this as some kind of an ‘error’.

The second, third and fourth columns of the ANOVaAbTe are entitled ‘degrees of freedom’, ‘Sum of &gs’ and
‘Mean Square’.

ANOVA TABLE IN THE CASE OF THE COMPLETELY RANDOMIZE D (CR) DESIGN

Source of Variation g4 Sumoff Mean E
Square$ Square

Between treatments k-1 SST MST | MST/MSE
Within treatments (Error) n-k SSE MSE --

Total n-1 TSS -- --

The point to understand is that the sources ofatiari corresponding to treatments and error willnbeasured by
computing quantities that are called Mean Squaned, Mean Square’ can be defined as:

Sumof Squares

Degreesof Freedom
Corresponding to these two sources of variationhaee the following two equations:

Mean Square=

1) 'MS Treatment= —SST(rje:\tmen‘t
AND . .
2) 'MS Error'= —SSdEfrror

It has been mathematically proved that, with refeeeto Analysis of Variance pertaining to the Cosigly
Randomized (CR) Design, the degrees of freedonespanding to the Treatment Sum of Squares areakd the
degrees of freedom corresponding to the Error Su8qaares are n-k. Hence, the above two equatiande written
as:

1) 'MS Treatment= —SSTreatmen‘t
k-1
AND
2) 'MS Error'=&tor
n —
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How do we compute the various sums of squares2hrbe sums of squares occurring in the third colofriihe above
ANOVA Table are given by:

1) Total SS=TSS=) > X7 -CF.

]

Z .?

. I

2) SSTreatment SST=-—-C.F.
r

where C.F. stands for ‘Correction Factor’, andiieg by
T 2
CF.=—
n

and r denotes the number of data-values per coliventhe number of rows). (It should be noted tid example
pertains to that case of the Completely Random{@&) Design where each treatment is being repesgeadl number
of times, and the above formulae pertain to thisi@aar situation. With reference to the CR Desigrshould be noted
that, in some situations, the various treatmergsat repeated an equal number of times.

For example, with reference to the twelve plogsr{fs) that we have been considering above, we dwid
sown variety A in five of the plots, variety B ihree plots, and variety C in four plots. Going b&azkhe formulae of
various sums of squares, the sum of squares for isrgiven by

3) SSError =Total SS- SSTreatment
i.e
SSE=TSS-SST

It is interesting to note that,
Total SS = SS Treatment + SS Error
In a similar way, we have the equation:
Total d.f. =d.f. for Treatment + d.f. for Error
It can be shown that the degrees of freedom péntpto ‘Total’ are n - 1.
Now,
n-1 = (k-1) + (n-k)
ie.
Total d.f. =d.f. for Treatment + d.f. for Error
The notations and terminology given in the abovgagigns relate to the following table:

Variety X.2
Total 2 X
A B C
23 (529)| 18 (324)| 16 (256] - | 1109
26 (676)| 28 (784)| 25 (625] -- | 2085
20 (400)| 17 (289)| 12 (144] - 833
17 (289)| 21 (196)| 14 (196] - 926
T, 86 84 67 237 | 4953
T.p2 7396 | 7056 [ 4489 1894 TI
2 Check
> Xj 1804 | 1838 | 1221 495 -
I «—

The entries in the body of the table i.e. 23, 28,27, and so on are the yields of the three vaesieif potato that we
had sown in the twelve farms. The entries writtebriackets next to the above-mentioned data-vateethe squares of

those values.
For example:

529 is the square of 23,
676 is the square of 26,
400 is the square of 20,
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and so on.

Adding all these squares, we obtain:

> > X7 =4953
i i

Variety X.2
Total 2 X
A B C
23 (529 18 (324)| 16 (256] —~ | 1109
26 (676 28 (784)| 25 (625] - | 2085
20 (400)| 17 (289)| 12 (144] - 833
17 (289)| 21 (196)| 14 (196] -- 926
T, 86 84 67 237| 4953
T2 7396 | 7056 | 4489 | 1894} TI
2 Check
> X 1804 | 1838 | 1221| 495 ~"°
I «—

The notation T.j stands for the total of the jtHuron.(You must already be aware that, in genetsd, rows of a
bivariate table are denoted by the letter ‘i’, wdees the columns of a bivariate table are denotdatiéietter .

In other words, we talk about the ‘ith row’, arie tjth column’ of a bivariate table.)The ‘dot’ the notation
T.j indicates the fact that summation has beenezhout over i (i.e. over the rows).
In this example, the total of the values in thstfitolumn is 86, the total of the values in theosélccolumn is 84, and
the total of the values in the third column is 67.

HenceZT.jis equal to 237.

i.e.

Variety X2
Total ZJ; !
A B c
23 (529)| 18 (324)| 16 (256] - | 1109
26 (676)| 28 (784)| 25 (625] - | 2085
20 (400)| 17 (289)| 12 (144] - 833
17 (289)| 21 (196)| 14 (196] -- 926
T, 86 84 67 237| 4953
T2 7396 | 7056 [ 4489 1894 TI
2 Check
> X; 1804 | 1838 | 1221| 49sd ~"°
I «—

>T.jis also denoted by T..

