Software Requirements and Specification

Overview

(WEEK 01)
Why this course needed?

Let’s visualize how it is difficult to understand others point of view

/}

I

(}

!

How the customer How the project leader
explained it anderstood it

?What the customer
really needed

the project was
documented

'How the analyst
‘designed it

Course Learning Objectives

o To understand the role of Software Requirement and Specification (SRS) in software
projects.

o To understand the essential nature of SRS.

o To study current techniques, notations, methods, processes and tools used in SRS.

o To gain practical experience in writing of the SRS document.

Course Evaluation
o Assignments

o Discussion/Presentation

o

Quizzes
o Mid-term exam and
o Final term exam

Course Textbooks
> Requirements Engineering: Processes and Techniques, Gerald Kotonya and

Sommerville, John-Wiley Sons, 1998 (or Latest Edition).

o Software Requirements, Karl E. Wiegers, Microsoft Press, 2003(or Latest
Edition).

o Software Requirements Specification, David Tuffley, CreateSpace Independent
Publishing Platform, 2010 (or Latest Edition).

o System Requirements Engineering, Loucopoulos and Karakostas, McGraw-Hill,
1995 (or Latest Edition).

Topics to be Covered

o Software Requirement basic concepts

What, Why and Who
o SRS processes

Sequence of activities that need to be performed in the requirement phase
o Requirement Elicitation

Process of discovering, reviewing, documenting, and understanding the user's
needs and constraints for the system.

> Requirement Modeling
Visualization of requirements for better understanding and analysis
o Requirement Analysis

Refining the user's needs and constraints

o Requirement Specification

Process of documenting the user's needs and constraints clearly and precisely.

o Requirement verification and validation

Process of ensuring that the system requirements are complete, correct, consistent,

and clear.
> Requirement Management
Scheduling, coordinating, and documenting the requirements engineering
activities
o Requirement Traceability
If the source of the requirements can be identified

Introduction
» What is a Requirement?
o Something required, something wanted or needed
o A statement of a system service or constraint
o A condition or capability that must be possessed by a system (IEEE)
» Why requirement is needed?

o Requirements form the basis for all software products

Requirement Challenges
» Challenges

o Necessarily involves people interaction

o Cannot be automated

» Why itis hard to Understand Requirements?
o Visualizing a future system is difficult
o Capability of the future system not clear, hence needs not clear
> Requirements change with time

Requirement Task

» Input
o Users need in mind of people

» Output

o precise statement of what the future system will do

Requirement Examples

o The system shall allow users to search for an item by title, author, or by
International Standard Book Number

o The system’s user interface shall be implemented using a web browser

Requirement Engineering (RE)
» What is a Requirement Engineering?
o Requirement Engineering is a new area which is started in 1993.
o The first International symposium was held On RE in 1993.

o Itis the process, which is used to determine the requirements for a software
product systematically.

» What is a Requirement Engineering?

o The development and use of technology effective to elicit, specify and analyse
requirements from stakeholders (clients/users) that shall be performed by a
software system

Importance of RE

’

o “26% of the Software projects were considered a success.’
Meaning that 74% have FAILED!

Standish Group, CHAQOS
Report, 2000

o “56% of the errors in a software can be traced back to the requirements phase”

Tom De Marco (a US
Software Engineer)

o The hardest part of building a software system is deciding precisely what to build.

> No other part of the conceptual work is as difficult as establishing the detailed
technical requirements, including all of the interfaces to people, to machines, and
to other software systems.

> No other part of the work so cripples the resulting system if done wrong.
o No other part is more difficult to rectify later
(Fred Brooks)
o Software complexities
o Frequent change in user requirements
o Qutsourcing offshore projects
o Cost of fixing errors

o Causes of failure

(WEEK 02)

Characteristics of Good Requirements
» How to judge good and bad requirements?
o There are several criteria need to meet for good requirements.
o Usually overlooked in requirement process

o An excellent source to measure projects quality and progress.

» How to judge good and bad requirements?
o Characteristics of requirements vs. Characteristics of Requirement Specification.

> Meaning become somehow different when considering a single requirement or a
set of requirements i.e. SRS

Key characteristics of good requirements
o Feasible
> Valid
o Unambiguous
o Verifiable
o Modifiable
o Consistent
o Complete and

o Traceable

Feasible

Requirement Feasibility

» Also considered as Realistic or possible

o Requirement is feasible if it is implementable within the given constraints or
resources like budget, time and available technology etc.

» Example:

o Requirements to handle 10000 transactions/second might be feasible in given
current technologies but might not be feasible with agreed platform or technology.

Valid

Requirement Validity
» Normally termed as correct

» Requirement should be valid if and only if the requirement is one that system
shall meet.

» Validity can be done by reviewing with key stakeholders who decide the success
or failure of project

» “must” and “nice to have” requirements should clearly be demarcated

» Example

o Car rental prices shall show all applicable taxes (including 6% state tax).

> Here mentioning 6% tax is incorrect because it is dependent

Unambiguous

Unambiguous Requirements

o

If a requirement has only one interpretation then it is called unambiguous
requirements

Source of ambiguity is:
Natural language
Ambiguity level shows the quality of requirements

Can effect project schedule and budget

» Example:

o]

Ambiguous statement:
“The data complex shall withstand a catastrophe (fire, flood).”
Unambiguous statement:

The data complex shall be capable of withstanding a severe fire. It shall also be
capable of withstanding a flood

Verifiable

Verifiable requirements

o]

Also termed as testable requirements

Requirements are verifiable if the developed system or application can be tested
to ensure that it meets the requirements.

But product features are not easy to be verified

o Proper analysis is needed to make it testable

» Example:
o The car shall have power brakes.
o Abstract so Not testable
o Detailed testable requirement:

o The car shall come to a full stop from 60 miles per hour within 5 seconds.

Modifiable
Requirements Modifiability

o Requirements are modifiable if any changes can be made to the requirements

easily, consistently and completely without any changes to the existing structure
and style of document.

o Redundancy is a key factor

Consistent
Consistent Requirements
o A relationship among two or more requirements

o Arequirement is consistent if it does not contradicts or in conflicts with other
requirements

o These requirements should either be external documents, standards or other
requirements.

o Example:
o Dates shall be displayed in the mm/dd/yyyy format.
o Dates shall be displayed in the dd/mm/yyyy format.

o Both internal and external consistency is required

10

Complete

Complete Requirements

o

A requirement should be present for all conditions that can occur.
Very difficult to Check

Can effect project schedule and budget

There is no way to be sure that all requirements has been captured

It’s because user can add new requirements at the end of the requirement
engineering phase.

Traceable

Traceable requirements

[e]

References

Requirements are traceable if the source of the requirements can be identified

It is the ability to describe and follow the life of requirements in forward and
backward direction

Why tractability:
Needed for requirement management and project tracking

If requirements are atomic and having unique id then it would be traceable.

There are no sources in the current document.

11

(WEEK 03)

Kinds of Software Requirements

o

Functional requirements
Non-functional requirements
Domain requirements
Inverse requirements

Design and implementation constraints

Functional requirements

o

o

o

Statements describing what the system does
Functionality of the system

Functional requirements should be complete and consistent

» Example

o]

The user shall be able to search either the entire database of patients or select a
subset from it (admitted patients, or patients with asthma, etc.)

Non-functional requirements (NFR)

» What are Non-functional Requirements?

o]

o]

Quality factors, design criteria and metrics.
Non-functional requirements defines how the system suppose to be.
Most non-functional requirements relate to the system as a whole.

They include constraints on timing, performance, reliability, security,
maintainability, accuracy, the development process, standards, etc

Often more critical than individual functional requirements

Domain requirements

12

> Requirements that come from the application domain and reflect fundamental
characteristics of that application domain

o These can be both the functional or non-functional requirements
o Example

o Most banks do not allow over-draw on most accounts, however, most banks allow
some accounts to be over-drawn

Inverse Requirements
o They explain what the system shall not do.
o Many people find it convenient to describe their needs in this manner

» Example

> The system shall not use red color in the user interface, whenever it is asking for
inputs from the end-user

Design and implementation constraints
o They are development guidelines within which the designer must work
o These requirements can seriously limit design and implementation options
» Example
o The system shall be developed using the Microsoft Dot Net platform

o The system shall be developed using open source tools and shall run on Linux
operating system

References
Software Requirements: Objects, Functions, and States by A. Davis, PH, 1993

Software Engineering 6th Edition, by I. Sommerville, 2000

Requirement Engineering (RE) Process

13

» What is process?
o A process is an organized set of activities, which transforms inputs to outputs
o Processes document the steps in solving a certain problem
» Why process?
o They allow knowledge to be reused
o Processes are essential for dealing with complexity in real world
Process
» Example
o An instruction manual for operating a microwave oven
o An instruction manual for assembling a computer or its parts
Software Processes
o Software engineering, as a discipline, has many processes

o These processes help in performing different software engineering activities in an
organized manner

» Examples
o Software engineering development process (SDLC)
o Requirements engineering process
o Design process

o Quality assurance process

References

Requirements Engineering: Processes and Techniques’ by G. Kotonya and I. Sommerville,
John Wiley & Sons, 1998

Requirement Engineering (RE) Process

14

» What is RE process?

o The process(es) involved in developing the system requirements collectively
called RE process(es)

» Which process to be used?
o depends on:
o application domain
o the people involved and
o The organisation developing the requirements.

