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Course Information 

Title and Course Code: Real Analysis II (MTH631) 

Number of Credit Hours: 3 credits 

Course Objective: Real Analysis II is the follow up course of Real Analysis I and in 

general an advanced course related to mathematical analysis. The topics of the Real 

Analysis II are linked with its rst course namely Real Analysis I, indeed, we will 

extend the ideas of Real Analysis I to Euclidean space Rn, we will discuss sequences 

and series of functions, limits and continuity of functions of several variables, partial 

derivatives their applications, multiple integrals etc. Upon completion of this course 

students will be able to 
 

• Understand the convergence of sequence of functions (LO1). 

• Understand the pointwise convergence, uniform convergence, several tests for 
convergence (LO2). 

• Apply the interchange of limit and integration, derivative of sequence of func- 
tions (LO3). 

• Understand the in nite series of functions, convergence, Weierstrass's test and 
some other results about the convergence (LO4). 

• Apply Dirichlet's test for uniform convergence, series of product of two func- 
tions, interchange of sum and intgeration (LO5). 

• Represent and study the function which could be written as power series,term 
by term integral and derivative of a power series, (LO6). item Understand the 
concept of equicontinuous function, The Stone-Weierstrass Theorem (LO7). 

• Understand and nd the Fourier series, Fourier coe cients, convergence of 
Fourier series (LO8). 

• Apply the best approximation theorem and understand the Euler gamma func- 
tion and the beta function and their properties (LO9) 

• Understand the functions of several variables, Heine-Borel Theorem, limits 
and continuity of functions of several variables (LO10) 

• Vector valued functions and their calculus, Bounded functions and several 
results about vector valued functions (LO11) 

• Di erentiablity in Rn, Di erentials, Directional derivatives, Partial deriva- 
tives, Maxima and minima (LO12) 

• Improper integrals, Multiple integrals, Functions of bounded variation (LO15) 
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Prerequisites: Real Analysis I (MTH621) 

The textbooks for this course: 

[1] W. Rudin, Principles of Mathematical Analysis, Third Edition, McGraw-Hill, 

1976. ISBN: 9780070542358. 

 

[2] W. F. Trench, Introduction to Real Analysis, Pearson Education, 2013. 
 

[3] S. Ponnusamy, Foundations of Mathematical Analysis, Birkhauser, 2012. 
 

Reference books: 

 
[4] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Revised English 

Edition Translated and Edited by R. A. Silverman, Dover Publication, Inc. New 

York. 

 

[5] R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, Third Edition, 

2000, John Wiley & Sons Inc. 
 

• Sequences and Series of functions 

 
• Functions of several variables 

 
• Vector valued functions 

 
• Integral Calculus 
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Chapter 1 

Sequences and Series of Functions 
 

 

 
 
 

1.1 Informal way 
 

If Fk, Fk+1, . . . , Fn, . . . are real-valued functions de ned on a subset D of the real 

numbers, we say that {Fn} is an in nite sequence or (simply a sequence) of functions 

on D. For each x0 ∈ D, we have a sequence of real numbers and we can talk about 

the convergence of that sequence of real numbers.  

If the sequence of values {Fn(x)} converges for each x in some subset S of D, then 

{Fn} de nes a limit function on S. 

Example: The functions 

F (x) = 
1  

, n 1, 
n n + x 

 

de ne a sequence on D = [0, ∞). 

 

Figure 1.1: Plot of Fn(x) = 
(
 1   

) 
, n ≥ 1, for n = 1, 2, 4, 8, 100 

 
 

Example: The functions  
F  (x) = 

x 
, n 1, 

n n + x 
 

de ne a sequence on D = [0, ∞). 

D⊂R 
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n→∞ 
F (x) = n 

es pointwise on S 

 

n+x 

) 

 
 
 

 

Figure 1.2: Plot of Fn(x) = 
(
 x    

) 
, n ≥ 1, for n = 1, 2, 4, 8, 20, 100 

 
 

Example: The functions 
 

Fn(x) = 

 

 
  nx     n/2 

1 − 
n + 1 

 
 
, n ≥ 1, 

 

de ne a sequence on D = (−∞, 1]. 

1.2 Pointwise Convergence 
 

 

 
 

 
 

 

 

 

 

 
 

 

 

 

 

 

Fn(x) = xne−nx, x ≥ 0, n ≥ 1. 

1, x = 0, lim 

converges pointwise on S to the limit function F , de ned by 

{Fn(x)} converges for each x in some subset S of D.  Then we say that {Fn} 

0, 0 < x ≤ 1. 

F (x) = 

{ 
1,  x = 0, 

0,   0 < x ≤ 1. 

( 

Suppose that {Fn} is a sequence of functions on D and the sequence of values 

F (x) =  lim Fn(x), x ∈ S. 
n→∞ 

Example: The sequence of functions de ned by 

∞,  x < 0, 

Therefore, {Fn} converg = [0, 1] to the limit function F de ned by 

Example: Consider the functions 
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2 1 

( ) 

≥

 

{

n

 

{

n

 

 0, x < − 2 , 

n n  −n(2 + nx),   − ≤ x < − , 

n n 

n 

 
0, x ≥ 2

 

n 

 
Equating the derivative 

Fn
′ (x) = nxn−1e−nx(1 − x) 

to zero shows that the maximum value of Fn(x) on [0, ∞) is e−n, attained at x = 1. 
Therefore, 

|Fn(x)| ≤ e−n, x ≥ 0, 

so limn→∞ Fn(x) = 0 for all x ≥ 0.  The limit function in this case is identically zero 

on [0, ∞). 

Example: For n ≥ 1, let Fn be de ned on (−∞, ∞) by 
 

n 

 

 

Fn(x) = 
 
n2x, − 1   ≤ x <  1 , 

 n(2 − nx), 1 ≤ x < 2 , 

 

Since Fn(0) = 0 for all n, limn→∞ Fn(0) = 0.  If x 

n ≥ 2/|x|. Therefore, 

0, then Fn(x) = 0 if 

 

lim 
n→∞ 

Fn(x) = 0, −∞ < x < ∞, 
 

so the limit function is identically zero on (−∞, ∞). 

Example: Show that the sequence of functions 

F (x) = 
1  

, n 1, 
n n + x 

 

de ne a sequence on D = [0, ∞), converges to 0. 

Example: For each positive integer n, let Sn be the set of numbers of the form 

x = p/q, where p and q are integers with no common factors and 1 ≤ q ≤ n. 
De ne 

F  (x) = 
1,   x ∈ Sn, 

0,    x ̸∈ Sn. 

If x is irrational, then x ̸∈ Sn for any n, so Fn(x) = 0, n ≥ 1. If x is rational, then 

x ∈ Sn and Fn(x) = 1 for all su ciently large n. 
Therefore, 

lim 
n→∞ 

F  (x) = F (x) = 
1   if x is rational, 

0  if x is irrational. 

n 
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1.3  
 

Let us introduce the notation 
 

 
Lemma: If g and h are de ned on S, then 

∥g + h∥S ≤ ∥g∥S + ∥h∥S 

∥gh∥S ≤ ∥g∥S∥h∥S. 

 
Moreover, if either g or h is bounded on S, then 

∥g − h∥S  ≥ |∥g∥S − ∥h∥S∥| . 

1.4 Uniform Convergence 
 

 

 
lim 

n→∞ 
||Fn − F ∥S = 0. 

 

 
 

 

(1.1) 
 

y 

 

 

 

 

 

 

 

 

 

 

x 

 

 

 

Figure 1.3: Uniform convergence graphically 
 

A sequence {Fn} of functions de ned on a set S converges uniformly to the limit 

function F on S if 
lim 

n→∞ 
||Fn − F ∥S = 0. 

such that 
Thus, {Fn} converges uniformly to F on S if for each ε > 0 there is an integer N 

function F on S if 

y F (x) 

y F (x) 

y F (x) 

a b 

∥Fn − F ∥S < ε if n ≥ N. 

Norm De ned Over a Set 

∥g∥S = sup |g(x)|. 
x∈S 

A sequence {Fn} of functions de ned on a set S converges uniformly to the limit 
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Thus, {Fn} converges uniformly to F on S if for each ε > 0 there is an integer N 
such that 

∥Fn − F ∥S < ε if n ≥ N. (1.2) 
 

 

 
 

 
 

 

 

F (x) − ε < y < F (x) + ε, a ≤ x ≤ b, n ≥ N 
 

 

 

converges uniformly to F ≡ 0. 
We have 

∥Fn − F ∥S = ∥Fn∥S = e−n, 

so 

∥Fn − F ∥S < ε 

if n > − log ε. For these values of n, the graph of 

y = Fn(x), 0 ≤ x < ∞, 
 

lies in the strip 

−ε ≤ y ≤ ε, x ≥ 0 

Theorem: Let {Fn} be de ned on S. Then 
 

 

 
 

 

 

 
 

 
 

 
 
 

Theorem: 

|Fn(x) − F (x)| < ε for all x in S if n ≥ N (ε). 

 

 

 

gence. 

to F on S. 

that 
integer N (which depends only on ε and not on any particular x in S) such 

x ∈ S, an integer N (which may depend on x as well as ε) such that 

Fn(x) = xne−nx, n ≥ 1, 

lies in the shaded band 

y = Fn(x), a ≤ x ≤ b, 

graph of 

If {Fn} converges uniformly to F on S, then {Fn} converges pointwise 

If S = [a, b] and F is the function with graph shown in then (1.2) implies that the 

. 

Example: The sequence {Fn} de ned by 

1. {Fn} converges pointwise to F on S if and only if there is, for each ε > 0 and 

|Fn(x) − F (x)| < ε if n ≥ N (ε, x). 

2. {Fn} converges uniformly to F on S if and only if there is for each ε > 0 an 

The converse is false; that is, pointwise convergence does not imply uniform conver- 
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If Fn(x) = xn, n ≥ 1, then {Fn} converges pointwise on S = [0, 1] to 

Then the convergence of Fn is not uniform, 

 n 

2 1 

n n  −n(2 + nx),   − ≤ x < − , 

n n 

n 

 
0, x ≥ 2

 

n 

n (−∞,∞) n 
n . n 

n . 

 0, x < − 2 , 

n n  −n(2 + nx),   − ≤ x < − , 

n n 

n 

 
0, x ≥ 2

 

n 

 

Counter example: For n ≥ 1, let Fn be de ned on (−∞, ∞) by 
 
0, x < − 2 , 

 

Fn(x) = 
 
n2x, − 1   ≤ x <  1 , 

 n(2 − nx), 1 ≤ x < 2 , 

 

The sequence {Fn} of converges pointwise to F ≡ 0 on (−∞, ∞), but not uniformly. Because 

∥F   − F ∥ = F   

( 
1 
) 

= .F   

( 
−1 
)

. = n, 

lim 
n→∞ 

∥Fn − F ∥(−∞,∞) = ∞. 

 
 

Counter example: For n ≥ 1, let Fn be de ned on (−∞, ∞) by 
 

n 

 

 

Fn(x) = 
 
n2x, − 1   ≤ x <  1 , 

 n(2 − nx), 1 ≤ x < 2 , 

 

However, the convergence is uniform on 

Sρ = (−∞, ρ] ∪ [ρ, ∞) 

for any ρ > 0, since  
2 

∥Fn − F ∥Sρ  = 0 if n > 
ρ

. 

 

 
 

 

 

if there exists an ε > 0 such that to 

each integer N there correspond and integer n > N and a point xn ∈ S for which 
we have 

 

Example: 

|Fn(xn) − F (xn)| ≥ ε. 

 

 

F (x) = 

{ 
1, x = 1, 

0,   0 ≤ x < 1. 

Suppose that a sequence of function Fn is point wise convergent on the set S. 

How to show that a sequence of functions is not uniformly convergent? 

2 1 

n 

so 

n 
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∥Fn − F ∥S = 1 for all n ≥ 1. 

If Fn(x) = xn, n ≥ 1, then {Fn} converges pointwise on S = [0, 1] to 

1/n 

 
The convergence is not uniform on S. To see this, suppose that 0 < ε < 1. Then 

|Fn(x) − F (x)| > 1 − ε if (1 − ε) < x < 1. 
 

Therefore, 

1 − ε ≤ ∥Fn − F ∥S ≤ 1 

for all n ≥ 1. Since ε can be arbitrarily small, it follows that 
 
 
 

Example: 
 

 
 
 

 
 

1.5 Cauchy's Uniform Convergence Criterion 

Theorem: 

 

(1.3) 
 
 
 

Proof: For necessity, suppose that {Fn} converges uniformly to F on S. 