T.. =ZT.j The ‘double dot’ in the notation T.. indicatimt summation has been carried out over i asasgetiver j.
The row below T.j is that of T.j2, and squaring theee values of T.j, we obtain the quantities 73956 and 4489.
Adding these, we obtaliT.j2 = 18941.
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Variety X2
Total ? !
A B C
23 (529)] 18 (324)[ 16 (256)[ -- 1109
26 (676)| 28 (784)| 25 (625)| -- 2085
20 (400)| 17 (289)| 12 (144)| -- 833
17 (289)| 21 (196)] 14 (196)| - 926
T, 86 84 67 237 | 4953
T2 7396 | 7056 | 4489 | 1894f TI
2
> X 1804 | 1838 | 1221 a0sd CheCK
] «—

Now that we have obtained all the required quagjtive are ready to compute SS Total, SS TreatmedtSS Error:
We have

2 2
cr =1 227 _ 4es075
n 12

Hence, the total sum of squares is given by

TSS =) > X?-CF.
i j

=4953-468075
=27225

Also, we have ZT?
SSTreatment SST=-——-CF.
r

-18941 4680.75

=54.5C

And, hence:
SS Error = SSE = TSS - SST
=272.25-5450=217.75

In this example, we have n = 12, and k = 3, hence:

n-1=11,
k-1=2, and n-k=09.
Substituting the above sums of squares and de§femedom in the ANOVA table, we obtain:
ANOVA TABLE
Source of Sum of | Mean | Computed
o d.f.
Variation Squareq Square F
Between
_treatments > 54 50
(i.e. Between
varieties)
Error 9| 217.75
Total 11| 272.25
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Now, the mean squares for treatments and for emervery easily found by dividing the sums of sgsaby the
corresponding degrees of freedom. Hence, we have

ANOVA TABLE
Source of d.f Sum of| Mean | Computed
Variation " | Squareq Square F
Between

_treatments 5 5450 | 27925

(i.e. Between
varieties)

Error 9| 217.75] 24.19
Total 11| 272.25 --

As indicated earlier, the test-statistic appropriat testing the null hypothesis
HO :pA=pB =pC

versus
HA : Not all the three means are equal is:
_ MS Treatments
MS Error

which, if HO is true, has an F distribution with = k-1 =3 — 1 =2 and2 = n-k = 12 — 3 = 9 degree of freedom Hence,
it is obvious that F will be found by dividing thiest entry of the fourth column of our ANOVA Tablg the second
entry of the same column i.e.

_ MS Treatment_ 27.25 _ 113
MS Error  24.19

We insert this computed value of F in the last ooiwf our ANOVA table, and thus obtain:
ANOVA TABLE

Soqrcg of d.f Sum of| Mean Computedl
Variation Squareqd Square F
Between
(o Berween| 2 | 5450 | 27.25 1.3
varieties)
Error 9| 217.75] 24.19 -
Total 11| 272.25 -- --

The fifth step of the hypothesis - testing procedsrto determine the critical region. With refezerto the Analysis of
Variance procedure, it can be shown that it is appate to establish the critical region in suclay that our test is a
right-tailed test. In other words, the critical i@yis given by:

Critical Region:
F>F(k-1,n-Kk)
In this example:
The critical region is F > F0.05 (2,9) = 4.26
vi) Conclusion:

Since the computed value of F = 1.13 does noirfahe critical region, so we accept our null hyptis and
may conclude that, on the average, there is neréifice among the yielding capabilities of the thvageties of
potatoes.

In this course, we will not be discussing the dstaf the mathematical points underlying One-Wayalgis of
Variance that is applicable in the case of the Qetafy Randomized (CR) Design. One important pdiat the
students should note is that the ANOVA techniquederesented here is valid under the followingiagstions:
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*  The k populations (whose means are to be compared)ormally distributed;
« Al k populations have equal variances 0&2 =022 = ... =ok2. (This property is called homoscedasticity)
e The k samples have been drawn randomly and indepégdrom the respective populations.

Next, we begin the discussion of the Randomized @eta Block (RCB) Design:

THE RANDOMIZED COMPLETE BLOCK DESIGN (RCB DESIGN)

A randomized complete block (RCB) design is the ionghich

e The experimental material (which is not homogeneousrall) is divided into groups or blocks in sugh
manner that the experimental units within a paldicblock are relatively homogeneous.

. Each block contains a complete set of treatmemts,ii constitutes a replication of treatments.

e The treatments are allocated at random to the smpetal units within each block, which means the
randomization is restricted.(A new randomizationnigde for every block.)The object of this type of
arrangement is to bring the variability of the exipental material under control.

In simple words, the situation is as follows:

We have experimental material which is not homogeseverall. For example, with reference to thengple that we
have been considering above, suppose that thewploth are closer to a canal are the most fertilespthe ones a little
further away are a little less fertile, and the sl further away are the least fertile.

In such a situation, we divide the experimental emat into groups or blocks which are relatively
homogeneous. The randomized complete block desigerhaps the most widely used experimental deSigon-way
analysis of variance is applicable in case of #r@lomized complete block (RCB) design.

We illustrate this concept with the help of an epéen

EXAMPLE

In a feeding experiment of some animals, four typlestions were given to the animals that werdivia groups of
four each. The following results were obtained

Rations
A B C D
I 32.3] 33.3] 30.8| 29.3
Il 34.0] 33.0] 34.3] 26.0
11 34.3| 36.3] 35.3] 29.8
v 35.0] 36.8] 32.3]| 28.0
\% 36.5| 34.5] 35.8| 28.8

Groups

The values in the above table represent the gaimgights in pounds. Perform an analysis of vaeamed state your
conclusions. In the next lecture, we will discusis example in detail, and will analyze the givextadto carry out the
following test:

HO : pJA=pB =pC =pD

HA : Not all the treatment-means are equal
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LECTURE NO. 44

e Randomized Complete Block Design
. The Least Significant Difference (LSD) Test
. Chi-Square Test of Goodness of Fit

At the end of the last lecture, we introduced thiecept of theRandomized Complete Block (RCB) Desamd we
picked up an example to illustrate the concepthis lecture, we begin with a detailed discussibthe same example:

EXAMPLE

In a feeding experiment of some animals, four typfemtions were given to the animals that werkvia groups of
four each. The following results were obtained:

Rations
A B (3 D
| 32.3|] 33.3] 30.8| 29.3
Il 34.0| 33.0] 34.3| 26.0
1} 34.3| 36.3] 35.3| 29.8
v 35.0] 36.8] 32.3| 28.0
\% 36.5|] 34.5|] 35.8| 28.8

Groups

The values in the above table represent the gain®ights in pounds. Perform an analysis of vagaamd state your
conclusions.