RE Process

o Generic activities which is common to all processes
o Requirements elicitation
o Requirements analysis
o Requirements validation

> Requirements management.

Input and Output to RE Processes

15

Existing System Information

Stakeholder Needs

_

Agreed Requirements

A 4

Organization Standards

3 e

Engineering Process

Requirements System Specifications

Regulations

Domain Information

.

System Models

RE activities (Linear Model)

x_ -

Requirements
Elicitation

., &

_— L

Requirements
Analysis and
Negotiation

Requirements Requirement
specification validation

User Needs,

Domain Information,
Existing System
Information,
Regulations,
standards, Etc.

L Agreed
Requirements Requirements
Document - —=

16

RE activities (Spiral Model)
A

P

;

Requirements L—1 . Requirements Analysis
Elicitation & Negotiation
wdhww
\ \ X / / /
Requirements Requirements
Validation / Documentation

S~

System Requirements and Design

v

References

Requirements Engineering: Processes and Techniques’ by G. Kotonya and I. Sommerville,
John Wiley & Sons, 1998

Requirements Engineering Processes, Tools/Technologies & Methodologies S. Arif et al.

(WEEK 04)

17

Requirements Elicitation Techniques
* Requirements Elicitation
» Purpose of Requirements Elicitation
+ Basic Requirements to use
» Types of Requirements Elicitation Techniques
+ Capability of Requirements Elicitation Technique

» Pros and Cons of different elicitation techniques
Requirements Elicitation

» Requirements Elicitation (RE) is defined as the process of obtaining a comprehensive
understanding of stakeholder’s requirements

* RE s the initial and main process of requirements engineering phase.
* RE is acomplex process

» Criteria for obtaining High quality requirements

Requirements Elicitation methods Overview

* Interviews, Questionnaires, Observation, Joint Application Development (JAD),
Brainstorming etc.

* Which one is best?
* RE is considered an incomplete process in Requirement Engineering.

« Applying inappropriate techniques

Requirements Elicitation techniques

* Procedures to obtain user requirements, implement in the system to fulfill user’s
requirements.

» Selection of appropriate elicitation technique
» Factor (Business procedures, resources available, project type, individual preference etc.)
» Characteristics of RE technique

18

* Type of Application

Classification of different requirements elicitation techniques
« 1) Traditional Technique
Interviews, Questionnaires/Survey, and Document Analysis.
+ 2) Contextual Techniques
Observation, Ethnography and Protocol Analysis.
» 3) Collaborative/Group Techniques
Prototyping, Joint Application Development, Brainstorming, and Group Work
4) Cognitive Techniques

Laddering, Card Sorting, Repertory Grids and Class Responsibility Collaboration

Interviews
» Basic concepts
Verbal method, easy and effective, most employed
Types of Interviews:
Structured or Closed Interviews:
General characteristics
Predefined questions, quantitative data, No generation of new idea,

Pros:

* No biasing ,Few additional questions may be added to further add clarification, Interview

can be repeated
Cons:

* interviewee may be uncomfortable ,

Semi-structured Interviews

19

Pros:

Cons:

Combination of predefined and unplanned questions.

Consistency,

interviewee can share new ideas

Time consuming, interviewer may lose its focus ,Training required,

Findings are hard to generalize

Unstructured or Open Interviews

Pros:
Cons:

informal interview containing unplanned questions, Producing qualitative data

New ideas and opinions are generated.

Due to informal approach interviewer may feel ease to properly answer questions.

Interviewer can be biased in asking questions.

Difficult to repeat in case data reliability is checked.

Summary: Interviews

Advantages:

Good for complex topic, Rich in information, Ambiguities are clarified. Interviewer can
analyze emotions .Non-responsiveness remains low. Provides overview of the whole
system.

Disadvantages:

Small number of people involved, Information cannot be gathered from large population,
Quiality of data gathered depends on the skills of interviewer,

Document Analysis

Analyzing and gathering information from existing documents

20

Pros:

Effective to initiate requirements elicitation process
Why use this technique?

An expert needs to study domain information thoroughly for the purpose of adapting
when existing system needs to be replaced or enhanced.

Design documents, templates and manuals of existing systems.

- Helpful when stakeholders and users are not available.

- Helps business analyst to get proper understanding of the organization before meeting
the stakeholders there.

- Provides useful historical data.
- Can be useful to frame questions for interviews.
- Can be used for requirements reuse.

- Inexpensive technique.

- Time consuming to find information from huge amount of documentations.
- Sometimes valid information may not be available i.e. documents may be outdated.
- Periodic updation of documents is required.

- Information might be incomplete.

Questionnaires/Surveys

Pros:

cheapest way of eliciting requirements
When to use this technique?
No face to face

collect requirements from a larger group of population distributed over a large
geographical area and from different time zones

Questionnaires must be clear, well-defined and precise besides including the domain
knowledge

21

* - Reach large number of people within a short time.

» - Useful when same question is asked to large number of people.

» - No biasing occurs.

* - Itiseconomical.

» - Easy because multiple choice questions or true false or fill in the blanks are included.
Cons:

« - Cannot get further clarification regarding the problem what analyst actually wants from
the user.

* - Questions can be misinterpreted.

* - Sometimes useful feedback isn’t received.

» - To get further information other techniques like interviews can be used as follow ups.
« - Sometimes question ambiguities may arise.

» - Used for general purpose software.

Introspection

» Analysts work for what they imagine and observe by themselves how a system design
should be.

« This technique is effective with users who have a lot of experience of their own fields but
have less knowledge about the other fields as well as the new system.

Pros:

» - There are almost no costs for implementing this technique.

« - Easy to implement.

» - Itcan act as a good initial step to start requirements elicitation.
Cons:

« - Itis hard for analysts to imagine the environment in which the new system works.

22

* - It doesn’t allow discussion with stakeholders and other experts. Therefore, it is not
encouraged if not used in combination with other techniques.

» - Analysts and stakeholders need to be well known about the domain.

(WEEK 05)

Contextual Techniques

23

Techniques in this category are Observation, Ethnography and Protocol Analysis.
Observation/Social Analysis :

The requirements engineer observes the user’s environment without interfering in their
work.

This technique is used when customer is not able to explain what they want to see in the
system, how they work and when some ongoing processes are to be monitored.

Combination with other requirements elicitation techniques like interviews.
Passive observation

Active observation

Observation

Pros:
» - Authentic and reliable because analysts by himself goes to observe the environment.
» - Can be useful to confirm and validate requirements collected through other methods.
« - Itis inexpensive method.
» Gives idea about how users will interact with the system.
» - Helpful in work measurements i.e. how long particular task takes to be done
Cons:
« - All the requirements cannot be checked in just a single session; multiple sessions may
be required.
» - Users can behave indifferently while they are interrupted for asking questions in active
observation.
* - In passive observation, it is difficult for analyst to make out why some decisions are
made.
* - Itistime consuming
Ethnography

Study to understand Relationships between actors, workplace

24

* Used in combination with other elicitation techniques like interviews and questionnaires

Pros:

- Helps to discover certain features of a work place in a shorter time period.

» - Helps understand how people work in an organization and how they interact with each
other.

- Doesn’t need much resources to be effective.

* - Helps reveal critical events not observed by any other technique.

- Useful in validating requirements
Cons:

» - There is no detailed guide on how to perform ethnographic technique effectively and
therefore, it all depends on the skills of the person performing it, the ethnographer.

» - It requires engineers to have a lot of experience to perform it.

» - New and unique features added to the system might not be discovered.
» - Fails to produce desirable results due to diverse population.

» - Focuses mainly on end-users.

* - Sometimes it can be time consuming.

* . Different backgrounds of users and ethnographers can result in misunderstanding
problems between them.

Collaborative/Group Techniques

» Group elicitation techniques involve teams or groups of stakeholders who applying their
individual expertise on a particular issue agree upon a set of decisions

* Prototyping :
» Aniterative process
Pros:
» - User involvement during development process.
* - Allows early user feedback for requirements refinement.

» . Saves development time and cost.

25

» - Users and analysts get better understanding of the system.
Cons:

« - The disadvantage is that when users get used to particular kind of system they often
resist changes.