Then, if ε > 0, there is an integer N such that 

ε 
∥Fk − F ∥S < 

2 
if k ≥ N. 

Therefore,  
∥Fn − Fm∥S =   ∥(Fn − F ) + (F − Fm)∥S 

≤  ∥Fn − F ∥S + ∥F − Fm∥S 
ε ε 

< 
2 

+ 
2 

= ε if m, n ≥ N. 
 

For su ciency, we rst observe that (1.17) implies that 
 

|Fn(x) − Fm(x)| < ε if n, m ≥ N, 
 

for any xed x in S. 

on every closed subset of [0, 1). 

∥Fn − Fm∥S < ε if n, m ≥ N. 

A sequence of functions {Fn} converges uniformly on a set S if and 

F (x) = 

{ 
1,  x = 1, 

0,   0 ≤ x < 1. 

However, the convergence is uniform on [0, ρ] if 0 < ρ < 1, since then 

∥Fn − F ∥[0,ρ] = ρ 
n 

and limn→∞ ρn = 0. Another way to say the same thing: {Fn} converges uniformly 

only if for each ε > 0 there is an integer N such that 
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Therefore, Cauchy's convergence criterion for sequences of constants implies that 

{Fn(x)} converges for each x in S; that is, {Fn} converges pointwise to a limit 
function F on S. 

 
To see that the convergence is uniform, we write 

|Fm(x) − F (x)|  =  |[Fm(x) − Fn(x)] + [Fn(x) − F (x)]| 

≤  |Fm(x) − Fn(x)| + |Fn(x) − F (x)| 

≤  ∥Fm − Fn∥S + |Fn(x) − F (x)|. 
 

This and (1.17) imply that 

|Fm(x) − F (x)| < ε + |Fn(x) − F (x)| if n, m ≥ N. (1.4) 

Since limn→∞ Fn(x) = F (x), 

|Fn(x) − F (x)| < ε 

for some n ≥ N , so (1.4) implies that 

|Fm(x) − F (x)| < 2ε if m ≥ N. 

But this inequality holds for all x in S, so 

∥Fm − F ∥S ≤ 2ε if m ≥ N. 

Since ε is an arbitrary positive number, this implies that {Fn} converges uniformly 
to F on S. 

 

Example: 
 

|g′(x)| ≤ r < 1, −∞ < x < ∞. (1.5) 

Let F0 be bounded on S and de ne 

Fn(x) = g(Fn−1(x)), n ≥ 1. (1.6) 

Show that {Fn} converges uniformly on S. 

Solution: We rst note that if u and v are any two real numbers, then (1.5) and 

the mean value theorem imply that 

|g(u) − g(v)| ≤ r|u − v|. (1.7) 

Recalling (1.6) and applying this inequality with u = Fn−1(x) and v = 0 shows that 

|Fn(x)|  =  |g(0) + (g(Fn−1(x)) − g(0))| 

≤   |g(0)| + |g(Fn−1(x)) − g(0)| 

≤   |g(0)| + r|Fn−1(x)|. 

Suppose that g is di erentiable on S = (−∞, ∞) and 
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n 

 
Therefore, since F0 is bounded on S, it follows by induction that Fn is bounded on 

S for n ≥ 1. 

Moreover, if n ≥ 1, then (1.6) and (1.7) with u = Fn(x) and v = Fn−1(x) imply 
that 

 

|Fn+1(x) − Fn(x)|   =    |g(Fn(x)) − g(Fn−1(x))| 

≤   r|Fn(x) − Fn−1(x)|, −∞ < x < ∞, 

so 

∥Fn+1 − Fn∥S ≤ r∥Fn − Fn−1∥S. 

By induction, this implies that 
 

∥Fn+1 − Fn∥S ≤ r  ∥F1 − F0∥S. (1.8) 
 

If n > m, then 
 

∥Fn − Fm∥S =  ∥(Fn − Fn−1) + (Fn−1 − Fn−2) + · · · 

+(Fm+1 − Fm)∥S 

≤  ∥Fn − Fn−1∥S + ∥Fn−1 − Fn−2∥S + · · · 

+∥Fm+1 − Fm∥S. 
 

Now (1.8) implies that 
 

∥Fn − Fm∥S ≤  ∥F1 − F0∥S(1 + r + r2 + · · · + rn−m−1)rm 
rm 

<  ∥F1 − F0∥S 
1 − r 

. 

rN 

Therefore, if ∥F1 − F0∥S 
1 − r 

< ε, 

then ∥Fn − Fm∥S < ε if n, m ≥ N . 

1.6 Properties Preserved by Uniform Convergence 

 
1.6.1 

 

 

 
 

 

 

Proof: Suppose that each Fn is continuous at x0. If x ∈ S and n ≥ 1, then 

|F (x) − F (x0)|   ≤   |F (x) − Fn(x)| + |Fn(x) − Fn(x0)| + |Fn(x0) − F (x0)| 

≤  |Fn(x) − Fn(x0)| + 2∥Fn − F ∥S. 
(1.9) 

and left. 
point x0 in S, then so is F . Similar statements hold for continuity from the right 

Continuity of the Limit Function at a Point 

Theorem: If {Fn} converges uniformly to F on S and each Fn is continuous at a 
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n 

n 

∫ 

a a 

 
0, x = 0, 

Fn(x) dx = lim 
n→∞ 

 

Suppose that ε > 0. Since {Fn} converges uniformly to F on S, we can choose n so 

that ∥Fn − F ∥S < ε. For this xed n, (1.9) implies that 

|F (x) − F (x0)| < |Fn(x) − Fn(x0)| + 2ε, x ∈ S. (1.10) 

Since Fn is continuous at x0, there is a δ > 0 such that 

|Fn(x) − Fn(x0)| < ε if |x − x0| < δ. 
 

So, from (1.10), 

|F (x) − F (x0)| < 3ε, if |x − x0| < δ. 

Therefore, F is continuous at x0. 

and left. 
 

Corollary: If {Fn} converges uniformly to F on S and each Fn is continuous on S, 
then so is F ; that is, a uniform limit of continuous functions is continuous. 

Proof: See video lectures. 

Remark: If {Fn} converges uniformly to F on S. Is the following 
 
 
 

is true? 

 

b 

F (x) dx = lim 
a n→∞ 

 

b 

Fn(x) dx, 
a 

Example: 
∫ b 

F (x) dx = limn→∞ 
∫ b 

Fn(x) dx, is not true generally. 
 

Consider the sequence of functions de ned on S = [0, 1] 
 

 

Fn(x) = n,   0 ≤ x ≤ 1 , 

 
0, 1  < x < 1. 

 

Then the sequence {Fn} converges pointwise to F (x) = 0 on [0, 1] and it is not 
uniformly convergent. We have 

 

1 

Fn(x) dx = 
0 

1/n 

 
0 

∫ b 

 
 

 

ndx + 
1 

 
1/n 

 

0dx = 1 But 
 

∫ b 
 

  

1 

F (x) dx = 0 
0 

a a 

∫ ∫ 

∫ ∫ ∫ 

lim 
n→∞ 

Fn(x) dx, 

Similar arguments apply to the assertions on continuity from the right 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


1.6.  Properties Preserved by Uniform Convergence 12 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

.
∫ 

.
∫ ∫ ∫ 

a 

a a a 

 

1.6.2 Interchange of Limit and Integration 

Theorem: 
 

 

  
 

Proof: Consider  
b 

. Fn(x) dx − 

 

b 

F (x) dx 
a 

 
 

 
b b b 

. Fn(x) dx − F (x) dx. ≤ |Fn(x) − F (x)| dx 

≤  (b − a)∥Fn − F ∥S 

and limn→∞ ∥Fn − F ∥S = 0, the conclusion follows. 

Remark: Recall the theorem we have just proved; i.e., 

Theorem: 
 

 

 
 
 

 

Theorem: 

 

1. If the convergence is uniform, then F is integrable on [a, b] and 
 

 
 

 
holds. 

b 

F (x) dx = lim 
a n→∞ 

b 

Fn(x) dx. 
a 

 

2. If the sequence {∥Fn∥[a,b]} is bounded and F is integrable on [a, b], then 
 
 
 

holds. 

 

b 

F (x) dx = lim 
a n→∞ 

 

b 

Fn(x) dx. 
a 

∫ b 

F (x) dx =  lim Fn(x) dx. 
a n→∞ 

∫ b 

a 

Then 

(1.11) 

∫ b 

F (x) dx =  lim Fn(x) dx. 
a n→∞ 

∫ b 

a 

Then 

Suppose that {Fn} converges pointwise to F and each Fn is integrable 

Suppose that {Fn} converges uniformly to F on S = [a, b]. Assume that 

Suppose that {Fn} converges uniformly to F on S = [a, b]. Assume that 

∫ 

∫ ∫ 

∫ ∫ 

. 

F and all Fn are integrable on [a, b]. 

F and all Fn are integrable on [a, b]. 

The hypotheses of Theorem are stronger than necessary. 

on [a, b]. 
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0, x ≥ 

{

n

 

{

n

 

 −n(2 + nx),   − ≤ x < − , 

 n(2 − nx), 1 ≤ x < 2 , 

≥ 

 
Remark: Part (1) of this theorem shows that it is not necessary to assume that F 

is integrable on [a, b], since this follows from the uniform convergence. Part (2) is 

known as the bounded convergence theorem. Neither of the assumptions of (2) can 

be omitted. 

Example (Unbounded sequence of functions): For n ≥ 1, let Fn be de ned 

on (−∞, ∞) by 
 0, x < − 2 , 

 

  

n 

 
Fn(x) = 

 
n2x, − 1   ≤ x <  1 , 

n n 
2 
n 

{∥Fn∥[0,1]} is unbounded while F is integrable on [0, 1], 
1 

Fn(x) dx = 1, n 1, but 
0 

1 

F (x) dx = 0. 
0 

 
 

Example (Bounded sequence of functions but limit is not integrable): For 
each positive integer n, let Sn be the set of numbers of the form x = p/q, where p 

and q are integers with no common factors and 1 ≤ q ≤ n. 
De ne 

F  (x) = 
1,   x ∈ Sn, 

0,    x ̸∈ Sn. 

If x is irrational, then x ̸∈ Sn for any n, so Fn(x) = 0, n ≥ 1. If x is rational, then 

x ∈ Sn and Fn(x) = 1 for all su ciently large n. Therefore, 

 
lim 

n→∞ 
F  (x) = F (x) = 

1   if x is rational, 

0  if x is irrational. 
 

In this example it is clear that ∥Fn∥[a,b] = 1 for every nite interval [a, b], Fn is 

integrable for all n ≥ 1, and F is nonintegrable on every interval. 

Example: 
 

The sequence of functions converges {Fn} converges uniformly to F ≡ 0  on [r1, r2] 
(or, equivalently, on every compact subset of (0, 1)). 

 

However, 
F ′ (x) = nxn−1 sin 

   1    
− (n − 1) cos 

   1   
, 

n xn−1 xn−1 

so {Fn
′ (x)} does not converge for any x in (0, 1). 

n n 

The sequence {Fn} de ned by 

if 0 < r1 < r2 < 1 

∫ ∫ 

n n 

2 1 

F (x) = xn sin n 

1 
. 

xn−1 
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F ′(x) =  lim 

∫ 

a 

∫ 

∫ 

limn→∞ 
∫ b Fn(x) dx (with F  and Fn replaced by G and F ′ ) imply that {Fn} con- 

|F (x) − Fn(x)|   ≤   |L − Fn(x0)| + . |G(t) − Fn(t)| dt. 

≤ ≤ 

 

1.6.3 

Theorem: 

 

Suppose also that {Fn(x0)} converges for some x0 in [a, b]. 

and 
 

 
 

while 

 
 

F+
′  (a) = 

 
 

 
lim 

 
n→∞ 

 
Fn

′ (a+) 

Fn
′ 

 
and F ′ (b) = lim 

(1.12) 
 

 
Fn

′ (b−). (1.13) 
n→∞ 

— 
n→∞ 

Proof :  Since Fn
′   is continuous on [a, b], due to fundamental theorem of calculus, we 

can write 

Fn(x) = Fn(x0) + 
x 

Fn
′ (t) dt, a x b. (1.14) 

x0 

Let L = lim 
n→∞ 

Fn(x0), G(x) =  lim 
n→∞ 

Fn
′ (x). (1.15) 

Since Fn
′   is continuous and {Fn

′ } converges uniformly to G on [a, b], G is contin- 

uous on [a, b]. 
 