SOLUTION

Hypothesis-Testing Procedure:
ia) Our primary interest is in testing:
HO : pA =pB =pC =pD
HA : Not all the ration-means
(treatment-means
are equal
i b) In addition, we can also test:

HO : pl=pll =pll = plV=pv
H'A: Not all the group-meansblbck-meany are equal

i) Level of significance
o =0.05

iii @) Test Statistic for testing
HO versus HA:

_ MS Treatment
MS Error

which, if HO is true, has
an F-distribution with v1 = c-1=4-1= 3 and v2 =1{(c-1) =(5-1)(4-1) =4« 3 =12
degrees of freedom.

iii b) Test Statistic for testing
H'0 versus HA:

Fo MS Block

MS Error

which, if HO is true, has
an F-distribution with vl =r-1 =5-1= 4 and
v2 = (r-1)(c-1) = (5-1)(4-1) =4 3 = 12 degrees of freedom.

Now, the given data leads to the following table:
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iv) Computations:

; 2
Ration B. B.2 z )(ij
Groups A B C D
323 33 308 293
! (104329) | (1108.89) | (o48.64) | (858.49) | 157 | 1580049 ) 395931
34.00 330 33 26.0
1 (1156.00) | (108900) | (1176.49) | (676.00) | 1273 | 1620529  4097.49
33 363 353 298
W1 (17649) | (131769) | (1246.00) | (sssoa) | 1307 | 1841449] 462831
350 368 323 28.0
Vo) 1225000 | (135424) | (1043.20) | (7ea00) | 1321 | 1745041]  4406.53
365 5 358 288
Voo | (133225) | (119025) | (128164) | (8o0asy | 1306 | 1838736 463358
T, 172.1 1739 | 185 | 1419 6564 | 8625804 | 2172522
T.o | 2061841 | 3024121 | 2830225 | 2013561 | 10838748 .
|
Xz Check
>Xi | 593303 606007 | 5696.15 | 403597 | 21725.22 . -
|
2 T.2
Hence, we have Total SS = Z Z Xij -
n
2
6564
:2172522—u
=2172%22-2154%.05
=18z.17
2
ZT.J- 2
i T.
Treatment SS = -
r n
2
_108387.48 (6564)
5 2C
=21677.50 — 21543.05
=134.45
2
B.
iZ .
Block SS = -
c n
2
_ 86258.04 (6564)
4 20
=2156451-2154:05
=21.46
where c represents the number of observationslpek .e. the number afolumng
And

Error SS= Total SS — (Treatment SS + Block SS)

=182.17 — (134.45 + 21.46)

=26.26

The degrees of freedom corresponding to the vasauoss of squares are as follows:
. Degrees of freedom for treatments: ¢ - 1 (i.e.nilvaber of treatments - 1)
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. Degrees of freedom for blocks:
r - 1 (i.e. the number of blocks - 1)
. Degrees of freedom for Total:
rc - 1 (i.e. the total number of observations - 1)
. Degrees of freedom for error: degrees of freettoriotal minus degrees of freedom for treatmentsus
degrees of freedom for blocks
i.e. (rc-1) - (r-1) - (c-1)
=rc-r-c+1
=(r-1) (c-1)
Hence the ANOVA-Table is:
ANOVA-TABLE

Source of d.f Sum off Mean F
Variation "l Squarep Squard

Between Treatments
(i.e. Between Rations

Between Blocks
(i.e. Between Groups)

Error 12| 26.26 2.19 --
Total 19| 182.17 -- --

v a) Critical Region for Testing HO against HA is givey
F>F0.05 (3, 12) =3.49

3| 134.45 44.82] F1=20.47

4| 21.46 5.36| F=2.45

v b) Critical Region for Testing 19 against HA is given by
F>F0.05 (4, 12) =3.26
vi a) Conclusion Regarding Treatment Means

Since our computed value F1 = 20.47 exceeds thieatrivalue F0.05 (3, 12) = 3.49, therefore wegect the null
hypothesis, and conclude that th&se difference among the meansatfleast twoof the treatments (i.e. the mean
weight-gains corresponding to at least two of #tens are different).

vi b) Conclusion Regarding Block Means

Since our computed value F2 = 2.45 does not exiteecritical value F0.05(4, 12) = 3.26, therefore accept the null
hypothesis regarding the equality of block mearstans conclude that blocking (i.e. thupingof animals) was
actuallynot requiredin this experiment. As far as the conclusion reigaythe block means is concerned, this
information can be used when designing a simil@edrent in the future.

[If blocking is actually not required, then a futuexperiment can be designed according to the GrietplRandomized
design, thus retaining more degrees of freedonkfoor. (The more degrees of freedom we have foorizthe better,
because an estimate of the error variation basedgraater number of degrees of freedom impliesséimate based on
a greater amount of information (which is obviougbod).) ]

As far as the conclusion regarding theatmentmeans is concerned, the situation is as follows:

Now that we have concluded that there is a sicguifi difference between the treatment means (eehave
concluded that the mean weight-gaimét the same for all four rations, then it is obvidhat we would be interested
in finding out, “Which of the four rations productee greatest weight-gain?”

The answer to this question can be found by apglgitechnique known as theast Significant Difference (LSD) Test

THE LEAST SIGNIFICANT DIFFERENCE (LSD) TEST

According to this procedure, we compute #mallestdifference that would be judged significant, aramparethe
absolute values of all differences of means witfTitis smallest difference is called the least ifiggmt difference or
LSD, and is given by:

LEAST SIGNIFICANT DIFFERENCE (LSD):

2AMSE
LSD= tG/Z,(V) f

where MSE is the Mean Square for Error, r is tke sf equal samples, araf2 (v) is the value of t at/2 level taken
against the error degrees of freedam (
The test-criterion that uses the least significhffierence is called the LSD test.