« - Effort and cost estimation may get high as calculated earlier.
» - For complex systems, it can be time consuming.
Joint Application Development (JAD)

» JAD sessions are basically collaborative workshops that last for 4-5 days and whose
outcome is a proper set of user requirements.

Pros:
» - Decreased time and cost of requirements elicitation.
» - Accelerates design of the system
* New and rapid idea generation leading to creative outputs.
» - Promotes user feedback.
» - More user satisfaction.
» - Good communication between stakeholders, analysts and other professionals.

* - Visual aids and case tools used make the session interactive.

« - If not properly planned can lead to wastage of time and resources.
» - Requires trained facilitators.
* - Requires lots of planning and effort.

« - Itisan expensive technique.

Brainstorming

26

» Itis aninformal discussion where free expression of ideas is given to every participant
for a new kind of system to be developed

Pros:
» - Costs very little and not much resources are needed.

» - Participants need not to be high qualified and each participant takes part actively in the
process.

* - Itis comprehensible and easy to implement.
* - Helps in new ideas generation.
» - Helps in conflict resolution.

» - Each participant is equally allowed to speak and share ideas.

« - Itis not suitable to resolve major issues.

» - If not organized properly can be time consuming.

* - Quantity of ideas doesn’t always equal their quality.

« - Can lead to repetition of ideas if participants are not paying proper attention.

« - Some people due to extrovert nature may take over all the session and all the time
sharing their ideas and other people who are less outgoing will be afraid to take the time
sharing their views.

Group Work

 In this technique, stakeholders are invited to attend a meeting to elicit requirements for
projects

Pros:
* - Quality requirements in a shorter period of time.

« - Saves cost as compared to conducting interviews of same number of people

Cons:

27

- It takes lot of effort to bring all the stakeholders on the same table at the same time
because of their busy schedule and political aspects

Participants may have issues related to trust and may feel hesitated to discuss critical or
sensitive matters.

- Members may get influenced by dominant people in the meeting leading to biased
results.

User Scenarios

Pros:

Cons:

Scenarios are representation of user’s interaction with the system. It is a real world
example of how a system is used.

- Well-developed scenario helps organizations to be proactive and work specifically for
the desired product.

- Gives good clarifications regarding an activity or event its normal flow, exceptional
behavior, alternative paths.

- People with no technical knowledge can also understand it.
- Easy to understand as no special language is used to write them.

- Ensures system is designed properly as end-user’s perspective is considered for
requirements elicitation.

- It is difficult to draw useful scenarios.
- It is not suitable for all types of projects even if they capture more requirements.

- They do not cover all the processes i.e. not the complete view of future system.

Cognitive Techniques

28

* Laddering

* Itis an interviewing technique to elicit stakeholder’s goals, values and attributes.
Pros:

+ - Easy to understand requirements because of hierarchical nature.

* - Reuse of requirements saves time and cost.

* - Not good for building a new system.
Cons:

« - Maintaining requirements is a difficult task while adding or deleting any user
requirement anywhere in a hierarchy.

» - Technique becomes complex when requirements are in large number.
» - Expert opinion or initial data is must to elicit requirements.

« - Itistoo long and tiring technique

Card Sorting

* Itis a knowledge elicitation technique in which stakeholders are asked to sort cards
according to domain entity names using index cards or some software packages.

Pros:

- It is fast and inexpensive.

» - Itisaccessible through internet so the participants that are geographically remote can
take part in it.

« - ltisreliable and easy technique.

» - Helpful in providing good understructure.
* - Itis an established technique.

« - Useful in gathering qualitative data.

* - Itinvolves real inputs from the users.

* - Makes information structured to be fed into information process

(WEEK 06)

29

Requirements Modeling
Modeling
» A picture is worth 1000 words.
» A model is a representation of reality, like a model car, airplane.

» Most models have both diagrams and textual components.

Why Modeling?
» Visualization.
» Communicate with customer.

» Reduction of complexity.

Requirements modeling

30

» Arequirements model is a set of these diagrams, each of which focuses on a different
aspect of the users' needs.

» A requirements model provides greatest benefit if you use it to focus discussions with the
users or their representatives.

» Each model provides a particular type of information.

Diagram / Model What it describes in that model

Use case diagram Who uses the system and what
they do with it.

Activity diagram Flow of work and information
between activities performed by
users and system or its parts.

Sequence diagram Sequence of interactions between
users and system or its parts.

Finite state machine view of the possible states of a
system or object and the changes
between states that can take place
under certain circumstances.

Why Requirements modeling?

31

» Modeling can guide elicitation.

» Modeling can provide a measure of progress.

» Modeling can help to uncover problems.

» Modeling can help us check our understanding.
Use-Case diagram

» Ause case is a list of actions/tasks.

» Who uses the system and what they do with it.

» Use case diagram can identify the different types of users of a system and the different
use cases

State machine diagram

» One of the challenges faced by requirements analysts is the need to communicate the
complex behavior of systems in an understandable yet rigorous and verifiable way.

» State machine works well for this purpose.

» State machine captures information about states an object can go through during its

lifecycle.
Summary
» Modeling.

» Benefits of Modeling.
» Requirements Modeling.
» Benefits of requirements modeling.

» Use case diagram and State machines.

Use case modeling
(Part 1)

Use case modeling
» Use case diagrams describe what tasks the system performs.

o E.g. Order placement, a ticket reservation, assignment submission etc.

» Who uses the system

o A customer, a librarian, a student etc.

» Which user interacts with which use case.

Sample Use case model

System

Q

Use Case 1

o

Actor 2

)

Actor 1

i Use Case 3

Actor 3

33

Components of use case

» Use case: subset of the overall system functionality.

Use Case
Symbol

» Actor: Anyone or anything that needs to interact with the system to exchange
information.

Actor Symbol

» Association: which actor interacts with which use case.

Sample use case diagram

» A Librarian updates a book catalogue

Update

Lilbrarian

34

» A Librarian updates a book catalogue

Update
Catalogue

X

Librarian

» A passenger buys ticket

Search for
available
seats

Reserve

e
AN

Passenger

35

Reuse (dependency) in use case

» Extends: An extend dependency, formerly called an Extends relationship is a
generalization relationship where an extending use case continues the behavior of a base

use case

USE < Extands>> USE

case A “\ case B

<< Extands>> Send
> Emiail

Includes: An include dependency, is a generalization relationship denoting the inclusion
of the behavior described by another use case.

»

ZZincludess > USE
"\ case B

Use
case A

<<Zincledas s> Werify

empty
fields

36

Sample use case diagram

» Ticket Reservation System

Search for
available seats

X

Passenger

.
Includes vs. Extends
» Includes
> You have a piece of behavior that is similar across many use cases
o Break this out as a separate use-case and let the other ones “include” it.
o <<Includes>> keyword is used.
» Extends
o A use-case is similar to another one but does a little bit more

o Put the normal behavior in one use-case and the exceptional behavior somewhere
else.

o <<Extends>> keyword is used
Summary
» Use case modeling.

» Components of use cases

» Reusability in use cases.

37

(WEEK 07)

Use case modeling
(Part 2)
Steps in use-case modeling
» Step-1: Identify business actors.
» Step-2: Identify business use cases.
» Step-3: Construct use-case model diagram.
» Step-4: Documents business requirements use-case narratives.
Step-1: Identify business actors.
> Who or what provides inputs to the system?
> Who or what receives outputs from the system?
o Are interfaces required to other systems?
o Who will maintain information in the system?
» Actors should be named with a noun or noun phrase
Step-2: Identify business use cases.
o What are the main tasks of the actor?
> What information does the actor need from the system?
> What information does the actor provide to the system?

» Use cases should be named with a verb phrase specifying the goal of the actor (e.g.
PlaceOrder)

Step-3: Construct use-case model diagram.

Add Flight

Admin 38

» Step-4: Documents business requirements use-case narratives.

Use Case Name: Add Flight

Priority: Normal

Actors: Admin

Summary: This use case enables admin to enter the flight.
Precondition: Admin is already login

Post-Condition: Flight schedule is entered

Extends: none

Uses: None

Normal Course of Events:

User System
1 Svystem displays the admin home page.
2 | Admin clicks the add flight link
3 Svstem displays the input screen
4 | Admin enters flight data and clicks
submit button
3 Swstem saves the flight and displays the
SUCCESS message
Alternative Path:

At step (4) admin does not click the “submit™ button but clicks the cancel button, system
displays the home page agamn.

Exception:
At any stage server is disconnected, system displays “Server not connected” message.

Assumption: None

Summary
» Steps of use case modeling

» Documenting use-case narrative

39

Use case modeling
(Case Study)

Air Ticket Reservation System

4
»

Actors

Reservations on local system

Passenger goes to client terminal in local office

Searches flights/seats.

Takes print of available seats.

Booking staff confirms seat.

Client terminal also displays flash news/updates.

Admin can Add/Edit/Cancel flight schedule (Email is sent to passengers)
Admin can cancel ticket.

