
HANDOUTS (MID TERM)

WEEK 1-8

Prepared By VURANK

Introduction to the Discipline of Design:

 We live in a designed world.

 Design is economically important and effects our quality of life

 Any product that is an aggregate of more primitive elements, can benefit from the activity

of design.

Software Products:

 Software is any executable entity, such as a program, or its parts, such as sub-programs.

 A software product is an entity comprised of one or more programs, data, and supporting

materials and services that satisfies client needs and desires either as an independent

artifact or as essential ingredient in some other artifact.

What Is Software Design?

 Software design is the activity of specifying the mature and composition of software

products that satisfy client needs and desire, subject to constraints.

 Software designers do what designers in other disciplines do, except they do it for

software products.

 Design bridges that gap between knowing what is needed (software requirements

specification) to entering the code that makes it work (the construction phase).

Design Occurs at Different Levels:

Standard Levels of Design

Why Design is Hard?

 Design is difficult because design is an abstraction of the solution which has yet to be

created

Design as Problem Solving:

 An especially fruitful way to think about design is as problem solving.

Advantages:

1) Suggests partitioning information between problem and solution

2) Emphasizes that there may be more than one good solution (design)

3) Suggests techniques such as changing the problem, trial and error, brainstorming, etc.

Abstraction:

 Abstraction is an important problem-solving technique, especially in software design

 Abstraction is suppressing or ignoring some properties of objects, events, or situations in

favor of others.

Importance of Abstraction:

1. Problem simplification:

 Abstracting allows us to focus on the most important aspects of a problem in

(partially) solving it.

2. Structuring problem solving

 Top-down strategy: Solve an abstract version of the problem, then add details

(refinement)

 Bottom-up strategy: Solve parts of a problem and connect them for a complete

solution

What is Model?

 A model is an entity used to represent another entity (the target) by establishing

a) A correspondence between the parts or elements of the target and the parts or

elements of the model

b) A correspondence between relationships among the parts or elements of the target and

relationships among the parts or elements of the model.

Modeling:

A model represents a target by having model parts corresponding to target parts, with

relationships between model parts corresponding to relationships between target parts.

Modeling in Design:

 Modeling is used for the following purposes:

1. Problem understanding

2. Design creation and investigation

3. Documentation

 Modeling work because models abstract details of the target.

 Models can fail if important and relevant details are left out.

Modeling in Software Design:

Software design models may be divided into two broad classes: static and dynamic models

1) A static model represents aspects of programs that do not change during program

execution.

2) A dynamic model represents what happens during program execution.

Static and Dynamic Models:

Target Model

 Static model examples include object and class models, component and deployment

diagrams, and data structure diagrams.

 Dynamic model examples include use case descriptions, interaction diagrams, and state

diagrams.

Introduction to the Discipline of Design:

Varieties of Design:

 Product design is a discipline that arose during the Industrial Revolution and is now an

established field whose practitioners specify products.

 The major issues in product design are aesthetics, product features and capabilities,

usability, manageability, manufacturability, and operability.

 Engineering design is the activity of specifying the technical mechanisms and workings

of a product. Engineers apply mathematical and scientific principles and techniques to

work out the technical details of complex products.

 Product designers and engineers often work together in design teams to specify large and

complex products.

Product Designer vs. Engineering Designer

1) Product designers are concerned with styling and aesthetics, function and usability,

manufacturability and manageability.

2) Industrial designers, (building) architects, interior designers, graphic designers, etc.

3) Engineering designers are concerned with technical mechanisms and workings.

4) Structural, mechanical, chemical, and electrical engineers

5) Product designers handle the “externals” of product design while engineers take care of

the “internal” technical details.

Design Teams:

The talents and skills of both product designers and engineers are needed to design such things.

Table 1 illustrates the complementary responsibilities of product and engineering designers for

several products.

Table 1: Product and Engineering Designers’ Responsibilities

Software design:

The field of software design can be divided into two sub-fields that each demand considerable

skill and expertise: software product design and software engineering design.

Software Product Design:

 Software product design is the activity of specifying software product features,

capabilities, and interfaces to satisfy client needs and desires.

 Requires skills in user interface and interaction design, communications, industrial

design, and marketing

Software Engineering Design:

 Software engineering design is the activity of specifying programs and sub-systems, and

their constituent parts and workings, to meet software product specifications.

 Requires skills in programming, algorithms, data structures, software design principles,

practices, processes, techniques, architectures, and patterns

(WEEK 1 COMPLETED)

WEEK #2

Software Design in the Life Cycle:

The software life cycle is the sequence of activities through which a software product

passes from initial conception through retirement from service.

Waterfall Life Cycle Model:

The waterfall model captures the logical, but

not the temporal, relationships between

software development activities.

Requirements Specification Activity:

1) The goal of the requirements specification activity is to specify a product satisfying the

needs and desires of clients and other interested parties.

2) Specifications are recorded in a software requirements specification (SRS).

3) We assume that every SRS includes a user interface design.

4) Factors that limit the range of design solutions, such as cost, time, size, user capability,

and required technology, are called design constraints. Design constraints are usually

given as part of the problem specification.