Therefore, (1.14)  and  using  the  fact  we  have  proved b F (x) dx = 
 

a 

verges pointwise on [a, b] to the limit function 

x 

F (x) = L + 
x0 

∫ x 
 

 
 

 

 

n 
 
 
 

G(t) dt. 

The convergence is actually uniform on [a, b], since subtracting (1.14) from (1.16) 

yields 

.
∫ x 

′ . 

 
 

Consequently, 
≤   |L − Fn(x0)| + |x − x0| ∥G − Fn

′ ∥[a,b]. 

 
∥F  − Fn∥[a,b] ≤ |L − Fn(x0)| + (b − a)∥G − Fn

′ ∥[a,b], 
 

where the right side approaches zero as n → ∞. 

Since G is continuous on [a, b], (1.15), (1.16), De nition ??, and Theorem ?? 

imply (1.12) and (1.13). 

x0 

F (x) = L + 

Under  What  Conditions  We  May  Have  F ′ = limn→∞ Fn
′
 

Then {Fn} converges uniformly on [a, b] to a di erentiable limit function F, 

(x), a < x < b, 

uniformly on [a, b]. 

Suppose that Fn
′   is continuous on [a, b] for all n ≥ 1 and {Fn

′ } converges 

G(t) dt. (1.16) 

x0 
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fj, x ∈ S. 

fj, n ≥ k. 

then 
∑∞

j=k fj  is an in nite  series  (or simply 

The partial  sums  of , 
∑∞

j=k fj  are de ned by 

∑∞
j=k fj  converges  pointwise  to  the  sum  F  on  S, and write 

If {Fn} converges uniformly to F  on S, we say that 
∑∞

j=k fj  converges uniformly 

The in nite series of functions 
∑

j
∞
=k fj  on D  is said to be uniformly convergent if 

j=k 

∑ 

j=k 

∑ 

j=k 

∑ 

∑ j 

 

1.7 Series of Functions 
 

 

 

 

 
 

  

 
 

 
 

 

 
 

 

1.8 Convergence of Series of Functions 
 

 

 

 

 
 
 

 

Example: For the functions  
fj(x) = xj, j ≥ 0, 

 

de ne the in nite series of functions 
 
 
 
 

on D = (−∞, ∞). 

 
∞ 

x 
j=0 

 

Pointwise convergence: The nth partial sum of the series is 

Fn(x) = 1 + x + x2 + · · · + xn, 
 

or, in closed form,  
 

Fn(x) = 

 
1−xn+1 

,   x 1, 
1−x 

n + 1, x = 1. 

Fn = 

fj, n ≥ k. Fn = 

a series) of functions on D. 

{ 

If {fj}k
∞  is a sequence of real-valued functions de ned on a set D  of real numbers, 

n 

If {Fn}k
∞   converges pointwise to a function F  on a subset S  of D,  we say that 

F = 
∞ 

to F on S. 

the sequence of partial sum {Fn} de ned by 

n 

converges uniformly to F (x) on D. 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


1.8. Convergence of Series of Functions 16 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

∥F − Fn∥[−r,r] = 
1 − r 
rn+1 

niform convergence: The series does converge uniformly on any interval [−r, r] 

∞ 

∑∞ 

∑ 

∑ 
xj = 

   1  
, −1 < x < 1. 

 

We have seen earlier that {Fn} converges pointwise to 

1 
 

if |x| < 1 and diverges if |x| ≥ 1. 

Hence, we write 

F (x) = 
1 − x 

 

 
 

Since the di erence 

 
j=0 1 − x  

 
xn+1 

F (x) − Fn(x) = 
1 − x

 

can be made arbitrarily large by taking x close to 1, 

∥F − Fn∥(−1,1) = ∞, 

so the convergence is not uniform on (−1, 1). 

We have seen earlier that {Fn} converges pointwise to 

if |x| < 1 and diverges if |x| ≥ 1. 

Neither is it uniform on any interval (−1, r] with −1 < r < 1, since 

1 
∥F − Fn∥(−1,r) ≥ 

2 

for every n on every such interval. 
 

Example: For the functions fj(x) = xj, j ≥ 0, discuss the uniform convergence 
of the in nite series of functions j=0 fj(x). 

U 

 

 
 

 

Uniform convergence (using ε): See video lectures. 

Remark:  A necessary condition for      ∞j=0 fj(x) to converge on S  is that fj(x) → 0 

for each x ∈ S. 

Remark: As for series of constants, the convergence, pointwise or uniform, of a 

series of functions is not changed by altering or omitting nitely many terms. This 

justi es adopting the convention that we used for series of constants: when we are 

interested only in whether a series of functions converges, and not in its sum, we 

will omit the limits on the summation sign and write simply 
∑ 

fn. 

subsets of (−1, 1). 

1 
F (x) = 

1 − x 

with 0 < r < 1, since 

and limn→∞ rn = 0.   Put another way, the series converges uniformly on closed 
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We have proved that the series 
∑ 

j=0 f (x), where j 

fj(x) = xj, j ≥ 0, 

A series 
∑ 

fn converges uniformly on a set S if and only if for each 

only if for each ε > 0 there is an integer N such that 

A sequence of functions {Fn} converges uniformly on a set S if and 

∑ 

− 

− − − 

 

1.8.1 Cauchy's criterion for functional series 

Recall the following Theorem knows as Cauchy's convergence criterion 

Theorem: 

 

 
 

Theorem: 

 
 
 
 
 
 

(1.17) 

 

 
 

∥fn + fn+1 + · · · + fm∥S < ε if m ≥ n ≥ N. (1.18) 

 
Proof: Apply Cauchy's convergence criterion to the partial sums of fn, observing 

that 

fn + fn+1 + · · · + fm = Fm − Fn−1. 

Theorem: A series 
∑ 

fn converges uniformly on a set S if and only if for each 

(1.19) 
 
 

Corollary: 

m = n. 
 

Remark: The above conditions is necessary but not su cient. 

Example: 

 
 

 

 

Let us apply Cauchy's criterion for functional series, recall that we have 
 
 
 

Consider 

 
Fn(x) = 1 + x + x2 

 
+ ... + xn = 

1 xn+1 
. 

1 − x 

|Fm − Fn|  =   | 
1 xn+1 

1 − x 
−

 

1 xm+1 

1 − x 
| = | 

xm+1 xn+1 

1 − x 
|
 

2|xn+1| 

1 − |x| 

2|rn+1| 

1 − |r| 

1. 

ε > 0 there is an integer N such that 

∥fn + fn+1 + · · · + fm∥S < ε if m ≥ n ≥ N. 

If 
∑ 

fn converges uniformly on S, then limn→∞ ∥fn∥S = 0. Setting 

. 

≤ 

≤ 

∥Fn − Fm∥S < ε if n, m ≥ N. 

ε > 0 there is an integer N such that 

is uniformly convergent on any compact subset of (−1, 1) say [−r, r], where 0 < r < 
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We know that 
∑ 

1/n2 < ∞. 

1 

n 

Then the series of functions 
∑∞

n=1 Fn(x) is said to be dominated on S  by the series 

∑ 2 n2    and the series of functions 
∑

n
∞

=1 Fn  is dominated 
by the series 1/n   because 

x2+ Consider Fn = 

∑ 

 

We have 
 

 
Since 

 
∥Fm − Fn∥[−r,r] ≤ 

 
2|rn+1| 

 
 

2|rn+1| 

1 − |r| 

1 − |r| 
→ 0 as n → ∞, 

there is an integer N (ε) can be found for which 

2|rn+1| 

 
We have 

1 − |r| 
< ε, when n > N (ε). 

∥Fm − Fn∥[−r,r] ≤ ε, 

hence by Cauchy's criterion the series 
∑∞

j=0 x
j , is uniformly convergent on [−r, r]. 

1.8.2 Dominated Series of Real Numbers for Series of Functions 
 

 

 

 

 
 

 

Example: 
 

 

 
 
 

1.8.3  

 

where Mn < ∞. 

Proof: From Cauchy's convergence criterion for series of constants, there is for each 

ε > 0 an integer N such that 

Mn + Mn+1 + · · · + Mm < ε if m ≥ n ≥ N. 

which, because of (1.20), implies that 

∥fn∥S + ∥fn+1∥S + · · · + ∥fm∥S < ε if m, n ≥ N. 

functions de ned on the set S such that 

∥fn∥S ≤ Mn, n ≥ k, (1.20) 

1 

Weierstrass M-test/dominated Convergence Test 

. 

Let {Mn} be a sequence of nonnegative real numbers, and {Fn(x)} a sequence of 

|Fn(x)| ≤ Mn, ∀x ∈ S and n ∈ N. 

∞n=1 Mn. 

|Fn| < 
2  

=: Mn. 

Theorem The series 
∑ 

fn converges uniformly on S if 
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∑    1  

x2 + n2 
and 

∑ sin nx 

n2 

∑ 

∑ 

∑
• 
 . 

. . 

∑ 
∞

 

   x  

∑ ∑ n 

∑ ( ) 

∑ 1 

 

∥fn + fn+1 + · · · + fm∥S < ε if m, n ≥ N. 

Due to Cauchy's criterion, we conclude that fn converges uniformly on S. 

Recall the following necessary condition for uniform convergence: 

If fn converges uniformly on S, then limn→∞ ∥fn∥S = 0. 
Example: Check the uniform convergence of the following series of functions 

 

• 2 2 . 
x +n 

 
sin nx 

n2 

Solution: We have 

 
 
 

  1  1 sin nx 1  ≤ , ≤ . 
x2 + n2 n2 . n2 . n2 

Taking Mn = 1/n2 and recalling that 

 1  
< .

 
n2 

 

 
 

 

converge uniformly on (−∞, ∞). 

Example: Check the uniform convergence of the series 

 
Solution: 

. 1 + x . 

 
 

(1.21) 

For such a set S, we have ∥fn∥S ≤ rn. 

By Weierstrass's test applies, with Mn = r  < ∞. 
Since (1.21) is equivalent to 

  −r   
≤ x ≤

   r   
, x ∈ S, 

1 + r 1 − r 

this means that the series converges uniformly on any compact subset of (−1/2, ∞). 

 
Example: Check the uniform convergence of the series 

∑ 
fn(x) = 

   x     n 
. 

1 + x 

∑ 
fn(x) = 

∑ (    x  

1 + x 

) n 

. 

≤ r < 1, x ∈ S. 

The given series converges uniformly on any set S such that 

Due to Weierstrass M-test, we can conclude 
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In our proof of Weierstrass's M-test, we actually proved that 
∑ 

fn converges 

, 

∑ 

∑ 
|f  | converges uniformly on S.n 

Absolute convergence: A series of functions 
∑ 

fn  is said to converge absolutely 

 
Solution: See the solution in video lecture. 

 

Recall:  If      fn converges uniformly on S, then limn→∞ ∥fn∥S  = 0. The series 

does not converge uniformly on S = (−1/2, b) with b < ∞ or on S = [a, ∞) with 

a > −1/2, because in these cases ∥fn∥S = 1 for all n. 

 

on S  if 
∑ 

|fn| converges pointwise on S 

Remarks: 

• 

 

• 

 

and converges absolutely uniformly on S if 

 

 
 

 

 
 
 

Theorem: 
 

 

n ≥ k, (1.22) 

. 
 

Proof:  Let 

Gn = gk + gk+1 + · · · + gn, 

and consider the partial sums of 
∑∞

n=k fngn: 

Hn = fkgk + fk+1gk+1 + · · · + fngn.  (1.23) 

By substituting gk = Gk and gn = Gn − Gn−1, n ≥ k + 1, 

into (1.23), we obtain 
 

Hn = fkGk + fk+1(Gk+1 − Gk) + · · · + fn(Gn − Gn−1). 

Which we rewrite as 
 

Hn = (fk − fk+1)Gk + (fk+1 − fk+2)Gk+1 + · · · + (fn−1 − fn)Gn−1 + fnGn, 

uniformly on S. 

absolutely uniformly on S. 

∥gk + gk+1 + · · · + gn∥S ≤ M, 

∞ ∑ 

n=k 

than the usual convergence (pointwise or uniform). 