Admin can Add/Edit/Cancel Reservation

o Passenger
o Admin

o ?

Use cases

> ViewNewsFlash
o PrintSchedule

o SearchSeat

o AddFlight

o ReserveSeat

o EditReservation

o CancelReservation

40

Use cases

o SendEmail
o AddFlight
o EditFlight

o CancelFlight
o AddUser
o EditUser

o DeleteUser

X

Passenger

41

Print
Schedule

Passenger

B

Print
Schedule

Search
Seat

Passenger

et

42

Passenger

Passenger

Print
Schedule

Search

<<includas> >

Seat

0 b

5 Search
Flight

B
Convitn >
Cadtin

Print
Schedule

Search

<<includas>>

Seat

- Search
Flight
Add
Flight

Admin

43

Print
Schedule

L

Search <imcludas = , Search
Seat Flight
Passenger
Add
Flight
Reverse
Ticket
Print
Schedule
search <<includas>> . Search
Seat Flight
Passenger

Edit
Reservation

—_

Admin

Admin

44

Passenger

Passenger

Print
Schedule

)k

Search

i
o

<<includas>> 5 Search
Flight

Edit
Resarvation
Cancel
Reservation

Print
Schadule

>

Search

Seat

“<<includas>> N Search
Flight

Edit
Resarvation
Cancel
Reservation

<imcludes> >

Admin

Admin

45

Add Flight

Search
Flight

Admin

Admin

46

Add Flight

Add Flight
Reserve
Ticket

<<includas> >

<<includas>5

<<Includas>>

Send Group
email

= <Includes > >

Admin

Admin

47

Add Flight

<includas> >

<<includas>>

<<Includas=>

= < Imcludas >
Send Group nelucas
email
< Extends >

\;

Admin

<<includas>>

Add user
<<includas >3 Delete
User

Admin

48

Use Case Name: SearchSeat

Priority: Normal

Actors: Passengers

Summary: This use case enables passenger to search flight as per his'her convenience
Precondition: flights exist in database

Post-Condition: Flight schedule 1s displayed for the said date(s)

Extends: none

Uses: SearchFlight

Normal Course of Events:

49

Normal Course of Events:

User

System

1 On home page passenger selects
“search flight™ link

[

System displays the input screen for entering
the date

3 | User enters the date(s) and clicks
“display”™ button

Svstem displays all the flights (with available
seats) scheduled on the said dates

5 | Passengers double clicks one

flight.

Svstem displavs the number of available seats
for the selected flight

7 | Passenger selects seat(s) and
clicks the “print button

System prints the flight no. along with

selectad seats.

Alternative Path:

home page
Exception:

Assumptions: none

At step (3) user does not click the display button but clicks the cancel button, system does
not display the flight schedule, but goes to home page

At step (35), user does not double click flight, but clicks the cancel button, system does not
display the flight schedule, but goes to home page

At step (7), user does not click pint button but clicks “go back™ button and system goes to

Server disconnected, system displays “Information Not available at the Time™ message.

Summary

» Case study of use case

50

(WEEK 08)

State machines

State machine modeling

» Many information systems deal with business objects that involve a series of possible
states.

» Describing a set of complex state changes in natural language creates a high probability
of overlooking a permitted state change or including a disallowed change.

» State machines provide a concise, complete, and unambiguous representation of the states
of an object or system.

» It relates events and objects.

State machine example

Door Door
Open Closed
s - oy -

State machine modeling

» States - A state is denoted by a round-cornered rectangle with the name of the state
written inside it.

State
naime

51

»

Initial and Final States - The initial state is denoted by a filled black circle and may be
labeled with a name. The final state is denoted by a circle with a dot inside and may also
be labeled with a name.

State
name

ey

Transition - Transition from one state to the next is denoted by lines with arrowheads.

Trigger is the cause of the transition.
o Asignal.
° Anevent.
> A change in some condition.

o The passage of time.

52

Sample state machine

On-hook On-hook

Summary

4
»

State machine
State machine modeling
Components of state machine

Sample state machine

53

State machines
Muhammad Summair Raza

State machine modeling

» Many information systems deal with business objects that involve a series of possible
states.

» Describing a set of complex state changes in natural language creates a high probability
of overlooking a permitted state change or including a disallowed change.

» State machines provide a concise, complete, and unambiguous representation of the states
of an object or system.

» It relates events and objects.

State machine modeling

» States - A state is denoted by a round-cornered rectangle with the name of the state
written inside it.

State
name
Do: Activity

 Initial and Final States - The initial state is denoted by a filled black circle and may be
labeled with a name. The final state is denoted by a circle with a dot inside and may also
be labeled with a name.

Activity

oy

54

» Transition - Transition from one state to the next is denoted by lines with arrowheads.

» Trigger is the cause of the transition.
o Asignal.
° Anevent.
> A change in some condition.

o The passage of time.

State machine modeling

Idle Event | State2
do:Await do:activity]

PrintRecieved

| Printing
do:PrintEachPage

Statel Event1 (attributes)[condition1]/action State?
o-activityl “doactivityl

PrintRecieved (Data)[PapersinTray]/StartPrint
|d|E 1 '\.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.H.F{)M' aaaaaaaaaaaa Prlﬂtiﬂg
do:Await J "do:PrintEachPage

55

Nested State Diagram
» State diagrams can be structured to permit concise descriptions of complex systems.

» Itallows an activity to be described at a high level, then expanded at lower level by
adding details.

Processing

Generalization of transmission state

/I’ransmiSSion Push R \

Meutral Reverse
 Push N

Push N Push F

upshift

[Third
downshi :]
ft

Aggregation and concurrency
» Aggregation means concurrency
» Overall state of aggregate object is combination of states of sub-objects
» Car
o Ignition
o Transmission
o Accelerator
o Brakes
» Sample state of a car
o Ignition: ON
o Transmission: Neutral
o Accelerator: On
o Brakes: Off
o Sample state of a car
o Ignition: ON
o Transmission: Reverse
o Accelerator: off

o Brakes: On

57

Sample state machine

On-hook

?

. 1. On-hook
idle I
]Off-hook
(" Dial tone Timed- out]—-

Digit(n
AN
E dialing

ecorded messag

Num busy

1 valid

| Busytone |

connecting

1 routed

ringing

] Called phone answers

“—{ Fast busy tone]'ﬁﬁﬁc’bl;v
= |
. [

connected

ICalled phone hangs up

. [disconnected]-—

58

(WEEK 09)
Goal Oriented RE

Traditional RE
» Traditional RE approaches start from the initial requirements statements (““What”).
» Itignores to focus on “Why” which is objective of GORE

» GORE is concerned with acquisition, modeling and analysis of stakeholder purposes
(“goals”) in order to derive functional and non-functional requirements.

Goals:
» A goal is an objective the system under consideration should achieve.
o “Accounts should be secure”
o Goals can be expressed at different level of abstraction:
o High level goals
o Sub-goals
» Goals cover different types of concerns: functional and non-functional.
Why GORE?
» Requirements Elicitation
» Exploration of design choices
» Requirements completeness
» Requirements traceability

» Requirements negotiation

59

A simple goal model

Secure
accounts
TN
S
~ e
Integrity %3
of accounts A e

£ 5 Confidentiality
o of accounts

£

4)
Complete ¢ / Accurate
accounts S <~ accounts

Requirement vs. Goal
» Arequirement is a particular way of achieving a goal.
» Goals are at a higher level than requirements
» Goals are more stable than corresponding requirements
Summary
» Limitations of traditional RE
» Why GORE?

» Requirements vs. Goals

¢) Availability
- of accounts

60

NFR framework

Non Functional Requirement (NFR) Framework
» Key concept is the notion of softgoal.

» Softgoals are goals that do not have a clear-cut criterion for their satisfaction; may be
partially satisfied.

» This construct allows representing goals concerning NFRs of the system as well as ill-
defined and high-level objectives of the stakeholders.

Framework Activities
» Capturing NFRs for the domain of interest.
» Decomposing NFRs
» Identifying possible NFR operationalizations (design alternatives for meeting NFRS)
» Dealing with ambiguities, tradeoffs, priorities, and interdependencies among NFRs

» Supporting decisions with design rationale.

v

Evaluating impact of decisions.
Softgoal Interdependency Graph

1. The main modeling tool that the framework provides is the softgoal interdependency
graph (SIG).

2. The graphs can graphically represent softgoals, softgoal refinements (AND/OR), softgoal
contributions (positive/negative), softgoal operationalizations and claims.

Types of Softgoals in NFR framework.

1. NFR softgoals represent non-functional requirements to be considered

2. Operationalizing softgoals model lower-level (design) techniques for satisficing NFR
softgoals

3. Claim softgoals allow the analyst to record design rationale for softgoal refinements,
softgoal prioritizations, softgoal contributions, etc.