Design Activity:

 During the design activity, developers figure out how to build the product specified in the

SRS. This includes selecting an overall program structure, specifying major parts and

sub-systems and their interactions, then determining how each part or sub-system will be

built.

 The result of the design activity is a design document recording the entire design

specification. The design document solves the (engineering) design problem posed in the

SRS.

Implementation Activity:

 Code is written in accord with the specifications in the design document. The product of

the implementation activity is a more or less finished, working program satisfying the

SRS.

 Programming essentially includes some engineering design work.

Testing Activity:

 Programs are run during the testing activity to find bugs.

 Testing is usually done bottom up, with small parts or program units tested alone, and

then integrated collections of program units tested as separate sub-systems, and finally

the entire program tested as a whole.

Maintenance Activity:

 Maintenance activity occurs after a product has been deployed to clients.

 After deployment to clients, products are corrected, ported, and enhanced during

maintenance activities.

 Product design occurs during the requirements specification and maintenance activities,

and engineering design occurs during the design, implementation, and maintenance

activities.

Design across the Life Cycle:

Design across the Life Cycle Figure illustrates how software design activities are spread across

the life cycle.

“What” Versus “How”:

 Traditional way to make the distinction between requirements and design activities

 Not adequate because

◦ Many “what” specifications turn out to be design decisions

◦ Many “how” specifications turn out to be client or customer needs or desires

Engineering Design

Product Redesign and

Engineering Redesign

Product Design
Requirements
Specification

Design

Implementation

Testing

Maintenance

Software Product Life Cycle

 Distinguish requirements from design based on problem solving: requirements activity

formulates a problem solved in design

Design Problems and Solutions:

Problems and solutions demarcate various software design activities. Product design

tackles a client problem and produces a product specification as a solution. This solution

presents the problem to engineering designers, who produce a design document as their

solution.

Design Problems and Solutions:

“Design” as a Verb and a Noun:

 This activity is what we refer to when we use the word “design” as a verb, as in the

sentence “Engineers design programs meeting requirements specifications.” But we have

also used “design” as a noun, as in the sentence “Engineers develop a design meeting

requirements specifications.”

Engineering

Design

 Product

 Design

Solution: SRS

Problem: Needs,

Desires, Constraints

Solution: Features

and Capabilities

Solution:

Interactions

Solution: Design
Document

Solution: High-

Level Design

Solution: Low-

Level Design

Solution: Code

Design Features
and Capabilities

Design Interactions

Create High-Level

Design

Create Low-Level

Design

Write Code

Software Design

 Obviously, the word “design” is both a verb and a noun and refers to both an activity and

a thing. A design specification is the output of the design activity and should meet the

goals of the design activity—it should specify a program satisfying client needs and

desires, subject to constraints.

Software Engineering Design Methods:

 A software design method is an orderly procedure for generating a precise and complete

software design solution that meets client’s needs and constraints.

Design Method Components:

A method typically specifies the following items:

 Design Process —A collection of related tasks that transforms a set of inputs into a set

of outputs

 Design Notations —A symbolic representational system

 Design Heuristics —Rules providing guidance, but no guarantee, for achieving some end

 Design methods also use design principles stating characteristics of design that make

them better or worse.

History of Software Engineering Design Methods:

 The first design method was stepwise refinement, a top-down technique for

decomposing procedures into simpler procedures until programming-level operations are

reached.

 The dominant design methods from the mid-1970s through the early 1990s were various

versions of structured design.

 Structured design methods focus on procedural composition but include other sorts of

models as well.

 Object-oriented design methods emerged in the 1990s in response to shortcomings of

structured design methods.

 Object-oriented methods promote thinking about programs as collections of collaborating

objects rather than in terms of procedural decomposition.

Method Neutrality:

 Strongly emphasizes object-oriented notations, heuristics, and models.

 Most of the notations used in this course are UML notations, but some other important

notations are included as well.

 A design task is a small job done in the design process, such as choosing classes or

operations, or checking whether a model is complete. Notation and task heuristics are

discussed throughout the course when notations and design tasks are introduced.

(WEEK 2 COMPLETED)

WEEK #3

Modeling processes with Activity diagram:

Modeling:

 A picture is worth 1000 words.

 A model is a representation of reality, like a model car, airplane.

 Most models have both diagrams and textual components.

What is UML?

 UML stands for “Unified Modeling Language”

 It is an industry-standard graphical language for specifying, visualizing, constructing, and

documenting the artifacts of software systems.

 The UML uses mostly graphical notations to express the OO analysis and design of

software projects.

 Simplifies the complex process of software design.

Process:

A process is a collection of related tasks that transforms a set of inputs into a set of

outputs.

Design Process:

 A design process is the core of any design endeavor, so it is essential that designers adopt

an efficient and effective process.

 We need process description notations for design process.

 We will use UML Activity diagram.

Activity diagram:

An activity diagram shows actions and the flow of control and data between them.

Activity, action and execution:

 An activity is a non-atomic task or procedure decomposable into actions.

◦ Shipping a product

◦ Wash clothes

◦ …

 An action is a task or procedure that cannot be broken into parts (i.e. it is atomic).

◦ Check products in stock

◦ Check dead level

◦ Package the product

 Activity diagrams model processes as an activity graph.