The condition of absolutely convergence (pointwise or uniform) is stronger 

for some constant M 

The series 

• Show that if a series converges absolutely uniformly on S, then it converges 

fn gn 

converges uniformly on S if { f } converges uniformly to zero on S, (f n 
∑ 

n+1 n 

converges absolutely uniformly on S, and 
— f  ) 
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x ∈ S, n ≥ k, 

The series 
∑∞

n=k fngn  converges uniformly on S  if 

∑ 

m m 

m 
¨
¨
¨

∑ 

S 
∑ 

 
or 

 

where 

 
Hn = Jn−1 + fnGn, (1.24) 

 

Jn−1 = (fk − fk+1)Gk + (fk+1 − fk+2)Gk+1 + · · · + (fn−1 − fn)Gn−1. (1.25) 

That is, {Jn} is the sequence of partial sums of the series 

∞ 

(fj − fj+1)Gj. (1.26) 
j=k 

 

From (1.22) and the de nition of Gj , 
 

∑

j=n 

so 

[fj(x) − fj+1(x)]Gj(x)
. 

≤ M 
∑

j=n 

|fj(x) − fj+1(x)|, x ∈ S, 

¨

∑

j=n 
(fj − fj+1)Gj

¨
 

m 

≤ M 
j=n 

|fj − fj+1|
¨ 

. 

Now suppose that ε > 0. Since (fj − fj+1) converges absolutely uniformly on S, 

Cauchy's convergence criterion implies that there is an integer N such that the right 

side of the last inequality is less than ε if m ≥ n ≥ N . The same is then true of the 

left side, so Cauchy's convergence criterion implies that (1.26) converges uniformly 

on S. 
 

We have now shown that {Jn} as de ned in (1.25) converges uniformly to a limit 
function J on S. Returning to (1.24), we see that 

 

Hn − J = Jn−1 − J + fnGn. 
 

Hence, we have  
∥Hn − J∥S ≤   ∥Jn−1 − J∥S + ∥fn∥S∥Gn∥S 

≤   ∥Jn−1 − J∥S + M ∥fn∥S . 
 

Since {Jn−1 − J} and {fn} converge uniformly to zero on S, it now follows that 

limn→∞ ∥Hn − J∥S  = 0.  Therefore, {Hn} converges uniformly on S. 

Corollary: 
 

fn+1(x) ≤ fn(x), 

{fn} converges uniformly to zero on S, and 

∥gk + gk+1 + · · · + gn∥S ≤ M, n ≥ k, 

S 

. 
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∑ 1 

n + x2 
= ∞ 

∞ ∑ 

n=1 

with fn = 1/n (constant), gn(x) = sin nx, and 

series converges uniformly 

x δ 

∞ 

∑ 

.
sin 

. 
≥ sin 

∑ 
. sin nx . = ∞, x ̸= kπ. 

∪ 

 
for some constant M. 

 

Example: Consider the series 

n 
 

 
 

 
We have 

Gn(x) = sin x + sin 2x + · · · + sin nx. 

 
1 

|Gn(x)| ≤ 
| sin(x/2)| 

, n ≥ 1, n ≠ 2kπ (k = integer). 
 

Therefore, {∥Gn∥S} is bounded, and the 
which sin x/2 is bounded away from zero. 

 
Example: For example, if 0 < δ < π, then 

on any set S on 

 

. 
2 
. 

2
 

if x is at least δ away from any multiple of 2π; hence, the series converges uniformly 

on 
 
 
 

Since 

S = 
k=−∞ 

[2kπ + δ, 2(k + 1)π − δ]. 

. n . 
 

 

Example: The series 
∞ n 

 (−1)  
n + x2 

n=1 

satis es the hypotheses of Corollary on (−∞, ∞), with 

     1  
fn(x) = 

n + x2 
, gn = (−1)n, G2m 

 

= 0, and G2m+1 = −1. 

 

 
 

 
 
 

 

for all x. 
 

Recall the following result: 

tained by Weierstrass's test, since 

Therefore, the series converges uniformly on (−∞, ∞). This result cannot be ob- 

sin nx 

This result cannot be obtained from Weierstrass's test. 
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If 
∑ 

n=k f converges uniformly to F on S and n 

Similar statements hold for 

If 
∑ 

n=k f converges uniformly to F on S and each f is continuous at n n 

. Similar statements hold for continuity from the right 

∞ ∑ 

n=0 

on an interval [a, b]. If {Fn} converges uniformly on [a, b] to F , then F is Riemann 

Suppose that {Fn} is a sequence of Riemann integrable functions de ned 

Recall, we have proved that the series 

∑ sin nx 

n 

∑ 

∫ ∫ 

 
Theorem: 

. 
 

Theorem: 

and left. 
 

Proof: See Lecture. 
 

Recall the following: Theorem: 

continuity from the right and left. 

Example: 

 
 

 

converges uniformly on every compact subset of (−1/2, ∞). 
Since the terms of the series are continuous on every such subset, implies that 

F is also. 
 

In fact, we can state a stronger result: F is continuous on (−1/2, ∞), since 

every point in (−1/2, ∞) lies in a compact subinterval of (−1/2, ∞). 

Example: Show that the function 

∞ 

G(x) = 
n 

n=1 

is continuous except perhaps at xk = 2kπ (k = integer). 

We have seen that the series ∞
n=1  

sin nx  is uniformly convergent by applying Dirich- 

let's Test for Uniform Convergence except at xk = 2kπ (k = integer). 
 

 

 
 

 

is continuous for all x. 

Theorem: 

 
 
 
 
 
 
 
 

b 

lim 
n→∞ 

 

 

 
 
 
 
 
 

Fn(x)dx = 

 
 
 
 
 
 
 
 

b 

F (x)dx. 

a a 

(−1) 
n + x2

 
n 1 

H(x) = 

x 

1 + x 
F (x) = 

∞ ∑ 

n=1 

integrable on [a, b], and 

)n ( 

and left 

If {Fn} converges uniformly to F on S and each Fn is continuous at a 

point x0 in S, then so is F . Similar statements hold for continuity from the right 

a point x0 in S, then so is F 

each fn is continuous at a point x0 in S, then so is F. 

Example: The function 
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∫ 

∫ 

.∫ ∫ ∫ 

≤ ∈ 

 

 
t 

Fn(x)dx, 

a 
 

t 

F (x)dx. 

a 

 

Proof: 

 

• 

• 

|F (x)| ≤ |Fn(x) − F (x)| + |Fn(x)| ≤ δn + |Fn(x)|, 

where δn = supx∈[a,b] |Fn(x) − F (x)|. 

• 

ε 
|Fn(x) − F (x)| < 

3(b − a) 
, for all x ∈ [a, b], n > N. 

 

Also, Fn is integrable, there exists a partition P of [a, b] such that 
 

ε 
S(P, Fn) − s(P, Fn) < 

3 
. 

For each x ∈ [a, b] with n = N 

ε 
|Fn(x) − F (x)| < 

3(b − a) 
, for all x ∈ [a, b], n > N, 

 

implies that 
ε ε

 

 
 

Therefore, 

Fn(x) − 
3(b − a) 

< F (x) < Fn(x) + 
3(b − a) 

. 

ε ε 
s(P, Fn) − 

3 
< s(P, F ) ≤ S(P, F ) < S(P, Fn) + 

3
 

Hence F is integrable. Finally, for n ≥ N and for each t ∈ [a, b], we have 

 
t t 

Fn(x)dx − 

a a 

F (x)dx. ≤ 

t 

|Fn(x) − F (x)|dx 

a 
ε(b − a) 

, for all x [a, b], n > N. 
3(b − a) 

For each t ∈ [a, b] 

that 
Since Fn converges uniformly to F , for every ε > 0, there exists an N such 

We need to show that the function F is integrable on [a, b]. 

F is bounded, because 

Fn is bounded, because each Fn is integrable on [a, b]. 

. 

converges uniformly on [a, b] to 

Observe that the following statements holds: 
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x 

1 + n 

b − a 
.
 n+1 n+1 

∞ ∑ 

n=k 

∑ 

n + 1 

 
 
 

Remark: 

 

 

  
 

  
 

We say in this case that 
∑∞

n=k fn  can be integrated term by term  over [a, b]. 

Example: Consider the {Fn} de ned by 

 
 

Then Weieretrass's M-test shows that Fn converges uniformly on [a, b] 
 

Consequently, term-by-term integration is permissible in this series. 
 

Example: Consider the following 
 

    1  
= 

1 − x 

 
xn, −1 < x < 1. 

 
 
 

 

. 
 

Hence, 
 

  
Consequently, ∞ n+1 n+1 

log(1 − a) − log(1 − b) = 
∑ b − a 

. 
n=0 

 

Remark: We have seen that 
 

b dx 

1 − x 

b 

The series converges uniformly, and the limit function is integrable on any closed 

fn(x) dx. F (x) dx = 
b b 

a 

∫ 
n x  dx. 

∞ ∑ 

n=0 a 

∫ 

∞ ∑ 

n=0 

a 

∫ 

a 

∫ 

= 

subinterval [a, b] of (−1, 1) 

Fn(x) = 

The limit of a uniformly convergent series of integrable functions is inte- 

grable, and so term-by-term integration is permissible for such a series. 

Theorem: Suppose that 
∑ 

n=k f  converges uniformly to F on S = [a, b]. Assume n 

that F and fn, n ≥ k, are integrable on [a, b]. Then 

x2 
, x ∈ [a, b] ⊂ R. 

log(1 − a) − log(1 − b) = 

∞ ∑ 

n=0 
n + 1 
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∞ 

∑ 

− 

∞ 

∞ 

∑ 
x nx 

 
Letting a = 0 and b = x yields 

 

 

Example: Evaluate the 

∑ ∫
1  

x(ex − 1)e−nxdx. 
n=1 0 

 

Solution: The sequence of partial sum is 
 

n 

Fn = x(ex − 1)e−kxdx. 
k=1 

 

Observe that Fn(0) = 0 and for x > 0 
 

Fn(x) = x(ex — 1) 
e−x(1 e−nx) 

, 
1 − e−x 

Fn(x) = x(1 − e−nx). 
 

 
Example: Evaluate the 

∑ ∫
1  

x(ex − 1)e−nxdx. 
n=1 0 

Solution: For the function xe−nx, we have seen that it attains its maximum at 

x = 1/n, we have 

∥Fn(x) − x∥ = sup |Fn(x) − x| 
 

∥F  (x) − x∥ = sup |xe−nx| =  
 1  

. 
 

x≥0 en 

So, as n → ∞, we have ∥Fn(x) − x∥ → 0. 

Example: Evaluate the 

∑ ∫
1 

x(ex  − 1)e−nxdx. 
n=1 0 

Solution: The series of functions 

∞ 

x(e   − 1)e− dx, 
n=1 

n 

x≥0 

log(1 − x) = − 

∞ ∑ 

n=0 
n + 1 

, −1 < x < 1. 
xn+1 
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∞ ∫ 

 
converges uniformly to F (x) = x. 

Applying the theorem of interchange of sum and integral sign, we can conclude 
that 

∑ ∫
1 

x(ex − 1)e−nxdx = 

∫1  
∑∞

 

x(ex − 1)e−nxdx = 

1 

xdx. 
n=1 0 0   n=1 0 

 

Example: Consider x 
Fn(x) = 

1 + nx2 
, x ∈ R. 

 

x |x| 1 |Fn(x)| = 
1 + nx2 

≤ 
2
√

n|x| 
= 

2
√

n
. 

Fn(x) is uniformly convergent to F (x) = 0 on R. We have 
 

′ 1 − nx2 

Fn(x) = 
(1 + nx2)2 

When x = 0, we have limn→∞ Fn
′ (x) = 0 and for x 

Remark: 

 
0 limn→∞ Fn

′ (x) = 1. 

 

 
 

 

• F is di erentiable on S. 

 
• There exists x ∈ S  with F ′(x) ≠ limn→∞ Fn

′ (x), because Fn
′ (0) → 1 ≠ F ′(0). 

Thus, even if the limit of a uniformly convergent sequence (respec- 

tively series) of di erentiable functions on S is di erentiable on S, it may 

happen that the derivative of the limit is not the limit of the sequence 

(respectively sequence of partial sums) of derivatives of the di erentiable 

functions. 

 

Theorem: Suppose that fn is a sequence of functions such that: 

• fn is continuously di erentiable on [a, b] for each n ≥ k, i.e., fn ∈ C1[a, b]. 