61

Softgoals
» Softgoals can be refined using AND or OR refinements with obvious semantics.

» Also, softgoal interdependencies can be captured with positive (“+) or negative (“—)
contributions.

Good Performance Secure User-friendly
for accounts accounts access to accounts
< O3 o
q‘y P x))
f—". o ./ — '
[\ integr ém’“« ¢ ™
[\ grity N
(\ of accounts SRaN I
[~ Availabil
[€) Confidentiality - 2nability
/ \ . of accounts
f \ of accounts
/ \ ™ "™ Accurate
f
I Ill {—4’ {ﬁ’ I .
x'f \ - j)} . ¥ accounts Authorize
/ H". Complete e access to
II'I Space for |II accounts r 4 account —

\

/
/| accounts :
-, (_(_il- Authenticate

Response N Claim

|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
information I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|

A 4§ time for "_A::quracy — UsSer access
,\<. C accounts is vital"
F . N
S | Accurate
~. «{:V * accounts
s N
— 1 \-“_ \.\ .
] . |dentify
' ~ » users
Use (I .
indexing _\ AN
“ hN
S M Use
Use uncompressed . SN PIN
format ¢) o™ T
Claim (N Compare
. L . Signature :
"Optimized validation will not 9 Require
hurt response time much.” additional

ID

Validate access
against eligibility rules

62

Good Performance Secure User-friendly
for accounts accounts access to accounts
T e CREaY
I ?\) {%J)
il |
A T :
[H" Integri {n’\") I
[grity s |
/ \ of accounts P o I
{ H'., {Ek)j Confidentiality A:allabllrh,t' |
.f'll | of accounts ot accounts
/ H\ {_r :} E/_r ") Accurate + |
f \ w0 accounts Authorize |
/ a,\ Gomplette et access to |
accounts # A -
,-# Space for Il".l *J_' %ﬁgtr)r?]gttion |
',,_?ﬁCCGU”‘S _ 4 Response Claim Authenticate |
(A) time for "Accuracy - USer access }
-\K-}/ ‘—-\accounts _ is vital" |
h . (k! | Accurate |
S «_{\f * accounts I
— ~ Y
~ \ . |
~ N |dentify
A5 AN users I
Use N |
indexing o \\\ ! |
Use uncompressed A SO ps|eN
format d ' S -
Claim o R, g;nr?gtirse :
"Optimized validation will not Require
hurt response time much.” additional
Validate access ID
against eligibility rules
Summary

» NFR framework
» Framework activities

» Softgoal Interdependency Graph

63

(WEEK 10)

KAOS (Knowledge Acquisition in Automated Specification)

»

Methodology for requirements engineering enabling analysts to
» Build requirements models

» Derive requirements documents from KAOS models.

KAOS Ontology

Objects are things of interest in the composite system whose instances may evolve from
state to state. Objects can be entities, relationships, or events.

Operations are input-output relations over objects. Operation applications define state
transitions.

An Agent is a kind of object that acts as a processor for operations. Agents are active
components that can be humans, devices, software, etc.

A Goal in KAQOS is prescriptive statement of intent about some system whose satisfaction
in general requires the cooperation of some of the agents forming that system.

o Goals may refer to services (functional goals) or to quality of services (non-
functional goals).

o In KAQOS, goals are organized in the usual AND/OR refinement abstraction
hierarchies.

o Goal refinement ends when every subgoal is realizable by some individual agent
assigned to it. That means the goal must be expressible in terms of conditions that
are monitorable and controllable by the agent.

KAQOS Models

1.

2.

Goal model where goals are represented, and assigned to agents

Object model which is a UML model that can be derived from formal specifications of
goals since they refer to objects or their properties

Operation model which defines various services to be provided by software agents.
Responsibility models for various agents

64

Building the Goal Model
» Good Practices

o Requirements Patterns, grown over time as organizational experience with GORE
matures

o Milestone driven refinement of goals as a guide for completeness

Example: Generic Goal Pattern

~“System salisfying stakeholders’ needs~~

/'Symm satistying tunctional needs /' // Systlem salislying nun-functional needs /

- i
= B
Safe system -~
// / Laws In force respected /
Cheap system
/ Environment preserved /

Usable system

65

Example: Generic Conflicting Goals

/ System cheap to hull:l‘f" ‘_.'" Systam cheap to run J/r / Systam chaap to maintain /

Resource consumption
iz ed

/R-:lhualanﬁ raliable n}.nal_em/

vanluﬂw a:ral.'mnf

The Elevator Case Study
. Problem Statement:

You’ve just been hired by an elevator design company to improve performance and quality of
software development within the company. You’ve directly pointed out a major weakness in the
way software is developed: there is currently no formal requirements engineering method in use.
As a first challenge, you are asked to build a KAOS model for a new elevator system to be
designed.

66

Instantiating the Generic Goal Model

Transportation requests
satisfled In a safe, efficlent,
usable, and cheap way

b

/ Cheap elevator system /

/Transpurtatiun requests satisfied/

/ Usable elevator system /

/ Safe elevator system /

Efficient elevator system /

Goals covered in case study
1. “Transportation requests satisfied” (i.e. functional need)

2. “Safe elevator system” (i.e. non-functional need)

67

Transportation Request Satisfied: Generic Pattern for Service Requests
Satisfaction

/ Service request satisfied /

/ service requested /_-d -

e —

Infrastructure avallable

Sarvice axecutad
according to request

» Look at the previous figure and notice the way goals have been named: a word followed
by verb in its passive form. For instance, we have written “Service requested” instead of

Sarvice requn!l maintained
until executed

A Note on Terminology

“Request service” or “The passenger must request the service”.

» The reason is to avoid confusion between goals and operations (agent behaviors). Goals
basically refer to system states we want to achieve or maintain, cease or avoid. They do
not refer to system state transitions.

68

Instantiating the Service Request Satisfaction Pattern

/ Transportation requests satisfied /

Passenaers brought
10 requested destination

Call request not sanocled

Elevator Called: Generic Service Request Pattern

‘,("'Sa-rur.a mquaaiad‘f"{

//f\

fu;-lﬂ' SSSNLE / Interface used for requesting fl.ham oo el ol e e Eum‘

garvices

A

Service requested through e Reguesl caplured through the
interface Imterface

Control Systom

69

Goal Model Completeness Criteria

» Completeness criterion 1: A goal model is said to be complete with respect to the
refinement relationship ‘if and only if” every leaf goal is either an expectation, a domain
property or a requirement.

» Completeness criterion 2: A goal model is complete with respect to the responsibility
relationship ‘if and only if” every requirement is placed under the responsibility of one
and only one agent (either explicitly or implicitly if the requirement refines another one
which has been placed under the responsibility of some agent).

Elevator Called: Instantiating the Pattern

Elawabar callad

-
__..a-"‘"-
__I‘_.-"'
Passandons inlamed
Buttan-hasnd imfaracs provdced &l ﬂlnlrm atakiis
7 AL
' Buttan mmnurm datactad f .r"
]
— g j
= Elrvator Gompary == b — < Elwvattr Contralier
Selecind butkon'a light
o undil requasted 1Ht arrlves
Al bt lighs off
until an elevaber gets oolled
Summary

» KAOS Goal Model
» Terminologies

» Completeness criteria

70

KAOS Object Model

» Used to define and document concepts of the application domain that are relevant with

respect to the known requirements and provide static constraints on operational system.

» Objects pertaining to the stakeholders’ domain

» Other objects introduced on purpose to express requirements or constraints on the
operational system.

Types of Objects

» Entities:

[e]

Represent independent, passive objects.
For instance, elevator doors, buttons, etc...

‘Independent’ means that their descriptions needn’t refer to other objects of the
model.

They are ‘passive’ means they can’t perform operations.

» Agents:

[e]

Represent independent, active objects.
For instance, Elevator Company, passenger, elevator controller etc.
They are active meaning they can perform operations.

Operations usually imply state transitions on entities (for instance, the
“RingAlarm” operation implies the following state transition on the entity
“Alarm”: status attribute changed from “Silent” to “Ringing”).

» Associations:

Dependent, passive objects.
‘Dependent’ because their descriptions refer to other objects.

For instance, the “At” association links a Cage to a Floor. An instance of that
association (say between Cage ‘c’ and Floor ‘f”) would hold if cage ‘¢’ is
currently located on floor ‘f’.

They are passive so they can’t perform operations.