◦ Activity nodes represent actions or objects

 Rounded rectangle containing arbitrary text naming or describing some

action.

◦ Activity edges represent control or data flows.

 Represented by solid arrows with unfilled arrow heads.

ACTIVITY DIAGRAM

Activity graph elements:

Activity diagram execution:

 Execution is modeled by tokens.

 When there is a token on every incoming edge of an action node, it consumes them and

begins execution.

 When an action node completes execution, it produces tokens on each of its outgoing

edges.

 An initial node produces a token on each outgoing edge when an activity begins.

 An activity final node consumes a token available on any incoming edge and terminates

the activity.

initial node

action node

activity symbol

activity edge

activity final node

Branching nodes:

Guards Decision
node

Merge
node

Branching execution:

 If a token is made available on the incoming edge of a decision node, the token is made

available on the outgoing edge whose guard is true.

 If a token is available on any incoming edge of a merge node, it is made available on its

outgoing edge.

 Guards must be mutually exclusive.

Deadlocks:

Run Drier cannot execute: when the activity begins, there is a token on the edge from the

initial node but not on the other incoming edge.

When there is a token on
every incoming edge of an
action node, it consumes
them and begins execution.

Forks and joins:

Forks and joins execution:

 A token available on the incoming edge of a fork node is reproduced and made available

on all its outgoing edges.

 When tokens are available on every incoming edge of a join node, a token is made

available on its outgoing edge.

 Concurrency can be modeled without these nodes.

Sort

Clothes

Wash

Whites

Wash

Darks

Dry

Clothes

Fold

Clothes

Do Laundry

Join node

Fork node

Object Nodes:

Data and objects are shown as object nodes.

Any flow that begins or ends at an object node is a data flow.

Object Nodes:

Destroyer

[captured]

Cruiser

Battlegroup

Battleship

[damaged]

Object
node
state

Object node

Control and Data Flows:

 Control tokens do not contain data, data tokens do.

 A control flow is an activity edge, conduit for control tokens.

 A data flow is an activity edge, conduit for data tokens.

 Rules for token-based execution apply just as well to data flows as to control flows, with

the addition of a mechanism for adding and removing data from tokens.

Activity parameters:

 An activity parameter is an object node placed on the boundaries of an activity symbol to

represent data or object inputs or outputs.

 Input activity parameters have only outgoing arrows, and output activity parameters have

only incoming arrows.

Activity parameters (Example):

Activity diagram heuristics:

 Model flow control and objects down the page and from left to right.

 Name activities and action nodes with verb phrases.

 Name object nodes and pins with noun phrases.

 Don’t use both control and data flows when a data flow alone can do the job.

 Make sure that all flows entering an action node can provide tokens concurrently.

 Use the [else] guard at every branch.

(WEEK 3 COMPLETED)

(WEAK # 4)

Software design processes

Software design:

 Software design consists of two different activities.

◦ Software product design

◦ Software engineering design

Analysis and resolution:

 The first step of “problem solving” must always be to understand the problem.

 If design is problem solving, then this activity must be the first step in design.

 Analysis is the activity of breaking down a design problem for the purpose of understanding it.

 Once problem is understood, next step is to solve it.

 Unfortunately the activity of solving a design problem does not have a good, widely accepted

name.

 Traditionally this activity has been called design, but this is very confusing.

 In the traditional way of speaking, design consists of the following steps:

 Analysis—Understanding the problem.

 Design —solving the problem.

 In our context, we refer to the activity of solving a design problem as resolution.

 The terms used in our context will be:

◦ Analysis is breaking down a design problem to understand it.

◦ Resolution is solving a design problem

Analysis and Resolution in Software Design:

Product Design Analysis

Product Design Resolution

Software Design
Product Idea : Problem

Design Document : Solution

Engineering Design Analysis

Engineering Design Resolution

Product

Idea

SRS

Design

Document

A generic problem solving strategy:

 Understand the problem

 Generate candidate solutions

 Evaluate solutions

 Select best solution(s)

 Iterate if no solution is adequate

 Ensure the solution is complete, well-documented, and deliver it

A generic design process:

 Analyze the Problem

 Generate/Improve Candidate Solutions

 Evaluate Candidate Solutions

 Select Solutions

 Iterate

 Finalize the Design

Generic design process:

Analyze the

Problem

Generic Design
need : Problem

design : Solution

Resolve the

Problem

need

Problem

Statement

design

[else]

[problem

misunderstood]

A Design Resolution Process:

Design Process Characteristics:

 Designers should generate many candidate solutions during the design process.

 The design process is highly iterative; designers must frequently reanalyze the problem and

must generate and improve solutions many times.