• 
∑∞

n=k fn(x0) converges for some x0  in [a, b]. 

• We have a sequence of di erentiable functions {Fn} de ned on S. 

What we have observed in this example is: 

• Fn converges uniformly to F on S. 
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∞ ∑ 

n=k 

∑ 

∫ ∫ 

− 

∫ 

∫x 

∫x 

∫x 

 

• 
∑∞

n=k fn
′
 

 

converges uniformly  on [a, b]. 

Then ∞
n=k fn converges uniformly on [a, b] to a di erentiable function F, such 

that 

a < x < b, 

 
∞ ∞ 

while F ′(a+) = 
∑ 

fn
′ (a+) and F ′(b−) = 

∑ 
fn

′ (b−). 
  

 

Proof :  Since  fn
′
 is uniformly convergent to g on any closed interval contained in 

[a, b], say in an interval with endpoints x0 and x, x ∈ [a, b]. Thus, for all x ∈ [a, b], 
we have 

x x 

g(t)dt = lim 
n→∞ 

x0 x0 

fn
′ (t)dt. 

Recall the fundamental theorem of calculus, we have 
 
 

g(t)dt = lim (fn(x) fn(x0)). 
n→∞ 

x0 
 

Recall the limn→∞ fn(x0) exists (given hypothesis), we can obtain 
 
 

g(t)dt + lim 
n→∞ 

x0 

 

fn(x0) = lim 
n→∞ 

 

fn(x), on [a, b]. 

 

The above convergence is uniform. By setting F (x) = limn→∞ fn(x), we have 
 
 

g(t)dt + lim 
n→∞ 

x0 

 

fn(x0) = F (x), on [a, b]. 

 

Now, g, being the limit of a uniformly convergent sequence of continuous functions 

on [a, b], is continuous on [a, b]. 

Recall the second fundamental theorem of calculus with G(x) = 

di erentiable and G′(x) = g(x) on [a, b]. 

Therefore, we have 

x 

g(t)dt is 
x0 

 

 
 
 

 
Remark: 

How to a 

F ′(x) = g(x), F ′(x) =  lim 
n→∞ 

fn
′ (x), on [a, b]. 

n=k n=k 

pply this result? 

The series 
∑∞

n=k fn  can be di erentiated term  by  term  on [a, b]. 

fn
′ (x), F ′(x) = 
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∑ rn 

<  ∞ 

+ · · · . 
3! 

x3 

+ 
x2 

∑ 

∞ 

∞ 

n 

∞ 

∞ ∞ 

n n 

n2 n 

n2 
sin 

n
, 

n! 2! 3! 

= 

 

• We  rst verify that 
∑∞

n=k fn(x0) converges for some x0  in [a, b]. 

• Then  di erentiate ∞
n=k fn  term  by  term.   If  the  resulting  series  converges 

uniformly. Then term by term di erentiation was legitimate. 

 
Example: The series 

∑
(−1)n 

1 
cos 

x
 

 

 

 
 

(1.27) 

converges at x0 = 0. Di erentiating term by term yields the series 

∑
(−1)n+1 1 

sin 
x

 
 

 

 

 
(1.28) 

of continuous functions. This series converges uniformly on (−∞, ∞), by Weier- 

strass's test. Consequently, the series (1.27) converges uniformly on every nite 
interval to the di erentiable function 

∞ 

F (x)  = 
∑

(−1)n 
1

 

x 
cos  , 

n −∞ < x < ∞, 

 
F ′(x)  = 

n=1 

∑
(−1)n+1 

 1 
 

 

 

x 
−∞ < x < ∞. 

 
 

Example: Consider the series 
 

The series converges uniformly on every interval [−r, r] by Weierstrass's test, because 

|x|n
 

 

n! 

rn 

n! 
, |x| ≤ r, 

 
 

 

Di erentiating the right side of (1.30) term by term yields the series 

∑ xn−1 ∑ xn 

 

which is the same as (1.30). 

n=1 
(n − 1)! n! 

n=0 

 

Example: Consider the series 
∞ n 2 3 

E(x) = 
∑ x   

= 1 + x + 
x  

+ 
x  

+ · · · . (1.30) 
 n=0 

n! 

n=1 

n=1 

n=1 

(1.29) 2! 

≤ 

, 

E(x) = 
∞ ∑ 

n=0 
n! = 1 + x + 
xn 

for all r, by the ratio test. 
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= lim 
an+1 

n→∞ an 

if the limit exists in the extended real number system. 

. . 

The radius of convergence of 
∑ 

an(x − x0)n is given by 

∑ x 

∑ 1
−
 

∑ 

∑ n 

∑ n 

 

Therefore, the di erentiated series is also uniformly convergent on [−r, r] for every 

r, so the term by term di erentiation is legitimate and 
 

E′(x) = E(x), −∞ < x < ∞. 

This is not surprising if you recognize that E(x) = ex. 
 

Remark: Failure to verify that the given series converges at some point can lead 

to erroneous conclusions. 
 

Example: For example, di erentiating 

∞ 

cos 
n 

 
 

(1.31) 

 
term by term. 

We have 

n=1 
 
 

 
∞ 

n 

 
 

 
x 

sin  . 
n 

 

Since 

n=1 
 

. 1 
sin 

x . ≤ 
|x| 

≤
 r 

, |x| ≤ r, 
. n n . n2 n2 

and 1/n2 < ∞. which converges uniformly on [−r, r] for every r, 

We cannot conclude from this that (1.31) converges uniformly on [−r, r]. In fact, 
it diverges for every x. 

 
 

 

An in nite series of the form  
∞ 

an(x − x0)  , (1.32) 
n=0 

where x0 and a0, a1, . . . , are constants, is called a power series in x − x0. If x0 = 0 
then power series becomes 

 
 
 

 
Theorem: 

∞ 

anx . 
n=0 

 

 

 1 
R 

1.9 Power Series 
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∞ ∑ 

n=1 

∑ n 

n→∞ 

[ ( )] 

| | 

∑ n 

∑ n 

lim sup  an 
n→∞ 

=  =  , 
R  R 

 

Theorem:  For  the  power  series  
∑∞

n=0 an(x − x0)n,  de ne  R  in  the  extended  real 

(1.33) 
n→∞ 

 
 

Theorem: A power series 
 
 
 

 
with 

 
∞ 

f (x) = an(x − x0) 
n=0 

 

is continuous and di erentiable in its interval 

of convergence, and its derivative can be obtained by di erentiating term by term; 

that is, 
 

which can also be written as 

 

 

This series also has radius of convergence R. 
 

Proof: Since 
 

lim sup((n + 1)|an|)1/n =    lim sup(n + 1)1/n|an|1/n
 

n→∞ 

=    
( 

lim (n + 1)1/n
) (

lim sup |an|
1/n

)

 
n→∞ 

= lim 
n→∞ 

n→∞ 

exp 
log(n + 1) 

n 
( 

1/n

) 
e0 1 

 

the radius of convergence of the power series obtained by term by term di erentiation 

is R. Therefore, the power series in 

∞ 

f ′(x) = (n + 1)an+1(x − x0) , 
n=0 

converges uniformly in every interval [x0 − r, x0 + r] such that 0 < r < R. 
The term by term di erentiation is valid for the power series and the series 

∞ 

f ′(x) = (n + 1)an+1(x − x0) , 
n=0 

converges uniformly for all x in (x0 − R, x0 + R). 

|an| . 
1/n 

∞ ∑ 

n=0 

R = lim sup 
1 

positive radius of convergence R 

numbers by 

f ′(x) = n−1 
nan(x − x0) , (1.34) 

f ′(x) = (n + 1)an+1(x − x0)  . 
n (1.35) 
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∞ ∑ 

n=k 

∑ n 

∑
(k)  n    k 

∑
(k)  n 

∑
(k)  n 

∑
(k+1)  n    1 

∑
(k+1)  n    1 

 
Theorem: A power series  

∞ 

f (x) = an(x − x0) 
n=0 

 

with positive radius of convergence R has derivatives of all orders in its interval of 

convergence, which can be obtained by repeated term by term di erentiation. That 

is, 

(1.36) 

 
The radius of convergence of each of these series is R. 

 

Proof: 
∞ 

f (x) = n(n − 1) · · · (n − k + 1)an(x − x0) −  . 
n=k 

The proof is by induction. The assertion is true for k = 1, by the Theorem we 

proved in previous module. 

Suppose that it is true for some k ≥ 1. By shifting the index of summation, we 
can write 

∞ 

f (x) = (n + k)(n + k − 1) · · · (n + 1)an+k(x − x0)  , |x − x0| < R. 
n=0 

 

De ning 
 

We rewrite this as 

bn = (n + k)(n + k − 1) · · · (n + 1)an+k. (1.37) 

 
∞ 

f (x) = bn(x − x0)  , |x − x0| < R. 
n=0 

 

By Theorem of term by term di erentiation of power series, we can di erentiate 

this series term by term to obtain 

∞ 

f (x) = nbn(x − x0) − , |x − x0| < R. 
n=1 

Substituting from (1.37) for bn for |x − x0| < R yields 

∞ 

f (x) = (n + k)(n + k − 1) · · · (n + 1)nan+k(x − x0) −  . 
n=1 

 

Shifting the summation index yields 
∞ 

f (k+1)(x) = 
n=

∑

k+1 
n(n − 1) · · · (n − k)an(x − x0)n−k−1, |x − x0| < R, 

n−k 
n(n − 1) · · · (n − k + 1)an(x − x0) . f (k)(x) = 
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∑ n 

∑ 

k 

n=0 

∑ 

n ∑ 

 

which is (1.42) with k replaced by k + 1. This completes the induction. 

Example: We have proved that 

    1 

1 − x 

Repeated di erentiation yields 

∞ 

  k!  

(1 − x)k+1 
= n(n − 1) · · · (n − k + 1)xn−k 

n=k 
∞ 

= (n + k)(n + k − 1) · · · (n + 1)x  , |x| < 1, 
n=0 

  1  

(1 − x)k+1 

 

= 
n=0 

(
n + k

)

xn, |x| < 1. 

 
 

Example: Show that the series 
 
 
 

 
converges for all x. 

Di erentiating yields 
 

 

and 

C′(x) = 
∑
 

 
(−1) 

 

x2n−1 

(2n − 1)! 
= −

 

 

(−1) 

 
n    x

2n+1 

(2n + 1)! 
= −S(x). 

These results should not surprise you if you recall that 
 

 
 

 

 

an = 

= xn, |x| < 1. 

(−1) 
(2n + 1)! 

n x 
and C(x) = (−1) 

n  x
2n 

n 
(−1) 

n=0 

∞ ∑ 

∞ ∑ 

n=0 

∞ ∑ 

n=0 

∞ ∑ 

n=0 

. 
n! 

f (n)(x0) 

(2n)! 
S(x) = 

2n+1 

then 

∞ 

∞ ∞ 

n=1 

S′(x) = 
xn 

= C(x) 
(2n)! 

S(x) = sin x and C(x) = cos x. 

Theorem: If 

f (x) = 

∞ ∑ 

n=0 

an(x − x0)  , 
n 

|x − x0| < R, 
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∑ ∑ 

| 
1/n 

 
 

 
 

 

 
 

 
 
 

Theorem: If ∞ ∞ 

∑ 
an(x − x0)n = 

∑ 
bn(x − x0)n (1.38) 

  

for all x in some interval (x0 − r, x0 + r), then 

an = bn, n ≥ 0. (1.39) 

 

Proof :  Let f (x) = ∞
n=0 an(x − x0)n and g(x) = n

∞
=0 bn(x − x0)n. 

From previous result, we have 
 

 

an = 
f (n)(x0) 

n! 
and bn = 

g(n)(x0) 
. (1.40) 

n! 

From (1.38), f = g in (x0 − r, x0 + r). Therefore, 

f (n)(x0) = g(n)(x0), n ≥ 0. 

This and (1.40) imply (1.39). 
 

Theorem (Recall the following): For the power series, de ne R in the extended 

real numbers by 
 1 

= lim sup an 
R n→∞ 

| . (1.41) 

In particular, R = 0 if lim supn→∞ |an|1/n  =  ∞, and R  =  ∞ if lim supn→∞  |an|1/n  = 
0. 