71

Object Model: Example

Elevator System

Make : String |@p | Alarm bell
Model : String
Year: Date

“Concerns” Relationship for Identifying Objects in Goal Model

No passenger locked in forever
In caso of breakdown

— il
- e
Elevator aquipped / ™
rm ¢leared
/ with a breakdown alarm "’_,.-"' by guard's ruapunu
Broakdown alarm used / Emaergancy power available /
Congerms
Cansatak / Emergency conditions reported /
Alarm answared uard
Alarm ball / - ik /

72

Example: Elevator System

I Alarm device |
2

(e oon |
Y

I Contral room I

Elevatur Sysiem

_—

levator Contvoll«\>

\—//

Make : String
Model : String
Year : Date
/
A
[Powar supply I
1\n

Summary
» KAOQOS Object Model
» Types of objects

» Example

.4

73

(WEEK 11)

KAOQOS Operational Model

» The KAOS operation model describes all the behaviors that agents need to fulfill their

requirements.

» Behaviors are expressed in terms of operations performed by agents.

» Operations work on objects (defined in the object model): they can create objects, trigger
object state transitions and activate other operations (by sending an event).

» Operations can directly be expressed by stakeholders during the interviews.

» Operations can be identified by looking at all the existing requirements.

Operational Model

| Passenger Cormmand lasmed _;)

Caling

.

Ru::hudul::]

_—

| Scheduls | T

. Execubs uchaﬂ-ll&_:}

/
ool
.

Command avent >

Eleswator glale change >‘

Cafise

Y

— —
l.":__L.lElare sysbam stabe

Ot Irtpust

¥

[[eT LT

Elevator systom stato |

74

Operational Model

» Operations are represented as ovals.

» Concerned objects are connected to the operations by means of Input and Output links.

» Events are represented as those traffic signs that are used to indicate directions.
Completeness criteria
» To be complete, a process diagram must specify:
e The agents who perform the operations
e The input and output data for each operation.

e when operations are to be executed.

» All operations are to be justified by the existence of some requirements (through the use

of operationalization links).

Elevator stopped on calling floor

Elavator Contrallar

Execute schedule

Schadule

Summary
» KAOS Operational model
» Operational model terminology

» Example

75

KAOS Responsibility Model

» The responsibility model contains all the responsibility diagrams.

» A responsibility diagram describes for each agent, the requirements and expectations that
he’s responsible for, or that have been assigned to him.

» To build a responsibility diagram, the analyst reviews the different requirements and
expectations in the goal model and assigns an agent to each of them.

P After all requirements and expectations are assigned a responsible agent, a diagram is
generated for each agent, listing all requirements and expectations that he’s been
assigned.

From Goal Diagram to Responsibility Diagram

Symm protected against fire /

p A

S

/Elm1 or disabled In case of fire / Equipment to protact against fire nr.
— available inside cage
n:“,

oving elevator stoppod noxt fleor Door locked open on flaos level
in case of fire signal in cass of fire signal

.'%

|
’ Emergency stop avaitable

76

Intermediate Refinement: (Responsibilities Added for all Requirements)

System protected agalnst fire //
N

i i Equipment to protect against firo
/Elwmudu:;od ncnuofnn/ 4 lolmub Fln

/.

ng elavator stopped next lloo T e ’ 4
In case of fire slmnl in case of fire signal e
-:.\Elcvawr Company___.:-

I y /
| .\)

|% \ ."'.

et /
|‘ \ /
/ Emergency stop available // < Elavator Conuou;r: fo~
-/ ors >

77

Responsibilities for the Elevator Company

ﬁh‘n‘ﬂtﬂl’ equipped with floar dn-m'f

Firepreal cage
™

Way 1o ascape proviced
{(¥ pap .‘, /Emiprhar'rl:ln proboct agained fire
available inside cage

Saftwar: secured J

Emergency power available /

Elgvalor Compa

Cage button panel includes
a stop button (Expectation?) Elewator squipped
with a breakdown alanm

/ Elevator cage has a daor #/

/ Button-besed interface provided #

/ Resisme baitton peavided J

78

Responsibilities for the Elevator Controller

Cyerweight conditions
i b3 Ui =]

Elevator stopp / .
;r' A
N, ' Caan daor closed while moving 4
A

| ,u"
I)
i Elnvabar sioppad
i ot passenger destination
i
i

Dear lecked apan o flear
Im case of fire signal 4
", |
K ™, |
. |
™, f k. J
i ", -
T N F -
B el move . , - s
""--..____ I': II ﬁ ,-'"'J Elawator kapd on current flacr,
- | | / ,‘ doors open, until
! | / y owerweight corditions dissppear
F P E

L 1
M, ! |
N 1
" I - -
- Ay

.'\-_-___‘-.\
/Hu daar opening while mwlng/ h‘x)
—— " |

Elavator stoppad el '.__ ey iy -)
wpon power failure C A O —
P B B ' N
o /I .
-~ e ..'I R
Passengers informad
af their call’s sialus

T .f |)
o
x__\‘

AT

|
.-"‘#; & "|I [
e ,. *

-
&
Elayabor resumiad .-f.f i
v i
i
’ /

\

| 2 /
{“ id 4 f [
i:' |
| Moving elevator stopped neat Nleo
Does cleded whan cage / | in caso of fire slgral
k. 4

nod stopped on a floor kel
ﬁmu‘g‘n“ lighs &n whan nudnag'/

-."-,./Elﬁ'alnr stopped on calling 1Iu-nr/
n

Figure 22, Responsibilities of the Elevator Controller

Summary
» KAOS Responsibility model
» Responsibility model notations

79

(WEEK 12)

Requirement Change Management

% Requirements get changed during the course of development. It is almost impossible to

stop the requirements from changing. Different software development approaches tackle
changing requirement in different ways. Unlike Waterfall or document driven approaches

of software development, agile methodologies welcome change during the course of
software development but at the same time manage the changes in a systematic manner.

Agenda

Overview

Reasons for Requirements Changes

Agile Manifesto

Different Form of Agile, and their working
Rational Unified Process

Requirement Change Management in Agile

Tools

Overview

7
A X4

Importance/Significance

Reasons for Requirements Changes

Lack of domain knowledge at start

Inconsistent requirements

Change in customer prioritization

Change in platform or environment

Change due to expensiveness or difficult to implement

The changes in organization

80

Agile Manifesto

R/
L X4

/7
A X4

Agile focus and prefer more on individuals capabilities and expertise and their interaction
rather than tools, techniques and processes.

Agile concentrate to have working application rather than formality of having large
documentation.

Agile highly contemplate to have a very close relationship with customer in terms of
continuous and constant conversation rather than contract negotiation.

Agile assures to adopt and respond frequently over change request rather than following a
plan.

Extreme Programming (XP)

Extreme Programming is the most famous agile technique. XP use story cards for
elicitation. A user story is the description that provides business value to the customer

These rules are described below:
The Planning Game
Small Releases
Metaphor

Simple Design

Tests

Refactoring

Pair Programming
Collective Ownership
Continuous Integration
40-hour Week

On-site customer

Coding Standard

81

Extreme Programming (XP)

Architectural User stories
Spll{%\ \
Felease ——» lteration ——» ﬁu:teptance

CF‘Iaﬂﬂmg) _// test

Spike =mall release

Scrum

+«+ Scrum is another popular agile technique used to develop and manage software. The
following figure explains the activities performed in Scrum.

Release Backlog:
Prioritized features
desired by the customer Sprint Backlog: Backlog items expanded
Features assigned to by team

—)y —) — ==
—

MNew functionality is Every 24 hours
demonstrated at end of Scrum: 15 minute daily
sprint / meeting:
¢ Team members discuss
G i Sprint: what was done since last
30 days meeling, issues and
b obstacles and what will be
k/ / done before the next
meeting
"

82

Rational Unified Process
% RUP---- Document Driven approach
= RUP Phases, RUP Disciplines

= Extensive planning, Codified Process, Heavy Documentation , Big Design up
Front

= Strengths:

+ Straightforward, methodical and structured nature, Predictability, stability
and high assurance

= \Weaknesses
» Slow adaptation to rapidly changing business requirements
« Atendency to be over budget
« Atendency to behind schedule

 Failed to provide dramatic progress in productivity, simplicity and
reliability

s XP and Scrum-- Agile Software Development Approaches

= Iterative and Incremental development, Customer collaboration, Frequent
Delivery, Light and fast development, Light documentation

= Strengths:

« Short development cycle, Higher customer satisfaction, Low bug rates,
Quick adaptation to rapidly changing requirements

« Highest Priority Work ,Constant Feedback, Control over Cost and
Schedule

= \Weaknesses

« Significant document reduction, Heavy dependence on individual
knowledge, Not suitable for critical safety systems, Not suitable for large
scale systems, Frequent change effect cost and schedule, Managed
prioritization, Organizational structure

83

Agile (XP and Scrum) requirements change management process

% The agile change management process handles changes in the beginning of each iteration
of the development cycle. It may be a sprint in Scrum or iteration in XP and so on. The
key stakeholders in change management process are the managers, developing team and
off course customers or product owner.