Generate/Improve

Candidate Solutions

Generic Design Resolution
problem : Problem Statement

design : Solution

problem

design

[else]

[adequate solution]

Solutions

[candidate]

Evaluate Candidate

Solutions

Solutions

[evaluated]

Select

Solutions

Solutions

[selected]

Finalize

Design

A Generic Software Product Design Process:

Generic Software Product Design
Project Mission Statement : Problem

SRS : Solution

Project Mission

Statement

SRS

[adequate]

[else]

[complete]

[else]

Analyze Product

Design Problem

Elicit/Analyze

Detailed Needs

Generate/Improve

Candidate Requirements

Evaluate Candidate

Requirements

Select Requirements

Finalize Requirements

Analysis

Resolution

A Generic Software Engineering Design Process:

Generic Software Engineering Design
SRS : Problem

Design Document : Solution

Analysis

Architectural

Design

Design

Document

SRS

[adequate architecture]

[else]

[adequate detailed design]

[adequate architecture]

Analyze SRS

Generate/Improve

Candidate Architectures

Evaluate Candidate

Architectures

Select Architecture

Finalize Architecture

Generate/Improve Detailed

Design Alternatives

Evaluate Detailed

Design Alternatives

[else]

Select Detailed

Design

Finalize Design

[else]

Detailed

Design

Software design management

Design require management:

 Software development is complex, expensive, time consuming done by groups of people.

 If it is simply allowed to “happen,” the result is chaos.

 Chaos is avoided when software development is managed.

 Software development must be planned, organized, and controlled, and the people involved

must be led.

There are at least two sorts of business activities that must be managed.

 Operations are standardized activities that occur continuously or at regular intervals.

1) Hiring and performance review

2) Payroll operations

3) Shipping and receiving operations

 A project is a one-time effort to achieve a particular, current goal of an organization, usually

subject to specific time or cost constraints.

1) Efforts to introduce new products,

2) Redesign tools and processes to save money

3) Restructure an organization in response to business needs.

Project planning activities:

 Software development clearly fits project management:

 Planning: Formulating a scheme for doing a project.

 Organizing: Structuring the organizational entities involved in a project and assigning them

responsibilities and authority.

 Staffing: Filling the positions in an organizational structure and keeping them filled.

 Tracking: Observing the progress of work and adjusting work and plans accordingly.

 Leading: Directing and helping people doing project work.

Project Planning:

 The first step in working out a project plan is to determine how much work must be done and

the resources needed to do it.

 Estimation is calculation of the approximate cost, effort, time, or resources required to achieve

some end.

◦ Mostly begin by estimating the size of work products such as source code,

documentation, and so forth, and then deriving estimates of effort, time, cost, and

other resources.

 A schedule specifies the start and duration of work tasks, and often the dates of milestones.

 A milestone is any significant event in a project.

 A risk is any occurrence with negative consequences.

 Risk analysis is an orderly process of identifying, understanding, and assessing risks.

 The final portion of the project plan is a specification of various rules governing work. Such rules

fall into the following categories:

1) Policies and Procedures

2) Tools and Techniques

Project organization:

 There are many ways to organize people into groups and assign them responsibilities and

authority

◦ Organizational structure.

 There are also many ways for people in groups to interact, make decisions, and work together

◦ Team structures.

Organizational structure:

 Project organization: Groups might be responsible for carrying projects from their inception

through completion

 Functional organization: Groups might be responsible for just part of the project, such as design

or coding or testing

Team structure:

 Hierarchical team: A team might have a leader who makes decisions, assigns work and resolves

conflicts.

 Democratic team: A team might attempt to make decisions, assign work, and resolve conflicts

though discussion, consensus, and voting.

Project staffing:

 An organizational structure has groups with roles that must be filled e.g. testing group.

 Project staffing is the activity of filling the roles designated in an organizational structure and

keeping them filled with appropriate individuals.

◦ Hiring and orienting new employees

◦ career development guidance

◦ opportunities through training and education

◦ Evaluating their performance

Project tracking:

 Nothing ever goes exactly as planned, so it is essential to observe the progress of a project and

adjust the work, respond to risks, and, if necessary, alter the plan.

 Project Tracking: Measuring and reporting the status of milestones, tasks and activities required

in achieving the pre-defined project results

 Reasons for project tracking:

◦ A task may simply take more or less time than expected.

◦ Some of the rules governing the project may cause problems.

◦ The resources needed to accomplish tasks may not be as anticipated.

◦ Something bad may occur.

◦ Tracking is essential so that estimates, schedules, resource allocations, risk analyses, and

rules can be revised.

Leading a project:

 An adequate direction and support, a broad category of management responsibility called

leadership is required for successful project.

 Merely directing people does not guarantee success.

◦ People also need a congenial work environment, an emotionally

◦ socially supportive workplace,

◦ Make them feel that they are doing something important

Iterative Planning and Tracking:

(WEEK 4 COMPLETED)

WEEK # 5

Software design management

Project planning activities:

 Software development clearly fits project management:

 Planning: Formulating a scheme for doing a project.

 Organizing: Structuring the organizational entities involved in a project and assigning them

responsibilities and authority.

 Staffing: Filling the positions in an organizational structure and keeping them filled.

 Tracking: Observing the progress of work and adjusting work and plans accordingly.

 Leading: Directing and helping people doing project work.

Design Project Decomposition:

 Most aspects of project management depend on the work to be done and, in particular, on how

it is decomposed.

 An obvious way to break down a design project is to divide the work according to the generic

design processes discussed in the last section.

Design Project Planning:

 The initial project plan focuses on design problem analysis, with only rough plans for the

remainder of the work.

 So, plan will be revised before product design resolution, engineering design analysis, and

engineering design resolution.

 Initial estimates of effort, time, and resources are as precise as possible, based on the work

products to be completed.