Then the power series converges 

1. only for x = x0 if R = 0; 

 

 

 

 closed subset of this interval. 

n=0 n=0 

Setting x = x0 in the above equation yields 

Proof: We have 

f (k)(x) = 
∞ ∑ 

n=k 

n−k 
n(n − 1) · · · (n − k + 1)an(x − x0) . 

f (k)(x0) = k!ak. 

2. for all x if R = ∞, and absolutely uniformly in every bounded set; 

3. for x in (x0 − R, x0 + R) if 0  < R < ∞, and absolutely uniformly in every 
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∑ n 

∞ [ 

∑ n 

(k) 
∑ 

n  k 

 
 

Remark: The series diverges if |x − x0| > R. No general statement can be made 

concerning convergence at the endpoints x = x0 + R and x = x0 − R : the series 

may converge absolutely or conditionally at both, converge conditionally at one and 

diverge at the other, or diverge at both. 

Theorem (Recall the following): Suppose that 
∑ 

=k fn converges uniformly to F 

on S = [a, b]. Assume that F and fn, n ≥ k, are integrable on [a, b]. 

Then 
  

  
 
 

Theorem: If x1 and x2 are in the interval of convergence of 

∞ 

f (x) = an(x − x0) , 
n=0 

then 
 
 

x2 

f (x) dx = 
x1 n

∑

=0 

 
   an  

n + 1 

 
(x2 − x0) 

 

 
n+1 

 
— (x1 − x0) 

n+1
] 

; 

that is, a power series may be integrated term by term between any two points in 

its interval of convergence. 
 

Proof: See Lecture. 
 

Some questions related to Power Series. 

• For what values of x a given power series converges. 

• We discussed, what are the properties of its sum. 

 
• What properties guarantee that a given function f can be represented as the 

sum of a convergent power series in x − x0? 

Recall the following: 
 

Theorem: A power series  
∞ 

f (x) = an(x − x0) 
n=0 

with positive radius of convergence R has derivatives of all orders in its interval of 

convergence, which can be obtained by repeated term by term di erentiation; thus, 

∞ 

f (x) = n(n − 1) · · · (n − k + 1)an(x − x0)  −  . (1.42) 
n=k 

fn(x) dx. F (x) dx = 
b b 

a 

∫ ∞ ∑ 

n=k a 

∫ 

∫ 
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n! 

n! (x − x0)  . 
n (1.43) 

This is called the Taylor series of f  about x0  (also, the Maclaurin  series  of f , if 

∑ 

n=0 

f (n)(x0) 

f (x) = 
∑ f (x0)

(x − x )n 

 
 

 
 
 

 
 

an = . 
 
 

 

 

 

  
 

 

 
 
 

 
 
 
 

 

Remark: 

. 
 

Example: Consider the function 

 
f (x) = 

 
 

e−1/x2 
,    x ≠ 0, 

0, x = 0. 
 

the function f is in nitely times di erentiable on (−∞, ∞) and f (n)(0) = 0 for 

n ≥ 0.  So its Maclaurin series is identically zero. 

Taylor's theorem: 

 

f (x) − Tn(x) = 

where cn is between x and x0. 

Therefore, 

f (n+1)(cn) 

(n + 1)!  
(x − x0)

 

 

, (1.44) 

∞ (n) 

 

 
for an x in (a, b) if and only if 

 
lim 

n→∞ 

 

n=0 
 
 

f (n+1)(cn) 
 

(n + 1)! 

n! 
 
 

(x − x0) 

 
 
 
 
 
 

n+1 

0 
 
 
 
 

= 0. 

f (n)(x0) ∞ 
hood is 

then 

The radius of convergence of each of these series is R. If 

n−1 

n! (x − x0)  , 
n 

m ∑ 

n=0 

If f is in nitely di erentiable on (a, b) and x and x0 are in 

to a sum di erent from f 

The Taylor series of an in nitely di erentiable function f may converge 

Tm(x) = 
f (n)(x0) 

{ 

+ 

f (x) = 

∞ ∑ 

n=0 

an(x − x0)  , 
n 

|x − x0| < R, 

1.10 The Taylor's Series 

The only power series in x − x0 that can possibly converge to f in such a neighbor- 

x0 = 0). The mth partial sum of (1.43) is the Taylor polynomial 

(a, b) then, for every integer n ≥ 0, 
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If f (x) = sin x, then ∥f (k)∥(−∞,∞) = 1, k ≥ 0. We know that 

∑ f (x0)
(x − x )n 

 
 

 

Remark: It is not always easy to check this condition, because the sequence {cn} 

is usually not precisely known, or even uniquely de ned; however, the next theorem 
is su ciently general to be useful. 

 

Theorem:  
 

lim 

 
rn 

(n) 
∥f 

 
∥I  = 0. 

 

 
(1.45) 

n→∞ n! 

Then, if x0 ∈ I0, the Taylor series 

∞ (n) 

 

 
converges uniformly to f on 

n! 0 
n=0 

 

Ir = I ∩ [x0 − r, x0 + r]. 
 
 
 

Proof: We know that 

 

f (x) − Tn(x) = 

 

f (n+1)(cn) 

(n + 1)!  
(x − x0)

 

 
 

n−1, 

 

rn+1 

∥f − Tn∥Ir   ≤ 
(n + 1)! 

∥f 

so (1.45) implies the conclusion. 

Example: 

 
(n+1) rn+1 

∥Ir   ≤ 
(n + 1)! 

∥f
 

 
(n+1) 

∥I , 

lim 
n→∞ 

 

 

 

 
 

 
 

 
 

and the convergence is uniform on bounded sets. 

the the well known series expansion of sin x, that is, 

Apply the previous theorem, with I = (−∞, ∞), x0 = 0, and r arbitrary. We have 

f (2m)(0) = 0 and f (2m+1)(0) = (−1)m, m ≥ 0, 

Suppose that f is in nitely di erentiable on an interval I and 

 rn  

 = 0, 0 < r < ∞ n! 

 
holds for all r. 

Since 

sin x = (−1) 
n=0 

∑ ∞ 
n x 2n+1 

(2n + 1)! , −∞ < x < ∞, 
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ex = 
n! 

, −∞ < x < ∞, 

n x 

( ) ∞ ∑ 

n=0 

∞ ∑ 

n=0 

n 

∥ ≤ r ∥f [0,1] [max(1, 2 )] lim 
n→∞ . . 

 
Example: A 

 

 

 
 

Example:  If f (x) = ex, then f (k)(x) = ex  and ∥f (k)∥I  = er , k ≥ 0, if I  = [−r, r]. 
Since 

r 
lim er = 0. 

 
we conclude that 

n→∞  n! 

 

 
 

with uniform convergence on bounded sets. 
 

Example: If f (x) = (1 + x)q, then 
 

f (n)(x) 

n! 
= 

(
q 
)  

(1 + x) 

 
q−n 

 
, so 

 
 

 

 
 

 
 

We saw in Analysis I that this series equals (1 + x)q 

for all x if q is a nonnegative integer. 
 

Example: We will now show that if q is an arbitrary real number, then 
 

. (1.47) 
 

Since 
 
 

lim .
(  

q
 )/(

q 
)

. =   lim

 
. q − n . = 1,

 

n→∞ . n + 1 n  . n→∞ . n + 1 . 

the radius of convergence of the series in (1.47) is 1. 
From (1.46), 

∥f (n)∥[0,1] 
 

 q     .
(

q 
)

.
 

n! 
≤ [max(1, 2 )] . 

Example: Therefore, if 0 < r < 1, 

n . , n ≥ 0. 

rn 
(n) 

 

 
q .

(
q 
)

. n

 

 n n! 

n 

q 
The Maclaurin series 

xn 

with uniform convergence on bounded sets. 

f (n)(0) q 

n! 
= 

( ) 

n 
. (1.46) 

x  = f (x) = (1 + x) , q n 

( ) ∞ ∑ 

n=0 

0 ≤ x < 1 
n 

q 

is called the binomial series. 

similar argument shows that 

lim sup 
n→∞ 

= 0, 

n 

cos x = (−1) 
n=0 

∑ ∞ 
n x 2n 

(2n)! 
, −∞ < x < ∞, 
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arbn−r = an−rbr 

r=0 

∑ 

r=0 

∑ 

∑ 

n=0 

∞ ∑ 

n=0 

∑ 

n=0 

∑ n 

∑ n 

∑ n 

∑ ∑ 

∑ n 

 
where the last equality follows from the absolute convergence of the series in (1.47) 

on (−1, 1). 

Theorem: If 

 

 

and α and β are constants, then 

∞ 

αf (x) + βg(x) = (αan + βbn)(x − x0)  , |x − x0| < R, 
n=0 

 

where R ≥ min{R1, R2}. 

Proof: See the video lectures. 

Recall the following theorem: 

Theorem:  If  
∑∞

n=0 an  and  
∑ 

=0 bn  converge  absolutely  to  sums  A  and  B,  then 

the Cauchy product of ∞
n=0 an  and ∞

n=0 bn  converges absolute . 
 

Theorem: If f and g are given by power series 

∞ 

f (x) = an(x − x0)  , |x − x0| < R1, 
n=0 

 

∞ 

g(x) = bn(x − x0)  , |x − x0| < R2, 
n=0 

then 
 

 

  

 

and R ≥ min{R1, R2}. 

cn = 

 

Proof: Suppose that R1 ≤ R2. 
Since the series 

∞ 

f (x) = an(x − x0)  , |x − x0| < R1, 
n=0 

n n 

∞ 

f (x) = an(x − x0)  , 
n 

|x − x0| < R1, (1.48) 

g(x) = bn(x − x0)  , 
n 

|x − x0| < R2, (1.49) 

ly to AB 

f (x)g(x)   = 
∞ 

cn(x − x0)  , 
n 

|x − x0| < R, (1.50) 
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Cauchy product is 
∑∞

n=0 cnxn, with 

cn = 
r=0 

∑ 

∞ ∑ 

n=0 

∞ ∑ 

n=0 

∑ n 

n (
∑
 

∑ 

∑
p q p+q 

n 

 

∞ 

g(x) = bn(x − x0)  , |x − x0| < R2, 
n=0 

converge absolutely to f (x) and g(x). 

If |x − x0| < R1, their Cauchy product converges to f (x)g(x) if |x − x0| < R1, 
by product of series. 

The nth term of this product is 

∑

r=0 

ar(x − x0)rbn−r(x − x0)n−r = 

 

n 

r=0 

arbn−r

)

 (x − x0)n = cn(x − x0)n. 

 

Example: If 
 

 
 

 
 
 

where 

 g(x) 

1 − x 

∞ 

= sn 
n=0 

xn, |x| < min{1, R}, 

 

sn =  (1)b0 + (1)b1 + · · · + (1)bn 

=  b0 + b1 + · · · + bn. 

 

Example: We have already discussed 
 
 
 

 
Also 

 
 
 

Since 
 
 
 

while the 

∞ 

(1 + x) (1 + x)  = (1 + x) = 
n=0 

(
p + q

)

xn,
 

 

 

 

)

.

 q 

r n − r 

p 
( )( n 

bnxn, |x| < R, g(x)  = 

n x , 

( ) ∞ ∑ 

n=0 

x , n 

( ) ∞ ∑ 

n=0 

(1 + x)q = |x| < 1. n 

q 

(1 + x)p = |x| < 1. 
n 

p 

1 
f (x) = 

1 − x 
= xn, |x| < 1, 
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n 

∑ n 

∑ n 

∑ 

∑ 

∑ 

 
Product of power series implies that 

 
cn = 

(
p + q

)

.
 

 

This yields the identity 
 

, 

 
valid for all p and q. The quotient 

 

 

f (x) = 
h(x) 

 

 

g(x) 

 

(1.51) 

 

of two power series  
 

h(x)  = 
 

g(x)  = 

 
∞ 

cn(x − x0)  , |x − x0| < R1, 
n=0 
∞ 

bn(x − x0)  , |x − x0| < R2, 
n=0 

 

can be represented as a power series 

∞ 

f (x) = an(x − x0)n (1.52) 
n=0 

 

with a positive radius of convergence, provided that 
 

b0 = g(x0) ̸= 0. 

This is surely plausible.  Since g(x0) ≠   0 and g is continuous near x0, the denomina- 
tor of (1.51) di ers from zero on an interval about x0. Therefore, f has derivatives 
of all orders on this interval, because g and h do. 