Two sample-means are declared to have come frpuigtions with significantly different means, whitse
absolute value of their differenegceedshe LSD.
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Y,

It is customary tarrangethe sample means in ascending order of magnitutkto draw dine under any pair of

adjacent means (or set of means) that are noffisgmily different.

The LSD test is appliednly if the null hypotheses is rejected in the Analydi¥ariance. We will not be going into the
mathematical details of this procedure, but itseful to note that this procedure can be regardethalternative way

of conducting the t-test for the equality of twqptation means.

If we were to apply the usual two-sample t-testweeld have had teepeatthis procedure quite a few times!

(The six possible tests are:

HO :pA =puB

HO :pA =pC

HO :pA =puD

HO :puB =pC

HO :uB =puD

HO :pC =pD

The LSD test is a procedure by which we can comalathe treatment means simultaneously.
We illustrate this procedure through the above gtam

The Least Significant Difference is given by

IZIMSEi
LSD = tG/Z,(V) f
_ 20219
=T op25(12) T 5
= 2.179,/—2[25'19]

=2.179x0.936
= 204.

Going back to the given data:

Rations

A B C D

| 32.3] 33.3] 30.8] 29.3
Il 34.0| 33.0] 34.3] 26.0
Il 34.3] 36.3] 35.3| 29.8
[\ 35.0| 36.8] 32.3] 28.0
\% 36.5] 345] 35.8] 28.8
Total | 172.1 173.9 168.5] 141.9
Mean | 34.4%234.79 33.70] 28.38

Groups

We find that the four treatment means are:

X, = 3442
Xy = 3478
X = 3370
X, = 2838

Arranging the above meansascendingorder of magnitude, we obtain:
Xo  Xe Xa X
2838 3370 3442 3478

Drawing lines under pairs of adjacent means (@ skimeans) that are not significantly differeng, have:

Xo  Xe Xy X
2838 3370 3442 3478
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From the above, it is obvious that rations C, A &drenot significantly different from each other with redato
weight-gain. The only ration whidh significantly different from the others is ratién
Interestingly, ration D has th@oorestperformance with regard to weight-gain. As su€lour primary objective is to
increasethe weights of the animals under study, then wg reeommendny of the other three rations i.e. A, B and C
to the farmers (depending upon availability, priete,), but we mustotrecommend ration D.
Next, we will consider two important tests basedhan
chi-square distribution. These are:

. The chi-square test gbodness of fit

. The chi-square test afdependence
Before we begin the discussion of these testsisleeview the basic properties of the chi-squastilution:

PROPERTIES OF THE CHI-SQUARE DISTRIBUTION

The Chi-SquarexR) distribution has the following properties:

1. It is a continuous distribution ranging from O .The number of degrees of freedom determinestiapeof the
chi-square distribution. (Thus, there is a différgm-square distribution for each number of degrmfefreedom.

As such, it is a wholéamily of distributions.)

2. The curve of a chi-square distributiorpissitively skewedrhe skewnesdecreasess v increases

0 2 4 6 8 1C 12 14

X2-distribution for various values ofv
As indicated by the above figures, the chi-squastribution tends to the normal distribution as thenber of degrees
of freedom approaches infinity. Having reviewed thesic properties of the chi-square distributiore legin the
discussion of the Chi-Square Test of Goodnesstof Fi

CHI-SQUARE TEST OF GOODNESS OF FIT

The chi-square test of goodness-of-fit is a tedtygiothesis concerned with the comparison of olesefrequencies of
a sample, and the corresponding expected frequehamed on a theoretical distribution. We illugtithis concept with
the help of the same example that we consideréadture No. 28 --- the one pertaining to the fgtiof a binomial

distribution to real data:

EXAMPLE:

The following data has been obtained by tossih@ADED die 5 times, and noting the number of times that w
obtained asix. Fit a binomial distribution to this data.

No.ofSixes| o | 1| 2| 3| 4| d Total
x)
Frequency | 151 56| 74| 39| 18| 1| 200
SOLUTION U)
To fit a binomial distribution, we need to find ncap.

Here n = 5, the largest x-value.
To find p, we use the relationshig = np.
We have:
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No.of Sixes| o 1| 2| 3| 4| d Total
(X)
Fre%;ency 12| 56| 74| 39| 18] 1] 200
fx o | 56| 149 117 72| 5| 398
Therefore:
5 = 2TiXi
25
_ 0+56+148+117+72+5
200
=398_ 199
20C

Using the relationshipx = np,
we obtain

p=199orp=0.398.
Letting the random variable X represent the nunabsixes, the above calculations yield the fitt@abimial
distribution as

b(x ;5,0398) = @ (0399 (0602

Hence therobabilitiesandexpected frequenciese calculated as below:

No. of o Expected
Sixes (x) Probability f(x) frequency
5
0 0 q° =(0602)° =0.07907] 158
S) 5 4
1 L|ap= 50602)* (0398 =0.26136 52.5
5
2 X 9°p? = 14 0602°%(0398% =0.34559 69.1
5
3 2 9%p® = 14 0602)(0398°  =0.22847] 45.7
5 4 4
4 ,|ap =(0602)(0399) =0.07553 15.1
S 5 5
5 5P = (0399 =0.00998 2.0
Total =1.00000  200.0
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Comparing the observed frequencies with the exgdotguencies, we obtain:

No. of Observed Expected
Sixes Frequency Frequency

X O S

0 12 15.8

1 56 52.5

2 74 69.1

3 39 45.7

4 18 15.1

5 1 2.0
Total 200 200.0

The above table seems to indicate that there ismrmoth discrepancy between the observed and thectedpe
frequencies. Hence, in Lecture No.28, we conclutiatlit was a reasonabfjoodfit. But, it was indicated thairoper
comparison of the expected frequencies with themies frequencies can be accomplished by applyieghi-square
test of goodness of .fiThe Chi-Square Test of Goodness of Fit enable® wetermine in anathematicalmanner
whether or not the theoretical distribution fite thbserved distribution reasonably well.
The procedure of the chi-square of goodness & fierysimilar to thegeneralhypothesis-testing procedure:
HYPOTHESIS-TESTING PROCEDURE
Step-1:

Ho : The fit is good

Ha : The fit is not good
Step-2:

Level of Significancea = 0.05
Step-3: Test-Statistic: 2

oylie)
i 0§

which, if HO is true, follows the chi-square dibtition having k - 1 - r degrees of freedom(whereNo. of x-values
(after having carried out the necessary mergers), anchumber of parameters that we estimate from thgkadata).
Step-4: Computations:

No. of | Observed | Expected

Sixes | Frequency| Frequency| o —e | (0 - @)*| (0- 8)%/e
X Oj S
0 12 15.8 -3.8 14.44 0.91
1 56 52.5 3.5 12.25 0.23
2 74 69.1 4.9 24.01 0.35
3 39 45.7 -6.7 44 .89 0.98
4 181 49 1511 174
= 1 } 20 1.9 3.61 0.21

Total | 200 200.0 2.69

IMPORTANT NOTE

In the above table, the category x = 4 has beewgedewith the category x = 5 because of the fadt tthex expected
frequency corresponding to x = 5 was less than 5.
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[It is one of the basic requirements of the chiesgutest of goodness of fit that the expected #aqu of any x-value
(or any combination of x-values) should not be l#san 5.]Since we have combined the category x with the
category x = 5, hence k = 5. Also, since we hatienaesed one parameter of the binomial distribufjioa. p) from the
sample data, hence r = 1. (The other parametealneiady known.)
As such, our statistic follows the chi-distributibaving k- 1 -r=5 -1 - 1 = 3 degrees of fremd&oing back to the
above calculations, the computed value of ourgtattstic comes out to kg = 2.69.
Step-5: Critical Region:
Sincea = 0.05, hence, from the Chi-Square Tables, ivident that the critical region 2 > x20.05 (3) = 7.82
Step-6:
Conclusion:

Since the computed value 2 i.e. 2.69 is less than the critical value 7.8hde we accept HO and conclude
that the fit is good.(In other words, with only 5%k of committing Type-I error, we conclude thhé tdistribution of
our random variable X can be regarded as a binafig&ibution withn =5 and p = 0.398.)
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LECTURE NO. 45

e Chi-Square Test of Goodness of Fit (in contiraratf the last lecture)

. Chi-Square Test of Independence

. The Concept of Degrees of Freedom

. p-value

. Relationship Between Confidence; Interval andd e§Hypothesis
An Overview of the Science of Statistics in Tada¥/orld (including Latest Definition of Statis§t
The students will recall that, towards the endheflast lecture, we discussed the chi-square tegtaminess of fit. We
applied the test to the example where we had fétbthomial distribution to real data, and, sirfee ¢omputed value of
our test statistic turned out to be insignificaherefore we concluded that the fit was good.
Let us consider another example:

EXAMPLE

The platform manager of an airline’s terminal tickeunter wants to determine whether customer asican be
modelled by using a Poisson distribution. The managespecially interested in late-night traffic.
Accordingly, data for the time period of interbsive been collected, as follows:

Number of Frequenc
Arrivals Per Minute q y
84
114
70
60
32
16
15
4
5

400

o~NoOUhWNE O

Is the distribution Poisson?
SOLUTION:

First of all, we fit a Poisson distribution to thven data Because a mean is not specified, it beisstimated from the
sample data. The mean of the frequency distributan be found by using the formula
fx
5 ==X
where n =xf. n
Thus we have the following calculations:

Number of | Frequency
Arrivals
X f X
0 84 0
1 114 114
2 70 140
3 60 180
4 32 128
5 16 80
6 15 90
7 4 28
8 5 40
400 800
Hence
fx
Mean=X = Z = @ =2
n 400

Replacingu by , the formula for the Poisson probabiliies
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(X) — e x> — e"22x
Hence, we obtain: X! x|
Number of Observed Poisson Expected
Customer Frequencies Probabilities Frequencies
Arrivals f(X) 400 f(x)
0 84 0.1353 54.12
1 114 0.2707 108.28
2 70 0.2707 108.28
3 60 0.1804 72.16
4 32 0.0902 36.08
5 16 0.0361 14.44
6 15 0.0120 4.80
7 4 0.0034 1.36
8 5 0.0009 0.36
9 or more 0 0.0002 0.08
400 1 400

Next, we apply the chi-square test of goodnesg at€ording to the following procedure:

HYPOTHESIS-TESTING PROCEDURE

Step-1:
HO : Arrivals are Poisson-distributed.
H1 : The distribution is not Poisson.