 These estimates may be based on data about work done in the past or an analogy with similar

jobs with which the planners are familiar.

 The estimates are then used to block out:

 An initial schedule

 Allocate resources

 Analyze risks

 Set the rules guiding the project.

Design Project Tracking:

 Product analysis work is tracked against the initial plan.

 Ideally, problem analysis is complete when it is time to revise the plan, since planning the

product design resolution phase requires this information.

 The plan may be altered during tracking to make this happen.

 A revised plan prepared before the product design resolution phase should have much more

accurate:

 Estimates

 Schedule

 Resource allocations

 Risk analysis

Iterative planning and tracking continues through the engineering design with more details added each

time the plan is revised.

Design Project Organization:

 Design teams should be formed with responsibility of:

◦ Design as a whole

◦ Each major phase

◦ Each sub-phase

◦ Production of the various work products.

◦ e.g. a large company might have a division responsible for requirements and design.

Design Project Staffing:

 Organizations are staffed to fit the decomposition of design work.

 Projects need staff to:

◦ Elicit and analyze needs

◦ Create prototypes

◦ Model systems

◦ Create product designs

◦ Write requirements specifications

◦ Design user interaction

◦ Make high-level and low-level engineering designs

◦ Quality assurance.

Design Project Leadership:

 Leading a design problem needs extra skills:

◦ Visionary

◦ Creative

◦ Anticipate changes

◦ Experience

Design as project driver:

 Design work extends from the start of a software development project to the coding phase, and

it recurs during maintenance.

 Two major products of software design, the SRS and the design document, are the blueprints for

coding and testing.

 So, design is the driving activity in software development.

 By the time the software design is complete, enough information is available to make accurate

and complete plans for the coding and testing phases.

 Good design work early in the life cycle is crucial for software development project success.

Context of Software Product Design

Products and markets:

 Organizations create products for economic gain.

 Product development is very expensive, so an organization must be careful to create products

that it can actually sell or use.

A market is a set of actual or prospective customers who need or want a product, have the resources to

exchange something of value for it, and are willing to do so.

Importance of market:

Organizations study markets to:

◦ Choose which markets to sell to (target markets)

◦ Choose what products to develop

◦ Determine product features and characteristics

Thus, the sorts of products that an organization decides to develop ultimately depend on the target

markets to which it hopes to sell the products.

Products influence design:

 A lot of what happens during product design depends on what sort of product is being designed.

 A product’s characteristics influences:

◦ The decision to develop the product;

◦ The resources and time devoted to product development;

◦ The techniques

◦ Methods, and tools used to develop the product;

◦ Distribution and support of the final product.

Categorizing products:

 Products fall into different categories along several dimensions.

 A product category is a dimension along which products may differ.

◦ Target market size

◦ Product line novelty

◦ Technological novelty

 A product type is a collection of products that have the same value in a particular product

category.

Target Market Size:

 Target market size is the number of customers a product is intended to serve.

Type Description Examples

Consumer Mass consumer markets Word processors, spreadsheets, accounting

packages, computer games, operating systems

Niche

Market

More than one customer

but not a mass

consumer market

Programs for configuration management, shipyard

management, medical office records management,

AquaLush

Custom Individual customers Systems written for one part of a company by another

part, space shuttle software, weapons software

Categorizing products:

 Designers of custom and niche-market products designers can identify needs and desires for a

product as compared to consumer products.

 Designing consumer products is easy than designing niche-market products which is easy than

designing custom products.

 Competitors are important when designing consumer and niche-market products, but this is not

the case designing custom products.

 Different aspects of product design are more or less important in these different categories.

1) Consumer products place a premium on attractive user interface design.

2) Functionality is usually more important for custom and niche-market products.

Product Line Novelty:

 Product line novelty is how “new” a product is in relation to other products in current product

line.

Type Description Examples

New Different from anything

else in the

product line

Tax preparation product in a line of

accounting products, AquaLush

Derivative Similar to one or more

existing

products in the product

line

Database management system for

individual

users in a line of systems for corporate

users

Maintenance

Release

New release of an existing

product

Third release of a spreadsheet

Product Line Novelty:

 Maintenance releases pose higher constraints on designers than derivative products which pose

higher constraints than designing new products.

 Designing a new product is a very big job, designing a derivative product is a smaller but still

formidable task, and designing a new release may be relatively easy.

Technical Novelty:

 Technical novelty means “how much new technology” is incorporated in a product, w.r.t.

target market at a particular time.

Type Description Examples

Visionary

Technology

New technology must be

developed for the product

Mobile computing (2000), Wearable

automatic

lecture note-taker (2004)

Leading-

Edge

Technology

Proven technology not yet

in

widespread use

Peer-to-peer file-sharing products

(2002),

AquaLush (2006)

Established

Technology

Widely used, standard

technology

Products with graphical user interfaces

(2000)

Technical Novelty:

 Designing products with visionary or leading-edge technologies is most difficult kind of software

design.

◦ Hard to figure out what clients want.

◦ Whether products with new technology will attract customers

 Products with visionary technology may never be built if efforts to develop the new technology

fail.

 Even if they are a technological success, they may still fail in the marketplace if customers don’t

like the new technology.