Since 

f (x)g(x) = h(x), 

The result about the product of Power series implies that 

n 

arbn−r = cn, n ≥ 0. 
r=0 

 

Solving these equations successively yields 

a = 
c0 , 

0 b0
 

1 
(
 

 

 

n−1 
) 

 

  
, n ≥ 1. bn−rar 

0 b 

( 
p + q 

n 

) 

= 
∑ n 

r=0 

) 
q 

r n − r 

p 
( )( 

an = cn − 
r=0 
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∑ 

a3 − x + + 
2 24 

x 
6 

+ 
120 

+ · · · . 

2 6 2 24 120 

a1 =   1,   a3 = − 1 + 1 (1)   = 1 , a5 =   1  + 1 
( 

1 
) 

− 1 (1)   = 2 . 

x − + 

 

 

 

Remark: It is not worthwhile to memorize these formulas. Rather, it is usually 

better to view the procedure as follows: Multiply the series f (with unknown co- 

e cients) and g according to the procedure of Theorem ??, equate the resulting 

coe cients with those of h, and solve the resulting equations successively for a0, a1, 

. . . . 
 

Example: Suppose that we wish to nd the coe cients in the Maclaurin series 

tan x = a0 + a1x + a2x2 + · · · . 

We rst observe that since tan x is an odd function, its derivatives of even order 

vanish at x0 = 0, so a2m = 0, m ≥ 0. Therefore, 

tan x = a1x + a3x3 + a5x5 + · · · . 
 

Since  
tan x = 

 

sin x 
, 

cos x 
it follows from series of sin x and cos x that 

 
a1x + a3x3 + a5x5 + · · · = 

 
 

x3 x5 

6 120 

 
+ · · · 

1 − x2 
+ x4 

+ · · · 
 

so 

3 5 

(
 

2 24 

 

x2 x4 
) 

x3 x5 
 

    

(a1x + a3x  + a5x  + · · · ) 

or 

1 − 
2 

+ 
24 

+ · · · = x − 
6 

+ 
120 

+ · · · , 

( a1 
) 3 ( 

 

 

a3 a1 ) 5 x3 x5 
 

  

Comparing coe cients of like powers of x on the two sides of this equation must be 

equal; hence, 

a1 =  1, a3 − a1
 =   − 1 , a5 − a3  + a1

 = 1 , 

 

 
Therefore, 

6 2 3 
 
 

x3 
 

 

120 2     3 24 15 
 
 

2 5 
 

 tan x = x + + x 
3 15 + · · · . 

 
 

Example: To nd the reciprocal of the power series 

∞ n 

g(x) = 1 + ex = 2 + 
x 

, 
n! 

n=1 

2 
a1x + a5 − + · · · = x − 
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∑ 1  

∑
x 1 

 n 

(
∑
 ) (

∑
 

0 0 1 
2 

1 2 

1 
2 4 

2 
2 2 

1 
2 4 4 

∑ 

6 2 
2 3 

 
we let h = 1 in (1.51). If 

 
 
 

then 

 
∞ 

= an 
g(x) 

n=0 

 

xn, 

1   =   (a0 + a1x + a2x2 + a3x3 + · · · ) 

(

2 + x + x2 x3 

2 
+ 

6 
+ · · · 

=  2a  + (a  + 2a )x + 
( a0 + a  + 2a 

) 
x2 

 
 

From Corollary, 

+ 
( a0  

+ 
a1  

+ a  + 2a 
) 

x3 + · · · . 

 
 
 

a0 

2 1 2 

a0 
+ 

a1 

6 2 2 3 
 

Solving these equations successively yields 

1 
a0 = 

2 
, 

a =  − 
a0  = − 

1 
, 

a =  − 
1 ( a0  

+ a 
) 

= − 
1 
( 

1 
− 

1 
) 

= 0, 

a =  − 
1 ( a0  + 

a1  + a 
) 

= − 
1 
(
 1  

− 
1 

+ 0

) 

= 
 1 

, 
3 2 6 2 2 

so 
1 1 x 

2 12 8 48 
 

x3 

1 + ex 
= 

2 
− 

4 
+ 

48 
+ · · · . 

 
 

Example: To nd the reciprocal of 

 
g(x) = ex = 

 

 
(1.53) 

 
we again let h = 1 in (1.51). If 

 
 
 
 

then 

 
∞ 

(e )−  = anx , 
n=0 

∞ 

1 = 
n=0 

anx n 
∞  

xn 
 

 

n! 
n=0 

= 
n=0 

cnxn, 

∞ ∑ 

n=0 

, 
n! 

xn 

) 
∞ 

) 

2a0 = 1, 

a0 + 2a1 = 0, 

+ a + 2a = 0, 

+ a + 2a = 0. 
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∑    

∑
− 

 ≥ 

= − 

∑ 
−

 

2 
2! 1! 

1) = , 
2 

3 
3! 2! 1! 2 6 

4 
4! 3! 2! 2 1! 6 24 

n r=0 (n−r)! r! 

=    − 1   ∑n−1(−1)r
(

n
)
 

n 

n 

 
where  

n 

c  = 
ar . 

r=0 
(n − r)! 

We have, c0 = a0 = 1 and cn = 0 if n ≥ 1; hence, 

n−1 

a   = 
  ar , n 1. (1.54) 

r=0 
(n − r)! 

 

Solving these equations successively for a0, a1, . . . yields 

1 
a1 =   − 

1!
(1.32) = −1, 

a =   − 

[
 1 

(1) + 
 1 

(−  

] 
1

 

a =  − 

[
 1 

(1) +
 1 

(−1) +
 1 

( 
1 
)] 

= − 
1

 

a =  − 

[
 1 

(1) +
 1 

(−1) +
 1 

( 
1 
) 

+
 1 

(

− 
1 
)] 

= 
 1 

. 
 

From this, we see that  

ak = 
(−1)k 

 

k! 

for 0 ≤ k ≤ 4 and are led to conjecture that this holds for all k. To prove this by 

induction, we assume that it is so for 0 ≤ k ≤ n − 1 and compute from (1.54): 

a =    − 
∑n−1 1 (−1)r 

 

 
 
 

Thus, we have shown that 

n! 
 

(  1)n 
 

n! 

r=0 r 

 

. 
 

 
∞ n 

(ex)−1 = ( 1)n 
x 

. 
n! 

n=0 
 

Since this is precisely the series that results if x is replaced by −x in (1.53), we have 
veri ed a fundamental property of the exponential function: that 

 
(ex)−1 = e−x. 

This also follows from Example ??. 
 

1.11 The Abel's Theorem 

Theorem: Let f be de ned by a power series with nite radius of convergence R. 
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• If 
∑∞

n=0(−1)nanRn  converges, then 

∑ n 

∑ ∑ 

∑ 

∑ n 

∑ 

∑ 

∑ 

1 − y 

 

 
 

 

 
 

∞ 

f(x) = anR . 
n=0 

 
 

 
 
 
 

Proof:  Let 

 

f (x) = 
 
 

∞ ∞ 

 

 
We will show that 

g(y) = bnyn, bn = s ( nite). 
n=0 n=0 

 
 

We have 

lim 
y→1− 

g(y) = s. (1.55) 

 
∞ 

where 

Since 

g(y) = (1 − y) snyn, (1.56) 
n=0 

 

sn = b0 + b1 + · · · + bn. 

∞ ∞ 

   1  
= 
∑ 

yn and therefore 1 = (1 − y) 
∑ 

yn, |y| < 1, (1.57) 
  

we can multiply through by s and write 

∞ 

s = (1 − y) sy  , |y| < 1. 
n=0 

Subtracting this from (1.56) yields 

∞ 

g(y) − s = (1 − y) (sn − s)yn, |y| < 1. 
n=0 

If ε > 0, choose N so that 

|sn − s| < ε if n ≥ N + 1. 

Then, if 0 < y < 1, 
N ∞ 

|g(y) − s| ≤ (1 − y) |sn − s|yn + (1 − y) 
n=0 
N 

n=

∑

N +1 
|sn − s|y 

∞ 

<   (1 − y) 
∑ 

|sn − s|yn + (1 − y)εyN+1 
∑ 

yn 
n=0 

N 

<   (1 − y) |sn − s| + ε, 
n=0 

n=0 

n=0 n=0 

1.11.  The Abel's Theorem 45 

• If 
∑∞

n=0 anRn  converges, then 

(−1) anR  . 
n n 

∞ ∑ 

n=0 
x→(x0−R)+ 

lim 

x→(x0+R)− 
lim 

n 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


1.11.  The Abel's Theorem 46 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

diverges at x = 1, while limx→1− f (x) = 1/2. 

∑ 

n + 1 

∑ 

∞ 

n 

∞ 

n 
∑ ( )

− 
 ≥

 

 
because of the second equality in (1.57). 

Therefore, 

|g(y) − s| < 2ε 

if 
N 

(1 − y) |sn − s| < ε. 
n=0 

To obtain rst part of the theorem from this, let bn = anRn and g(y) = f (x0 + Ry); 

to obtain second part, let bn = (−1)nanRn and g(y) = f (x0 − Ry). 

Example: The series 
 

1 + x 
 
 

 

Integrating the series term by term yields 
∞ 

 

 n+1 

log(1 + x) = 
∑

(−1)n x 
, |x| < 1, 

n=0 

where the power series converges at x = 1. The Abel's theorem implies that 
∞ n+1 

log 2 = 
(−1) 

. 
n + 1 

n=0 

 

Example: If q ≥ 0, the binomial series 

n

∑

=0 

(
q 
)

xn

 

converges absolutely for x = ±1. This is obvious if q is a nonnegative integer, and 
it follows from Raabe's test for other positive values of q, since 

. an+1 . = .
(  

q 

)/(
q 
)

. =  
n − q 

, n > q, 

 

and 

. an   
. . n + 1 n  . n + 1 

 
lim n 

(
. an+1 . − 1

)  

= lim 
n 

( 
n − q 

− 1

)
 

 

 

n→∞ 
. an   

. 
n→∞ = lim n + 1 

n (−q − 1) = −q − 1. Therefore, Abel's theorem imply that 
n→∞ n + 1 

n

∑

=0 

(
q 
) 

= 2q and 

∞ 

(   1)n   
q 

= 0, q 0. 
n 

n=0 

= (−1) x 
n  n 

∞ ∑ 

n=0 

f (x) = 
    1  

This shows that the converse of Abel's theorem is false. 
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We say that {Fn} is uniformly bounded on S if there exist a number M such 

— ∈ 

— ∈ 

∫ 

− 

− 

 

1.12 Pointwise and Uniform Bounded Functions 
 

 

 

valued function ϕ(x) de ned on S such that 
 

 
 
 
 

|Fn(x)| < M, x ∈ S, n = 1, 2, 3, .... 

 
Remark: If {Fn} is pointwise bounded on S and S1 is countable subset of S, it is 

always possible to nd a subsequence {Fnk } such that subsequence is convergent. 

However, even if {Fn} is uniformly bounded sequence of continuous functions on a 
compact set S, there need not exist a subsequence which converges pointwise on S. 

 

 
Example: Consider the sequence of functions 

Fn(x) = sin nx, x ∈ [0, 2π]. 

Suppose there exists a sequence {nk} such that {sin nkx} converges, for every 

x ∈ [0, 2π]. Then we must have 

lim (sin nkx sin nk+1x) = 0, x [0, 2π]. 
k→∞ 

Hence 

lim (sin nkx sin nk+1x)2 = 0, x [0, 2π]. 
k→∞ 

By Lebesgue's theorem concerning integration of bounded convergent sequences, 

we have 

lim 
k→∞ 

2π 

lim (sin nkx sin nk+1x)2 = 0. 
k→∞ 

 

 

But we have 
 
 

which is a contradiction. 

 
lim (sin nkx sin nk+1x)2 = 2π. 

k→∞ 

 

Example: Consider the sequence of functions 
 

x2 

Fn(x) = 
x2 + (1 − nx)2 

, S = [0, 1]. 

0 

the sequence of functions is bounded for every x ∈ S, that is, if there exists a nite 
A sequence of functions {Fn} on the set S is said to be pointwise bounded on S if 

|Fn(x)| < ϕ(x), x ∈ S, n = 1, 2, 3, .... 

that 
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Then |Fn| ≤ 1, so that {Fn(x)} is uniformly bounded on [0, 1]. Also 
 

 

 
But 

lim 
n→∞ 

Fn(x) = 0, x ∈ [0, 1]. 

 
1 

Fn( 
n 

) = 1, 

so no subsequence can converge uniformly on [0, 1]. 