Step-2:
Level of Significance: o =0.05
Step-3:Test-Statistic: ~_, _ (0 -&)?
X=X
I 1

which, if HO is true, follows the chi-square dibution having k - 1 - r degrees of freedom; (whereNo. of x-values
(after having carried out the necessary mergensl), e= number of parameters that we estimate ftmsample data)
Step-4Computations:

The necessary calculations are shown in the fatiguable:

Number Observed
of  Frequenc g ECC ©0-e) & (epe

Customer y q y ey

Arrivals o] @
0 84 54.12 29.88 892;3 16.50
1 114 108.28 5.72 32.72 0.30
2 70 108.28 -38.28 1465-63 13.53
3 60 72.16 -12.16 147.;3 205
4 32 36.08 -4.08 16.65 0.46
5 16 14.44 1.56 2.43 0.17
6 15 4.80
4 4 5q 1.36 660 17.40 302.67 45 87
8 5 0.36

9 or more 0 0.08

400 400 X°=78.88

Virtual University of Pakistan 332



STA301 - Statistics and Probability Y

With reference to the above, it should be notet| tiace some of the expected frequencies arethessthe required
minimum of 5, it became necessary to combine sdntieose classes. Combination is best accomplisheéimg from
the bottom up.
In order that we obtain a number greater thahé|ast four expected frequencies had to be cordbine
Hence, the effective number of categories becafnes
Step-5:
Determination of the Critical Region:
Since the effective number of categories becomes 7
Therefore k = 7.
Also, since the one lone parameter of the Poisgritdition has been estimated from the sample, dhetace r = 1.
Hence: Our statistic follows the chi-square disttibn having
k-1-r=7-1-1=5
degrees of freedom.
The critical region is given by
X2 =x20.05 (5) = 11.07
CRITICAL REGION:

0.05

0 11.07 N 78.88
Step-6:

Conclusion:

Since the computed value of our test statistic7i888 is much larger than the critical value 11tb@refore, we reject
HO and conclude that the distribution is probalady a Poisson distribution with parameter 2.

(With only 5% risk of committing Type-1 error, werlude that the fit is not good.)

In fact, the computed value of our test statisiic ¥8.88 is so large that it is possible that éf kad set the level of
significance at 1%, even then it would have excddte critical value. The students are encouragethéck this up
themselves. If the computed value does fall indthitical region corresponding to 1% level of sigraince, then our
result is highly significant

RATIONALE OF THE CHI-SQUARE TEST OF GOODNESS OF FIT

(0i - & )2

Itis clear that X ‘= Z ) will be a small quantity whell the oi's are close to the corresponding ei’s.
(In fact, if the observed freqdencies are exadilyad to the expected ones, theghwill be exactly equal to zero.)

Thex?2 - statistic will become larger when the differesdetween the oi's and ei have become larger., Thus
X2 measure the amount of deviation (or discrepabetyeen the observed and the expected results.

ASSUMPTIONS OF THE CHI-SQUARE TEST OF GOODNESS OF HT

While applying the chi-square test of goodnesstp€értain requirements must be satisfied, thfeghoch are as
follows:
1. The total number of observations (i.e. the samigke) should be at least 50.
2. The expected number ei in any of the categoriesldmot be less than 5. (So, when the expectegiércy ei in any
category is less than 5, we may combine this cayegith one or more of the other categories to get 5.)
3. The observations in the sample or the frequerafiise categories should be independent.

Next, we begin the discussion of the Chi-Squarg d&Independence:
In this regard, it is interesting to note thatn¢s the formula of chi-square in this particulanaiion is very similar to
the formula that we have just discussed), therefbrechi-square test of independence can alsedaeded as a kind of
chi-square test of goodness of fit. We illustrdiis toncept with the help of an example:
EXAMPLE

A random sample of 250 men and 250 women were ghaketo their desire concerning the ownership qel
computers. The following data resulted:

Men| Women| Total
Want PC 120 80 200

Don’'t Want
PC 130 170 300

Total] 250 250 500
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Test the hypothesis that desire to own a persamapater is independent of sex at the 0.05 levsigidificance.

SOLUTION

i) HO : The two variables of classification (i.e. denand desire for PC) are independent, and
H1 : The two variables of classification are notdependent.

i) The significance level is set at o =0.05.

2
i) The test-statistic to be used)(52 =>> (Oij - qj) /e”-
i

This statistic, if HO is true, has an approximdiesguare distribution with (r - 1) (c - 1) = (4} (2 - 1) = 1 degrees of
freedom.
iv) Computations:

In order to determine the valuex#, we carry out the following computations:
The first step is to compute the expected frequsndihe expected frequency of any cell is obtainecdhultiplying the
marginal total to the right of that cell by the mimal total directly below that cell, and dividitigis product by the

o e e, = 200250 0
500
(2000250 _, 5
500
= (300)(250) _ 150,
500
and
- (00(250) _,
50C

Hence, we have:
Expected Frequencies;

Men | Women| Total
Want PC 100 100 200

Don’t Want
PC 150 150 300

Total| 250 250 500

Next, we construct the columns of oij - eij, (0gif)2 and (oij - €ij)2 eij, as shown below:

Observed| Expected
Frequency Frequency o;—¢ |(aj—&)?| (0;—&)%e

Ojj Gi
120 100 20 400 4.00
130 150 -20 400 2.67
80 100 -20 400 4.00
170 150 20 400 2.67

x?=13.33

2 _
Hence, the computed value of our test-statisticesoout to be X = 1333
v) Critical Region:
X2 2X20.05(1) = 3.84
Vi)
Conclusion:
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Since 13.33 is bigger than 3.84, we reject HO anttlude that desire to own a personal computearssex are
associated. Now that we have concluded that geamtbdesire for PC are associated, the naturaliqodst “Which
gender is it where the proportion of persons wanéifPC is higher?” We have:

Men| Women| Total
Want PC 120 80 200

Don’'t Want
PC 130 170 300

Total| 250 250 500

A close look at the given data indicates clearat the proportion of persons who are desirous afiogva personal
computer is higher among men than among women.

And, (since our test statistic has come out toigpeifecant), therefore we can say that the proporof men wanting a
PC is significantly higher than the proportion admen wanting to own a PC.