 Leading-edge and established technology products are more likely to succeed.

(WEEK 5 COMPLETED)

(WEEK # 6)

Project Mission Statement:

 A project mission statement is a document that defines a development project’s goals and

limits.

 The project mission statement plays two important roles:

1) Launches a development project

2) States the software design problem

 The project mission statement is the main input to the product design process.

Project Mission Statement Template:

1. Introduction

2. Product Vision and Project Scope

3. Target Markets

4. Stakeholders

5. Assumptions and Constraints

6. Business Requirements

Introduction:

 The introduction contains background information to provide context.

 Information about the major business opportunity that the new product will take advantage of

and the product operating environment.

Product Vision and Project Scope:

 A product vision statement is a general description of the product’s purpose and form.

 The project scope is the work to be done on a project.

• Often only part of the product vision.

• May list what will not to be done as well as what will be done.

Target Market:

 Upper management chooses the target market segments for a new product or release during

product planning.

 Target markets are those market segments to which the organization intends to sell the new

product. Market segments determine users, features, competitors, and so forth.

Stakeholders:

 A stakeholder is anyone affected by a product or involved in or influencing its development.

◦ Product users and purchasers

◦ Developers and their managers

◦ Marketing, sales, distribution, and product support personnel

◦ Regulators, inspectors, and lawyers

 Developers must know the target market and stakeholders to build a product satisfying

stakeholders’ needs.

Assumptions and Constraints:

 An assumption is something that developers take for granted.

◦ Feature of the problem

◦ Examples: target deployment environments, levels of user support

 A constraint is any factor that limits developers.

◦ Restriction on the solution

◦ Examples: cost and time limits, conformance to regulations

Business Requirements:

A business requirement is a statement of a client or development organization goal that a product must

meet.

◦ Time, cost, quality, or business results

◦ Should be stated so that it is clear whether it is satisfied (quantitative goals)

◦ Broad goals related to business, not detailed product specifications

Needs Elicitation

Needs VS Requirements:

 Stakeholder needs and desires define the product design problem.

 Requirements specify the product design solution.

 Needs and requirements statements are similar, but the heart of product design is moving from

needs to requirements.

• Conflicting needs and desires

• Tradeoffs (needs and constraints)

• Ways of satisfying needs and desires

Needs Elicitation Challenges:

 Stakeholders often cannot explain their work, or articulate their needs and desires.

 Needs and desires can only be understood in a larger context that includes understanding the

problem domain.

 Stakeholders make mistakes, leave things out, and are misleading.

 Stakeholders often don’t understand the capabilities and limitations of technology.

 Designers are faced with a flood of information, often contradictory, incomplete, and confusing.

How to tackle Elicitation Challenges:

 Designers must obtain information from stakeholders in a systematic fashion using several

elicitation techniques and must document and analyze the results to ensure that needs and

desires are understood correctly and completely.

 The main way to organize requirements elicitation is to work from the top down through levels

of abstraction. Organization within each level of abstraction is achieved by focusing on particular

product aspects, which depend on the product itself.

Elicitation Heuristics:

 Learn about the problem domain first.

If designers don’t understand the problem domain, they need to elicit, document, and analyze

information about it before eliciting needs.

 Determine stakeholder goals as the context of stakeholder needs and desires

What a stakeholder needs and wants is a consequence of his or her goals. For example, a user may need

a product to record sample data. Why would the user need this? Because the user’s goal is to monitor a

manufacturing process by sampling and analyzing its output

 Study user tasks.

For example, suppose users currently collect and measure samples by hand, record the data in a log

book, use a calculator to compute statistics, enter the results on a paper graph, and study the graph to

see if the process is running properly.

Elicitation Techniques:

Elicitation Techniques:

 Interviews: Question and answer session during which one or more designers ask questions of

one or more stakeholders or problem-domain experts

• Most important technique for recording responses

 Observation: Many products automate or support work done by people, so designers need to

understand how people do their work to design such products

• Especially useful for eliciting derivative product and maintenance release needs because it

can reveal many opportunities for product improvement

 Focus Groups: Is an informal discussion among six to nine people led by a facilitator who keeps

the group on topic. Focus groups consist of stakeholders or stakeholder representatives who

discuss some aspect of the product.

• Main technique of obtaining needs for consumer products, especially new products and

those with visionary or leading-edge technologies.

 Prototype: A working model of part or all of a final product. Prototypes provide a useful basis

for conversations with stakeholders about features, capabilities, and user interface issues such

as interaction protocols.

• Especially useful for products with visionary technology because they help people

understand what a product with the new technology will be like.

 Questionnaires – It is efficient technique to elicit information from many people.

• Close ended questions

 Easier to analyze and range of possible responses is well-understood

• Open ended questions

 It includes detailed responses and relatively harder to understand

(WEEK 6 COMPLETED)

WEEK # 7

 Product Design Process Overview

Steps of Software Design Process:

There are six steps of software design process:

 Understanding of Design problem

 Elicit/Analyze Detailed Needs

 Generating/Improve Candidate Requirements

 Evaluate Candidate Requirements

 Select Requirements

 Finalize Requirements

1. Understanding of Design Problem:

• The nature of this task depends on whether there is an adequate project mission statement

• A good project mission statement defines the product design problem, so the designers

need only study the mission statement and research any parts of it they do not understand.