As agile’s development period is considerably short for a particular iteration therefore it
is understood that all the requirements cannot be implemented in one go therefore there is
a pile or stack of requirements and the relevant stakeholders have to decide which
requirements to implement in the one iteration. Therefore the prioritization is also a
continuous process in agile development and the requirement stack is constantly updated
as a result of update.

o
A5

Change Management Process

% This aspect of Agile shows a different picture from that of traditional development where
requirements are collected once and changes made in that requirement set are rare. Here
agile is welcoming the change even after every iteration. Therefore agile is gaining wide
acceptance in today’s development where we also have high speed development
environments.

High j = } Each iteration implement the highest-
Priority A —— - priority work items

Modeled in /

greater detail

Each new work item is
-— < prioritized and added to
the stack

) Work items may be

reprioritized at any time

000HO0OMOONO0M00N0

Modeled in
lesser detail \ Work items may be removed
at any time
Low
Priority V=
Work ltems Copynright 2004-2007 Scott W, Ambler

84

Lifecycle of change management in agile

R/
L X4

X/
°e

Start: In the start of each iteration, the team takes the highest priority requirement that
can be completed in the specified iteration period. This requirement which is now going
to be implemented is well understood with the help of customer and other related
stakeholders and documents etc. Necessary planning, documentation or modeling can
also be done at this stage so as to achieve the goal within the specified time and budget.

Middle: During development they may take help from customer as well as from other
relevant stakeholders to have better understanding of the requirement. The aim is to build
the software that best meets the requirement.

End: The working product developed can be deployed and it is preferable to deploy so as
to take the feedback from the end-users. The acceptance can also be run on the developed
software so that the necessary quality can also be ensured.

What Kind of Tool Do We Need?

Word processor (Microsoft Word with templates...)
Spreadsheet (Microsoft Excel...)
Industrial-strength, commercial RM tools

= [BM/Telelogic DOORS, IBM Requisite Pro, Borland CaliberRM...
Internal tools

= GenSpec (Hydro-Quebec)...
Open source RM tools

= OSRMT: http://sourceforge.net/projects/osrmt
Bug tracking tools (free or not)

= Bugzilla...
Collaboration tools (free or not)

= TWiki...

85

(WEEK 13)

Requirement Change Management Process

Originator Evaluator CCB decided
submits performed not to

a change impact make the
request analysis change

Change Approved

Change was

canceled

Modifier has made
Verification the change and
requested for

failed N
verification A

Change was

Modifier has installed the canceled
product Verifier hag confirmed
the change

Modifier has installed the Change was

product

canceled

Comparison between Agile and Conventional Philosophy

0,

+ Both Agile and Document driven (companies following traditional approaches)
companies face similar issues with respect to requirements management but they use to
handle it in different ways. Some of the differences between these two approaches that
have been identified as a result of a study are explained below:

+« Changing requirements (88%--13%):

+ Reason for Requirement Change(knowledge Deepening):

Comparison

K/
0.0

L X4

X/ ®.
°e A X4

K/
0.0

Requirements Gathering Process(complete Specification/incrementally):
Means of Communication (document/Onsite customer):

Contracts with Clients(Strict/flexible):

Attitudes towards Change(Difficult task/Welcome):

Relationship with Customer(satisfactory/Close):

Freezing the Requirements

R/
o

Embracing requirement changes in Agile does not mean that requirement could be
changed at any stage of the software development process. What it really means is that
unlike traditional approaches like waterfall model where you do not have the privilege to
request requirement changes after the start of development cycle, here in agile the
customer or the product owner have an opportunity to add, modify or remove any
requirement from the requirement stack.

In fact Agile has laid down a process in every technique to accept change in an organized
way for next iteration instead of forcing to implement the new requirement in the current
release.

XP and OpenUP allows accepting change to a certain extent during the development
iteration but recommends suggesting the requirement for next iteration.

Requirements Prioritization

Nature of Agile development lifecycle demands

Stakeholders status in the beginning

feedback after every development iteration

agile development framework allows the stakeholders to re-prioritize the requirements

factors like market uncertainty, technical uncertainty, project duration and project budget
that demands that the requirements should be analyzed and re-prioritized

87

Value Oriented Prioritization

% Many studies have been carried out to propose good and scientific methods of
prioritization

% One of the techniques for requirement prioritization was named as “Value Oriented

Prioritization”. This technique suggests that the company or the stakeholders should
identify the business value areas like Sales, Marketing, Strategic, Customer Retention etc.
Then a positive numeric value should be associated with each of these business value
areas.

% After that, values are also assigned to each requirement after negotiation and consultation
with all the relevant stakeholders.

% Along with identifying the business value areas, the associated risks should also be
identified and a certain negative value should also be assigned to each risk as shown in

fig.
Business Values (Vy ... V) Risks (R; ... Ry)
Customer
Romt | Sales | Marketing | Competitive | Strategic | Retention | Technical | Business | Score
Vil Vi=b Ved | Vil | Vel | Ri=8 | R
I
I Wy W
IN

+«+ Then all the requirements are listed and given a numeric value against business value
areas as well as to the risk associated with that business value. In this way the weight of
each requirement can be calculated against each business value area and similarly the
weight of risks can also be identified. The final weight of a requirement can be calculated
by subtracting the sum of weights of the risks from the sum of weights of business values
against each requirement.

88

Example

Business Values Risks
Customer
Sales | Marketing | Competitive | Strategic | Retention | Technical | Business | Score
1 6 § 10 1 -8 -
n| 3 1 10 9 2 8 5 154
r| 7 8 - 5 8 3 9 166
Evaluation

% Requirements Evaluation from End user’s perspective

% Usability

%+ Usability Evaluation

% Usability Evaluation Methods

* The process of systematically collecting data that informs us about what it is like for a

particular or group of users to use a product for a particular task in a certain type of
environment.

Why, what, where, and when to evaluate:

= Why: to check that users can use the product and that they like it.

= What: a conceptual model, early prototypes of a new system and later, more complete
prototypes.

= Where: in natural and laboratory settings.

= When: throughout design; finished products can be evaluated to collect information to
inform new products.

89

Usability

Usability has been defined by the International Standards Organization (ISO) as “the extent to
which the product can be used by specified users to achieve specified goals with

% effectiveness
% efficiency
% satisfaction
Usability Evaluation
¢ Metrics used to measure Usability:

®,

% 1. Time to complete a task

3. Fraction of task completed

4. Fraction of task completed in a given time
5. Number of errors

6. Time spent on errors

Usability Evaluation Methods
% Testing
% Inspection

% Inquiry

(WEEK 14)

Software Requirement and Specification

Introduction
» What is traceability?

o “The degree to which a relationship can be established between two or more
products of the development process, especially products having a predecessor-
successor or master-subordinate relationship to one another.” [IEEE-610]

» Requirements Traceability:

o The requirements traceability is the ability to describe and follow the life of a
requirement, in both a forward and backward direction.

Requirement Traceability (RT)
» Why requirement Traceability
o Finding missing requirements
o Finding unnecessary requirements
o Certification and compliance
o Change impact analysis
o Maintenance and

o Project tracking etc.

21

/ Business requirement
drives specification of

mindifies l

System requirement, User
Change . re requirement, Feature, External influences Business
modifies ——p . ' ! .
request interface requirement, Quality rule
attribute /
modifies is origin of or is anigin of
CONSTaing

modifies i

Functional reguirement

e

is satisfied by is verified by

,, 1

Architecture, User

interface, Software System test,
e Acceptance test

N

is verified by is implemented in

K ")

depends
on another

F

Integration
tast Code

is verified by
\ J

Unit test

Classification of Requirement Traceability

Links requirements
to their sources 1.g

» Backward-from traceability docianents o
people

Links requirements
to dezizn and
implementation

componemnts

» Forward-from traceability

Link= design and
mplementation
components back

to requirements

» Backward-to traceability

» Forward-to traceability

Links

Tequirements
back to their
SOUFCES

93

Classification of RT

Customer
needs

| t

forward to
requirements

v |

backward from
requirements

Requirements

| 0

forward from
requirements

backward to
requirements

Downstream
work products

Forward Traceability

Backward Traceability

Requirements Ids and
short description

)

Types of Traceability Matrlx[

94

Categories of requirement traceability

Links the

requirement and

i -1 thieir = cp

» Requirements-sources traceability mi’}j s;:i‘f;’ed
Links the requirement the requirement
with a deseription of

why that requirement
has been specified

» Requirements—-rationale traceability

» Requirements—-requirements traceability

Limk= requirements with
other requirements
which are, in some way,
dependent on them

Limk= requirements
with the sub-systems
where these
Tequirements are
maplemented

Links requirements

with specific

hardware or software

i)] components in the

» Requirements-architecture traceabif =i EEE
nzed to implement
the requirement

» Requirements—design traceability
Limks requirements
with the interfaces of
extermal systems,
which are used in the

provision of the
requirements

» Requirements-interface traceability

95

How is tracing performed?
» Each element is given a unique identifier
o Element — requirement, design attribute, test, etc
» Linkages done manually and managed by a CASE tool
» Traceability tables are made
o Matrix
Traceability matrix

» A traceability matrix is a document that co-relates any two-baseline documents that
require a many-to-many relationship to check the completeness of the relationship.