Let us consider another example:

EXAMPLE

A national survey was conducted in a country t@awbinformation regarding the smoking patternshef adults males
by marital status. A random sample of 1772 citizel® years old and over, yielded the followingadat

SMOKING PATTERN
Total Only Regular || Total
MARITAL STATUS || Abstinence | attimes | Smoker

Single 67 213 74 354

Married 411 63 129 1173

Widowed 85 51 7 143

Divorced 27 60 15 102
Total 590 957 225 1772

Use this data to decide whether there is an aggwtiaetween marital status and smoking patterhs.skudents are
encouraged to work on this problem on their ownl, @ndecide for themselves whether to accept ectehe null
hypothesis.(In this problem, the null and the akive hypotheses will be:

HO: Marital status and smoking patterns are siedidy independent.

HA : Marital status and smoking patterns are tatistically independent.)
This brings us to the end of the series of togies were to be discussed in some detall for thissmon Statistics and
Probability. For the remaining part of today’s le€t, we will be discussing some interesting andoirtgnt concepts.
First and foremost, let us consider the concept of

DEGREES OF FREEDOM

As you will recall, when discussing the t-distriloutt, the chi-square distribution, and the F-disttibn, it was
conveyed to you that the parameters that existseirequations of those distributions are knowneageks of freedom.
But the question is, ‘Why these parameters aredalegrees of freedom?’ Let us try to obtain amvanso this
guestion by considering the following:

Consider the two-dimensional plane, and considgraaght line segment in the plane. If one edgenefline
segment is fixed at some point (x0, y0), the liegrsent can be rotated in the plane such thatxbhd #dge stays in its
place. In other words, we can say that the linenseq is free to move in the plane with one restiictHence, if we fix
one end-point of the line segment, then we arenliéft one degree of freedom for its movement. Neahsider the
case when we fix both end-points of the line segrrethe plane. In this case, both degrees of fseedre lost, and
therefore the line can no longer move in the pl&u, if we view the above situation with refereroghe three-
dimensional space --- the one that we live in e-nete that the whole plane (containing the fixed segment) can
move in three dimensions, and hence, we have apeeef freedom for its movement. Let us try toenstind this
concept in another way: Suppose we have a samgle®h = 6, and suppose that the sum of the savaples is 20.
That is, we have the following situation: Our Saenpl
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Sr. No. Value
1
2
3
4
5
6
Total 20

Now, the point is that, given this total of 20w choose the first 5 values freely, we are nat feechoose the sixth
value. Hence, one degree of freedom is lost. Thietran also be explained in the following altéivewway. Given
that the sum of the six values is 20, if we havevidedge of the first five values, but the sixthuals missing, then we
can re-generate the sixth value. This can alsxpeessed as follows.

If there are six observations and you find theimsnext, you throw away one of the six observatdhen,
you can re-generate that observation (becausedétht that you have already computed the sum).
Since, the number of values that can be re-gerkimtane, hence, the degrees of freedom are n rimels
(The one which can be re-generated is not thelmtente can choose freely.)
Going back to sampling distributions such as tlkstribution, the chi-square distribution and thelitribution,
‘degrees of freedom’ can be defined as the numbeabservations in the sample minus the number @iufation
parameters that are estimated from the sample(fitata those observations). For example, in lecturmber 39, we
noted that the statistic follows the t-distributic@ving n-1 degrees of freedom.

_X~Ho
t=—r0
S
A n
Here n denotes the number of observations in aupka and since we are estimating one populaticarpeter i.ec

from the sample data, hence the number of degfdesealom is n-1.
Similarly, referring to lecture number 42, the stot$ will recall that it was stated that the st'missl_

2
Follows the F-distribution having (n1-1, n2-1) degs of freedom S2
Here n1 denotes the number of observations initbesample, and since we are estimating one pdearoéthe first
population i.ec12 from the sample data, hence the number of degrefteedom for the numerator of our statistic is
nl minus one. Similarly, n2 denotes the numberbsieovations in the second sample, and since westiraating one
parameter of the second population 622 from the sample data, hence the number of degk&eedom for the
denominator of our statistic is n2 minus one. Idion, in today’s lecture, you learnt that thetistic

2ofsloiaf

i=1j=1 e|j

follows the chi-square distribution having (r-1X¥-degrees of freedom. Let us try to understarsl plint: Consider
the 2x 2 contingency table ,similar to the one that wd lmathe example regarding the desire for ownersiiip

personal computer. In this regard, suppose thédtave two variables of classification, A and B, &nel situation is as
follows:

Ay As Total

B1 200
B> 300
Total| 250 250| 500

The point is that, given the marginal totals are ghand total, if we choose the frequencies offitlsé cell of the first
row freely, we are not free to choose the frequesfayne second cell of the first row. Also, givéretfrequency of the
above-mentioned first cell, we are not even freghimose the frequency of the second cell of tts¢ éiolumn.

Not only this, it is interesting to note that, givthe above, we are not even free to choose tiggdrey of
the second cell of the second row or the secondnaool'Hence, given the marginal and grand totals hewe only
degree of freedom (i.e. 1 =X 1 = (2-1)(2-1) degrees of freedom).A similar sitoa holds in the case of a 2 x 3
contingency table. The students are encourageaio @n this point on their own, and to realize teemselves that, in
the case of a 2 x 3 contingency table, there €Rist1) ( 3 - 1) = 2 degrees of freedom . Next,Ustconsider the
concept of p-value:

You will recall that, with reference to the concepthypothesis-testing, we compared the computéabvaf
our test statistic with a critical value. For exdeppn case of a right-tailed test, we rejectedib# hypothesis if our
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computed value exceeded the critical value, andagepted the null hypothesis if our computed valueed out to be
smaller than the critical A hypothesis can alsddsted by means of what is known as the p-value.