2. Elicitation of Detailed Needs

• Second step in design process is comprised of eliciting and analyzing detailed needs

• Designers needs to learn much more about stakeholder needs and desires, especially

those of users and purchasers that will meet its business requirements.

3. 4-5 Improvement, Evaluation and Selection of Requirements:

• Third step proceeds by generating and refining requirements, therefore fulfilling the

needs determined during analysis

• Once alternative requirements are generated and stated , they are evaluated in fourth

step

• In fifth step, requirements are selected on basis of evaluation

 6. Requirements Finalization:

• The last step of the software product design process is to finalize the SRS

So we start with Project Mission statement that act as input to Design process and the outcome

of this process is SRS (Software Requirement Specification).

Outer iteration in Fig 1 reflects refinement activity of product details specification.

Product Design Process: A Top-Down Process:

 Product design resolution sets technical requirements at a high level of abstraction and then

refine them until all product details are specified.

 During this process, user-level needs are elicited and analyzed first, and user-level functional,

data , and non-functional requirements are generated , refined, and evaluated until they are

adequate

 The user-level requirements provide an abstract solution to the design problem. They are then

refined to produce operational–level requirements

 Operational-level requirements are refined to produce physical-level requirements

Refinement Process:

Refinement is complete when these 3 level requirements are specified

Product Design Process: A User Centered Approach:

User-centered design comprises the following three principles:

 Stakeholder Focus – Determine the needs and desires of all stakeholders(especially users), and

involve them in evaluating the design and perhaps even in generating the design

 Empirical Evaluation – Gather stakeholder needs and desires and assess design quality by

collecting data rather than by relying on guesses.

 Iteration – Improve designs repeatedly until they are adequate.

Terminologies:

 Requirement Elicitation – Collecting stakeholder needs and desires is called requirements

elicitation , or needs identification or needs elicitation

 Requirements Analysis – Understanding stakeholder needs is called needs analysis or

requirements analysis

 Requirements Validation – Confirming with stakeholder that a product design satisfies their

needs and desires is called requirements validation or just validation.

Users Functional
and Non-
functional

Requirements

•Elicitation and
Analyze of user
requirements

Operational –
level

Requirements

•Refinement of
user-level
requirements

Physical-level

Requirements

•Refinement of
operational-
level
requirements

Role of Stakeholders:

Table 1: Stakeholders’ Roles in product Design

Needs Documentation and Analysis

Formulating & Organizing Documentation:

 The raw data collected from interviews, observation, focus groups, workshops, competitive

studies and so forth needs to be sorted, stated clearly, and organized.

 First step is to divide the data into two categories:

1) Data about the problem domain

2) Data about Stakeholders’ goals, needs, and desires

Documenting the Problem Domain:

 Data about the problem domain can be further categorized and grouped to form an organized

set of notes.

1) Problem Domain Glossary is a useful tool in understanding the domain. Most problem

domains have their own terminology that designers must learn

2) Organization Chart can be made to display data about the stakeholders’ organization.

Continue UML Activity Diagrams:

UML Activity Diagrams are useful tools for organizing and documenting problem domain

information about business processes or user processes.

Activity diagrams are graphical representations of workflows of stepwise activities and actions with

support for choice, iteration and concurrency. Data about processes obtained from interviews,

observation, focus groups, or document studies can be represented in an activity diagram much better

than in text.

Documenting Goals, Needs and Desires:

 Raw data about stakeholders’ goals , needs and desires can be organized into two lists:

1) A stakeholders-goal list

2) Needs list

 A stakeholders-goals list is a catalog of
important stakeholder categories and
their goals.

Aqua Lush Case Study

A need statement documents a single product feature, function, or property needed or desired by one

or more stakeholders.

 A need statement should

1) Name the stakeholder category or categories

2) State one specific need

3) Be a positive declarative sentence

 Often requires interpretation of raw data

Here is a list of “Elicited Needs” and “Needs Statements”:

Table: Elicited Needs and Needs Statements

Problem Modeling:

 Many kinds of models can represent the problem and help designers understand it.

 Models document the problem, can be reviewed with stakeholders for consistency.

 Many modeling notations and techniques are useful for analysis like

◦ Various UML diagrams

◦ Use case descriptions, user interface diagrams, dialog maps

Checking Needs Documentation:

 Correctness: A statement is correct if it is contingent and accords with the facts.

 Scope: A goal or need is within the project scope if it can be satisfied using the planned features

of the product created by the project.

 Terminological Consistency: Terminological consistency is using words with the same meaning

and not using synonyms.

 Uniformity—A description has uniformity when it treats similar items in similar ways.

 Completeness—Documentation is complete when it contains all relevant material.

Review Activities

 Developers should use checklists

 Stakeholders should review documents

A Needs Documentation Checklist:

(WEEK 7 COMPLETED)

(WEEK # 8)

Software Requirement Specification (SRS)

Software Requirement:

 A software (product) requirement is a statement that a software product must have a certain

feature, function, capability, or property.

 Requirements are captured in specifications, which are simply statements that must be true of a

product.

Software Requirement Specification:

A software requirements specification (SRS) is a document cataloging all the requirements for a

software product.