» Itisused to track the requirements and to check the current project requirements are met.
Types of Traceability Matrix
» Types of Traceability Matrix
o Forward traceability
o Backward or reverse traceability
o Bi-directional traceability (Forward+Backward)
Traceability Matrix
» Advantage of Requirement Traceability Matrix
o It confirms 100% test coverage
o It highlights any requirements missing or document inconsistencies

o |t shows the overall defects or execution status with a focus on business
requirements

96

Requirement traceability matrix

Req. D

11
12

13
21

22
23

3
32

Rt SN (NI | RZTY (N2 (2
U R

U

Requirement traceability Tools

» CASE Tools

» Characteristics

o

o

o

Hypertext linking
Unique identifiers

Syntactical similarity coefficients

» Problems

o

Hypertext linking and syntactical similarity does not consider context
Unique identifiers do not show requirement information

Choosing architecture view and classification schemas will always be manual

97

Caliber-RM
» Caliber-RM
o Centralized repository
o Requirements traceability across the lifecycle
o Impact analysis

Caliber-RM

| 12

1, Busi Requi ks (WHY 3 1 .
|, Businesslealiements (W) " Details] Use Case Data | 2 Responsibilities | (il References &4 Traceability

@ Buy Policy

@ Enroll for Online Management

Project | allStar Insurance Online j [= | Baseline: Current Baseline bl (=2
=7 Allstar Insurance Cnline Eﬁ Yalidation | ﬁQ Discussion | 22 History
= @ 2, User Requirements (USER)
+-4 Quote Policy
@ IManage Policy |
@ Legon Traces From [Tag/iD_|status |Project/File Path |
@ Compare Aubos
@ Quate for Auto Shopper
+ @ 3, Functional Requirements (WHAT)
+ @ 4, Design Requirements (DSGM)
@ 5. Project Tasks (WES)

@ 6, Test Scenarios (TEST)
@ Constraints (BC)

Quaote for Auto Shopper

|Traces To |Tag,|’ID ‘Status |Pr0ject;’FiIe Path |

Rational Dynamic Object Oriented Requirements System (DOORS)
» DOORS
o Telelogic
o ‘“‘capture, link, trace, and manage”

o For large applications

98

| Formal module */Sports utility vehicle 4x2/Requirements/User Requirements” current 2.1 (1998) - DOORS

Flo Edt View Incet Link Anslysis Table Tools User DOORSrequiell Help

BB BRI X | a5 B U g G| B 3

|[C Basicviewwhdetals 3] |[Atlevels =]l et | -2 2 C | CE T | Bw|

= Uset Requirements = | User requirements for SUV 4x2 ‘l =
1 Introduction ‘ >
@ 2 User types Users shall be able to travel at the same level of safety as provided by the best
5- 3Requirements 10% of cars being developed to be built in 1968

This secton contains 3.1.6 Noise levels
= 31 Capabity Requn | | 3 46 1 Interior

& 31.1 Cattying Ca
31,2 Component | | Users be able to hear only a low level of noise inside the car.
@ 31.3 Movement 3.1.6.2 Exterior

2 g:; ;':;;w“ Users shalllpe able to cause only a véry low level of external noise with the car J

o 31.6 Noise level 3.1.7 Eask of Access

3 31.7Ease of Ac 3.1.7.1 Access to controls
3-3.1.8 Equipment ™

«

@]

| Formal module */Sports utility vehicle 4x2/Requirements/Functional Req

File Edt View Inset Link Analpsis Table Tools User DOORSrequiellT H

m-&

Usessshatp || 31711 Brakes B@E| % RR[¥ X v |~ 5B 7 U s[E3
Users shall b Users shall be 3gle to operate brakes in — = = =
Users shall b Users shall be abl®o operate brakes m\ I|noom'ngL'nks ;”lAlleveis ;|| e cuc | [
Users shall b need to remove the foot from the floor. - -
=) 2 Functional R&J ; .
4y Sz shalb [3.47.1.2 Visibility 521 Povies Fm:w:mmswm
B3 ntertanme S 3 RS N Pt A ea
In sccordanc || 3:1:7.1.2.1 Daylight @ 22 Contro 9

2.3 llumin. Headlights shall be fitted in accordance with

W

The pas >]'| Users shall have maximum daylight visibilit

ol] » = #N2.4 Contro dated 1 Jan 1993
@ 2 o Headlight beam patterns shall be in accordance '
! . |Excsire sRmcs = 26Miigte. | | abe dated 1 Jan 1903,
Maxim’
Drag-and-drop & 27 Sl 1-2 Side lights __ _
I' k i h & 28 Protec SW& fitted in accordance with
to link within a @ 29Puotec | dated 1 Jan
d t I 2 & from # 210 Mod 2.3.1.2 llluminate behind
ocument. .. @ 211 Contr |1 2 3 1.2.1 Tail lights
document to : g:im Tail lights shall be fitted in accordance with
document

References
Software Requirements Third Edition by Karl Wiegers and Joy Beatty
James D. Palmer

Requirements Engineering: Processes and Techniques’ by G. Kotonya and I. Sommerville, John
Wiley & Sons, 1998

99

(WEEK 15)

Software Requirement and Specification

Introduction
» What is requirement document?

o Software requirements specifications or SRS

o The requirements document is a formal document used to communicate the
requirements to customers, engineers and managers

» Requirements includes:
o The services and functions which the system should provide
o The constraints under which the system must operate
o Overall properties of the system

Requirement document

» Users of the requirements
o System customers
o Managers
o System engineers
o System test engineers
o System maintenance engineers
o How to Organize an SRS?
o Clients/developers may have their own way of organizing an SRS
o US Department of Defense
o NASA
o |EEE/ANSI 830-1993 Standard

o |EEE Std. 830-1998

100

Requirement document
» Characteristics of good SRS
o Correct
> Unambiguous
o Complete

o Consistent

o Verifiable
o Modifiable
o Traceable

IEEE/ANSI Standard 830-1993

» Parts of IEEE/ANSI Standard 830-1993
e Introduction
e General description
e Specific requirements
e Appendices
e Index

» Introduction:
e 1.1 Purpose of the requirements document
e 1.2 Scope of the product
e 1.3 Definitions, acronyms, and abbreviations
e 1.4 References

e 1.5 Overview of the remainder of the document

» General description
e 2.1 Product perspective
e 2.2 Product functions
e 2.3 User characteristics
e 2.4 General constraints

101

e 2.5 Assumptions and dependencies
» Specific Requirements

e Covering functional, non-functional, and interface requirements.

e These should document external interfaces, functionality, performance
requirements, logical database requirements, design constraints, system attributes,
and quality characteristics

» General discussion on IEEE Standard
e Itis good starting point for organizing requirements documents

e First two sections are introductory chapters about background and describe the
system in general terms

e The third section is the main part of the documents and the standard recognizes
that this section varies considerably depending on the type of the system.

References
IEEE Recommended Practice for Software Requirements Specifications

‘Requirements Engineering: Processes and Techniques’ by G. Kotonya and 1. Sommerville, John
Wiley & Sons, 1998

102

Verification and Validation

R/
L X4

Verification:

Process in which we check a product against its specifications.

White box, black box testing

Validation:

Process in which we check expectations of the users who will be using it.

Inspection, Formal Technical Review

Defects

R/
o

7
L X4

software without any defects

No, it is almost impossible to develop software without having any defect. Software and
defects go side-by-side during software development. It is impossible to build a product
in first instance without presence of any defects and these two cannot be separated.

Black box testing

+¢* In this type of testing, a component or system is treated as a black box and it is tested for

the required behavior. This type of testing is not concerned with how the inputs are
transformed into outputs. As the system’s internal implementation details are not visible
to the tester. He gives inputs using an interface that the system provides and tests the
output. If the outputs match with the expected results, system is fine otherwise a defect is
found.

Structural testing (white box)

*
A X4

As opposed to black box testing, in structural or white box testing we look inside the
system and evaluate what it consists of and how is it implemented. The inner of a system
consists of design, structure of code and its documentation etc. Therefore, in white box
testing we analyze these internal structures of the program and devise test cases that can
test these structures.

103

Defect Removal Process

% Steps you take to check the presence of the defects

1 will run the scenario as described in the bug report and try to reproduce the defect.

% If the defect is reproduced in the development environment, | will identify the root cause,

fix it and send the patch to the testing team along with a bug resolution report.

Cyclomatic complexity

%+ E = Number of Edges

®,

«* N = Number of Nodes

% V(G)=E-N+2

(WEEK 16)

Pre-assessment

THE END

104