P-VALUE

The probability of observing a sample value asesmér as, or more extreme than, the value obserixgh that the null
hypothesis is true. We illustrate this concept whith help of the example concerning the hourly wagfecomputer
analysts and registered nurses that we discussedearlier lecture. The students will recall &t example was as
follows:

EXAMPLE

A survey conducted by a market-research organizditie years ago showed that the estimated houalyerfor
temporary computer analysts was essentially thes senthe hourly wage for registered nurses. Tlas, yerandom
sample of 32 temporary computer analysts from actios country is taken. The analysts are contdntedlephone
and asked what rates they are currently able @irobit the market-place. A similar random sampl84fegistered
nurses is taken. The resulting wage figures atediin the following table.

Computer Analysts Registered Nurses

$24.10 $25.00 $24.25| $20.75 $23.30 $22.75
23.75 2270 21.75] 23.80 24.00 23.00
2425 21.30 22.001 22.00 2175 21.25
22.00 2255 18.00] 21.85 21.50 20.00
2350 23.25 2350 24.16 20.40 21.75
22.80 2210 22.70] 21.10 23.25 20.50
2400 2425 21.50| 23.75 19.50 22.60
23.85 2350 23.80] 22.50 21.75 21.70
2420 2275 25.60] 25.00 20.80 20.75
2290 23.80 24.10] 22.70 20.25 22.50
23.20 23.25 22.45
23.55 21.90 19.10

Conduct a hypothesis test at the 2% level of sicgriice to determine whether the hourly wages ottdmeputer
analysts are still the same as those of registauesks. In order to carry out this test, the Nod Alternative
Hypotheses were set up as follows:

Null and Alternative Hypotheses:

HO:pl-p2=0

HA:pl-p2%0

(Two-tailed test)

The computed value of our test statistic came @bet3.43, whereas, at the 5% level of significatfee critical value
was 2.33, hence, we rejected HO.

Z

Zo1=-2.33 Z=0 Zo1=+2.33
Calculated Z = 3.43
[ [ Xl_iz
M1 —Hp =0 X, - X, =115

Hence, we concluded that there was a significdferdnce between the average hourly wage of a tesmpoomputer
analyst and the average hourly wage of a tempaoegyigtered nurse. This conclusion could also haenlveached by
using the

P-VALUE METHOD
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I. Looking up the probability of Z > 3.43 in the atesle of the standard normal distribution yieldsaaea of .5000 —
.4996 = .0004.

II. To compute the p-value, we need to be concertidgdtie region less than —3.43 as well as the regreater than
3.43 (because the rejection region is in both)tails

p-value = 0.0004+0.0004 = 0.0008

ey =000
a _35: _
255 025 \ 025
-3.43 -1.96 0 1.96 343 Scale of z
m— m—> D E—— —
Rejection Reaior Rejection Reaior

The p-value is 0.0004 + 0.0004 = 0.0008. Sinceuhise is very small, it means that the result thatave obtained in
this example is highly improbable if, in fact, thell hypothesis is true. Hence, with such a sipalélue, we decide to
reject the null hypothesis.

The above example shows that: The p-value is aeptppf the data, and it indicates “how improbaktleé obtained
result really is. A simple rule is that if our plva is less than the level of significanceghen we should reject HO,
whereas if our p-value is greater than the leveligiificance:, then we should accept HO. (In the above exanopte,
0.02 whereas the p-value is equal to 0.0008, herceject HO.)

RELATIONSHIP BETWEEN CONFIDENCE INTERVAL AND TESTS OF HYPOTHESIS

Some of the students may already have an ideattbet exists some kind of a relationship betweencinfidence
interval for a population paramet@rand a test of hypothesis ab@ufAfter all: When deriving the confidence interval
for y, the area that was kept in the middle of the saglistribution of ~ X was equal to Ir so that the area in each
of the right and left tails was equaldé2. And, when testing the hypothesis HO = nu0 versus HA p # 0 at level of
significancea, the area in each of the right and left tails wgsin equal tax/2.)Hence, consider the following
proposition: Let [L, U] be a 100(1 a)% confidence interval for the parame@iThen we will accept the null
hypothesis HO 6 = 80 against H1 6 # 60 at a level of significance if 60 falls inside the confidence interval, bub@
falls outside the interval [L, U], we will rejectdn the language of hypothesis testing, the ¢} 100% confidence
interval is known as the acceptance region andrélgeon outside the confidence interval is called thjection or
critical region. The critical values are the emihgs of the confidence interval. The studentsesmeouraged to work on
this point on their own. As we approach the enth&f course, we present an Overview of the Sciefic@tatistics in
Today’'s World: Statistics is a vast discipline! tinis course, we have discussed the very basic andafmental
concepts of statistics and probability. But, th@re numerous other topics that could have beenstied if we had the
time. We could have talked about the Latin Squaesi@h, we could have considered Inference RegaReggession
and Correlation Coefficients, we could have disedddon-Parametric Statistics, and so on, and $i.for

The students are encouraged to study some of tduesepts on their own --- as and when time permiti order to
develop a better understanding and appreciatidgheoimportance of the science of Statistics. |s tuurse, numerous
examples were discussed and many numerical proMemespresented.

The solutions of these problems were presente@tail, and the various steps were worked out.oingiso,
the purpose was to develop in the students a batigerstanding of the core concepts of the varteakniques that
were applied. But, it is interesting and usefuhtite that, a lot many of these numerical problearstze solved within
seconds by using the wide variety of statisticatkpges that are available. These incl&RSS, SAS, Statistica,
Statgraph, Minitab, Stata, S-Plus, etc.(The students are welcome to try out some of themekages on their
own.)Towards the end of this course, we presenpbtiee latest definitions of Statistics:

LATEST STATISTICAL DEFINITION

Statistics is a science of decision making for gowe the state affairs. It collects analyzes, ng&sa monitors,
interprets, evaluates and validates informatioati§ics is Information Science and InformationeBcie is Statistics. It
is an applicable science as its tools are appliedl sciences including humanities and socialremzs.

- THE END -
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