• This activity is aimed at finding out from the product’s intended clients, and other interested

parties, what they need and want from a software product. These needs and desires are

translated into specifications of the functions, capabilities, appearance, behavior, and other

characteristics of the software product.

• These specifications constitute the software product requirements, and they are recorded in a

software requirements specification (SRS) document.

SRS in Software Product Life Cycle:

Fig 1: Waterfall Life Cycle Model

Types of Requirements:

Business Requirements:

 Business requirements relate to a business' objectives, vision and goals and are often captured

by business analysts who analyze business activities and processes.

 Example:

 If a company’s need is to track its field employees by means of an employee tracking system,

the business requirements for the project might be described as:

 “Implement a web and mobile based employee tracking system that tracks field employees and

increases efficiency by means of monitoring employee activity, absenteeism and productivity. “

Functional Requirements:

 A functional requirement is a statement of how a software product must map program inputs

to program outputs.

 Functional requirements are specifications of the product’s externally observable behavior, so

they are often called behavioral requirements.

Requirements

Business

Technical

Functional

Non-Functional

Data

 Examples:

 Display the name, total size, available space and format of a flash drive connected to the USB

port.

 Upon request from managers, the system must produce daily, weekly, monthly, quarterly, or

yearly sales reports in HTML format.

Non-Functional Requirements:

 A non-functional requirement is a statement that a software product must have certain

properties.

 Non-functional requirements are also called non-behavioral requirements.

The following statements are examples of non-functional requirements:

 The payroll system must process the payroll for all XYZ Corp employees in six hours or less.

 The system must run without failure for at least 24 hours after being restarted, under normal

conditions of use.

Data Requirements:

 A data requirement is a statement that certain data must be input to, output from, or stored by

a product.

 Data requirements describe the format, structure, type, and allowable values of data entering,

leaving, or stored by the product.

 The Computer Assignment System must store customer names in fields recording first, last, and

middle names.

 The system must display all times in time fields with the format hh:mm:ss where hh is a two-

digit military time hour field, mm is a two-digit military time minutes field, and ss is a two-digit

military time seconds field.

Levels of Abstraction:

 A user-level requirement is statement about how a product must support stakeholders in

achieving their goals or tasks.

 An operational-level requirement is a statement about inputs, outputs, operations,

characteristics, etc. that a product must provide, without reference to physical realization.

 A physical-level requirement is a statement about the physical form of a product, its physical

interfaces, or its data formats.

SRS Templates:

 There is no universal SRS template. There are many templates available in books and on the

internet. Most employ requirements types and levels of abstraction to help organize the

material.

 Templates must be adapted for the product at hand.

IEEE Template:

1. Product Description

 1.1 Product Vision

 1.2 Business Requirements

 1.3 Users and Other Stakeholders

 1.4 Project Scope

 1.5 Assumptions

 1.6 Constraints

2. Functional Requirements

3. Data Requirements

4. Non-Functional Requirements

5. Interface Requirements

 5.1 User Interfaces

 5.2 Hardware Interfaces

 5.3 Software Interface

IEEE SRS Template;

1. Product Description

 1.1 Product Vision

 A product vision statement is a general description of a product’s purpose and form.

 1.2 Business Requirements

 Business requirements are statements of client or development organization goals that a

product must meet

 1.3 Users and Other Stakeholders

 A stakeholder is anyone affected by a product or involved in or influencing its development.

Developers must know who the stakeholders are so that they are all consulted (or at least

considered) in designing, building, deploying, and supporting the product.

 1.4 Project Scope

 The project scope is the work to be done in the project.

1.5 Assumptions

 An assumption is something that the developers may take for granted. It is important to make

assumptions explicit so that all stakeholders are aware of them and can call them into question.

1.6 Constraints

 A constraint is any factor that limits developers. Of course developers must be aware of all

constraints

2. Functional Requirements

 Functional requirements are specifications of the product’s externally observable behavior.

IEEE Format:

3. Data Requirements

 Data requirements describe the format, structure, type, and allowable values of data entering,

leaving, or stored by the product.

4. Non-Functional Requirements

 A non-functional requirement is a statement that a software product must have certain

properties.

5. Interface Requirements

 5.1 User Interfaces

 5.2 Hardware Interfaces

 5.3 Software Interfaces

SRS Description:

 In this template, the design problem is documented in the “Product Description” section, which

contains most of the information from the project mission statement. If a project mission

statement exists, it should be referenced rather than reproduced...

 The sections named “Functional Requirements,” “Data Requirements,” and “Non-Functional

Requirements” contain specifications mainly at the user and operational levels of abstraction.

SRS:

 The SRS is often referred to as the “parent” document because all subsequent project

management documents, such as design specifications, statements of work,

software architecture specifications, testing and validation plans, and documentation plans, are

related to it.

 It’s important to note that an SRS contains functional and nonfunctional requirements only; it

doesn’t offer design suggestions, possible solutions to technology or business issues, or any

other information other than what the development team understands the customer’s system

requirements to be.

 Example: https://www.scribd.com/doc/11934168/SRS-of-ATM

(WEEK 8 COMPLETED)

https://www.scribd.com/doc/11934168/SRS-of-ATM