 
1.13 Equicontinuous Functions on a Set 

 

 

 

 

 

 

 

Theorem: If {Fn} is a pointwise bounded sequence of functions on a countable 

set S, then {Fn} has a subsequence {Fnk } such that subsequence converges for all 
x ∈ S . 

 

Proof: Let {xi}, i = 1, 2, 3, ... be the points of S arranged in a sequence. 

Since {Fn(xi)} is bounded, there exists a subsequence, which we shall denote by 

{Fi,k}, such that {Fi,k(xi)} converges as k → ∞. 
Consider the sequences S1, S2, ..., de ned by 

 

S1 : F1,1 F1,2 F1,3 F1,4 ... 
 

S2 : F2,1 F2,2 F2,3 F2,4 ... 

S3 : F3,1 F3,2 F3,3 F3,4 ... 

........................... 

Consider the sequences S1, S2, ..., de ned by 
 

S1 : F1,1 F1,2 F1,3 F1,4 ... 
 

S2 : F2,1 F2,2 F2,3 F2,4 ... 

S3 : F3,1 F3,2 F3,3 F3,4 ... 

........................... 

The sequence has the following properties 
 

for each ε > 0 there is a δ > 0 such that 
A family of functions F de ned on the set S is equicontinuous if for all f ∈ F and 

|f (x1) − f (x2)| ≤ ε if x1, x2 ∈ [a, b], |x1 − x2| < δ. (1.58) 

Remark: It is clear that every member of F is uniformly continuous. 

• Sn is a subsequence of Sn−1, for n = 2, 3, 4, ... 
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• 

k → ∞. 

• The order in which the functions appear is the same in each sequence, i.e., if 

one function precedes another in S1, they are in the same relation in every 

Sn, until one or the other is deleted. Hence, when going from one row in the 

above array to the next below, functions may move to the left but never to 

the right. 
 

We consider the sequence 
 

E : F1,1 F2,2 F3,3 ... 

By (3) property E is a subsequence of Sn, for n = 1, 2, 3,    The order in which the 

functions appear is the same in each sequence, i.e., if one function precedes another 

in S1, they are in the same relation in every Sn, until one or the other is deleted. 

Hence, when going from one row in the above array to the next below, functions 
may move to the left but never to the right. The (2) property of the sequence 

ensures that {Fn,n(xi) } converges as n → ∞ for every x ∈ S. 
 

 

 
 

Proof: Since the sequence of functions {Fn} is uniformly convergent, for every 

ε > 0, there is an integer N such that 
 

∥Fn − FN ∥K  < ε, n > N. 

We know that continuous functions on compact sets are uniformly continuous, there 

is a δ > 0 such that 

|Fi(x) − Fi(y)| < ε, |x − y| < δ, 1 ≤ i ≤ N. 
 
 
 

. 

For n > N  and |x − y| < δ, we have 

|Fn(x) − Fn(y)|   ≤   |Fn(x) − FN (x)| + |FN (x) − FN (y)| 

+|FN (y) − Fn(y)| 

< 3ε. 
 
 

 

 

 S and if {Fn} is a pointwise bounded and equicontinuous on S, then 

de ned on K and {Fn} converges uniformly then {Fn} is equicontinuous on K. 

de ned on K and {Fn} converges uniformly then {Fn} is equicontinuous on K 

Due to the boundedness of {Fn(xn)}, we can say that Fn,k(xn) converges, as 

Theorem: If K is a compact subset and if {Fn} is a sequence of continuous functions 

Theorem: If K is a compact subset and if {Fn} is a sequence of continuous functions 

Theorem: If {Fn} is a sequence of continuous functions de ned on a compact set 
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Proof: Since {Fn} is equicontinuous then by de nition for every ε > 0, we have 

|Fn(x) − Fn(y)| < ε, |x − y| < δ. 

From Analysis I, we know that S is compact then there are nitely many points 

p1, p2, ...pr in S such that to every x ∈ S corresponds at least one p1 such that 

|x − p1| < δ. 

Since {Fn} is pointwise bounded, there exists Mi < ∞ such that 

|Fn(pi)| < Mi, n ∈ N. 

If we take  
M = max{M1, ..., Mr}, 

then |Fn(x)| < M + ε for every x ∈ S. This proves the rst part of the theorem. 
 
 

 
 

Proof: Let E be a countable dense subset of S. Then from previous theorem we 

have a subsequence {Fni (x)} such that the subsequence {Fni (x)} converges for every 

x ∈ E. 

Fix the notation Fni (x) = gi, we shall prove that {gi} converges uniformly on S. 

Let ε > 0, and choose δ  as before. Let V (x, δ) be the set of all y ∈ S such that 

|x − y| < δ. 

Since E is dense in S, and S is compact, there are nitely many points x1, ..., xm 
in E such that 

S ⊂ V (x1, δ) ∪ ... ∪ V (xm, δ) (∗). 

Since {gi(x)} converges for every x ∈ E, there is an integer N such that 

|gi(xs) − gj(xs)| < ε, whenever i, j ≥ N, 1 ≤ s ≤ m. 

If x ∈ S, from (*) shows that x ∈ V (xs, δ) for some s, so that 

|gi(x) − gi(xs)| < ε 

for every i. 

If i ≥ N and j ≥ N , it follows that 

|gi(x) − gj(x)| ≤ |gi(x) − gi(xs)| + |gi(xs) − gj(xs)| + |gj(xs) − gj(x)| 

 

|gi(x) − gj(x)| ≤ 3ε. 

1. {Fn} contains a uniformly convergent subsequence. 

1. {Fn} is uniformly bounded on S, 

2. {Fn} contains a uniformly convergent subsequence. 

Theorem: If {Fn} is a sequence of continuous functions de ned on a compact set 

S and if {Fn} is a pointwise bounded and equicontinuous on S, then 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


1.14. The Stone-Weierstrass Theorem 51 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

∫ ∫ 

∫ 

∫ 

∫1 

 

1.14 The Stone-Weierstrass Theorem 

Theorem: If f is continuous function on [a, b], there exists a sequence of polyno- 

mials Pn such that 

Pn(x) = f(x), 
 

uniformly on [a, b]. 
 

Proof: Without any loss of generality, we may assume that [a, b] = [0, 1]. 

We may also assume that f (0) = f (1) = 0. As we can consider 
 

g(x) = f (x) − f (0) − c[f (1) − f (0)], x ∈ [0, 1]. 

If g can be obtained as the limit of uniformly convergent sequence of polynomials, 

it is clear that the same is true for f , since f − g is a polynomial. 
Furthermore, we de ne f (x) to be zero for x outside [0, 1]. Then f is uniformly 

continuous on the whole line. 

We take 

Qn(x) = cn(1 − x2)n, n = 1, 2, ..., 

where cn is chosen so that 
 
 

 
−1 

Consider the function 

Qn(x)dx = 1, n = 1, 2, .... 

 
 

(1 − x2)n − 1 + nx2, 

which is zero at x = 0 and whose derivative is positive in (0, 1). 

Since 
 

1 

(1 − x2)ndx   =   2 

−1 

 

1 

(1 − x2)ndx 

0 

1/
√

n 

≥  2 (1 − x2)ndx 
0 

1/
√

n 

≥ 2 (1 − nx2)dx 

0 
4 

= 
3
√

n 
1 

= √
n

 

lim 
x→∞ 
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∫ 

∫ 

∫ 

2 

∫1 

 
It follows from 

 
 
 

that cn < 
√

n. 

 
1 

Qn(x)dx = 1, n = 1, 2, .... 

−1 

For any δ > 0, we have 

Qn(x) ≤ 
√

n(1 − δ2)n, δ ≤ |x| ≤ 1. 

So that Qn → 0 uniformly in δ ≤ |x| ≤ 1. 
Now set 

1 

Pn(x) = 

−1 

f (x + t)Qn(t)dt, x ∈ [0, 1]. 

By change of variable and assumption on f implies that 
 

 
Pn(x) = 

1−x 

f (x + t)Qn(t)dt = 

−x 

1 

f (t)Qn(t − x)dt, 

0 
 

and the last integral is clearly a polynomial in x. 

Thus {Pn} is a sequence of polynomials. 

Given ε > 0, we chose δ > 0 such that |y − x| < δ implies 

ε 
|f (y) − f (x)| <  

3 
. 

Let M  = sup |f (x)|, we see that for x ∈ [a, b], we have 
 

|Pn(x) − f (x)|  =  | 

−1 

∫1 

[f (x + t) − f (x)]Qn(t)dt| 

≤ |f (x + t) − f (x)|Qn(t)dt 

−1 

∫−δ 
ε 

∫δ 

≤   2M Qn(t)dt + 
2

 

−1 −δ 

∫1 

Qn(t)dt 

+2M Qn(t)dt 

δ 

≤   4M 
√

n(1 − δ2)n + 
ε

 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


1.15. Fourier Series 53 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

∑ 

 

1.15 Fourier Series 

One of the fundamental methods of solving many problems in engineering elds 

is to represent the behavior of a system by a combination of simple behaviors. 

Mathematically, this is related to representing a function f(x) in the form of a 

functional series 
∞ 

f (x) = ckϕk(x). 
k=1 

Here the functions ϕk(x) are suitable elementary functions, also called the base 

set of functions, and the ck are called the coe cients of the expansion. 

For the Taylor series 

 

f (x) = 
 
 

Fourier Series: 

the function as a linear combination of sines and cosines, that is, the base set of the 

representation is 

{1, cos nx, sin nx}∞
n=1. 

1.15.1 Periodic Functions 

A function f : Ω ⊂ R → R is said to be periodic if there exists a nonzero real 
number ω such that 

f (x) = f (x + ω), x ∈ Ω. 

The simplest examples of periodic functions from R into R include the well known 

sine and cosine functions, since for each k ∈ Z\{0}. 
 

Figure 1.4: Periodic functions 

Remark: If ω1 and ω2 are such that 

 
Then so is ω1 ± ω2. 

f (x + ω1) = f (x), f (x + ω2) = f (x). 

 
 

f (x + (ω1 ± ω2)) 

k=0 

∑ 

A Fourier series expansion of a function is a representation of 

|x| < R, ckxk, 
∞ 

the set {1, x, ..., xn, ...} is a base set of functions. 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


1.15. Fourier Series 54 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

∑ 

∫  ∫  

 
There is a smallest positive value ω of a periodic function f called the primitive 

period (or the basic period or the fundamental period) of f(x). 

The reciprocal of the primitive period is called the frequency of the periodic function. 
 
 

Lemma: If f : R → R is a periodic functions with period ω, then the period of 
f (cx) is ω/c. If f(x) and g(x) are periodic with the same period ω, then h(x) = 
af(x) + bg(x) is also a periodic function with period ω. Here ω is not necessarily a 

primitive period. 
 

Proof: Let ϕ(x) = f (cx), then 
 

ϕ(x) = f (cx) = f (cx + ω) = f (c(x + ω/c)) = ϕ(x + ω/c), x ∈ R. 

This shows that ω/c is a period. 

For the second part, we consider 
 

h(x + ω) = af (x + ω) + bg(x + ω) = af (x) + bg(x) = h(x). 
 
 
 

Example: sin(cx) and cos(cx) are periodic functions with period 2π/c. 

 

∞ 

(an cos nx + bn sin nx), 
n=1 

is a periodic function with period 2π. 

Although, individual functions, cos x, cos 2x, cos 3x, ..., have periods 

2π, π, 2π/3, ..., respectively. 
 

Lemma: If f(x) is a periodic function with period ω, then 
 

c+ω 

 
c 

 

f (x)dx = 
ω 

f (x)dx, 
0 

whenever f is integrable on [0, ω]. 

Proof: Geometrically, it is obvious 

 
Figure 1.5: Geometric proof 

The function 
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Suppose that f is a function de ned on [a, a + ω]. Then the  

over the in nite interval (−∞, ∞) is de ned by the formula 

∫ ∫ ∫ ∫ 

∫ ∫ ∫ 

∫ 

( 

 
Consider 

 
 

c+ω 

f (x)dx = 

c 

 

 
0 

f (x)dx + 

c 

 

 
ω 

f (x)dx + 

0 

 

 
c+ω 

f (x)dx 

ω 

c 

=  − f (x)dx + 

0 

ω 

f (x)dx + 

0 

c 

f (s)ds 

0 
ω 

= f (x)dx. 

0 
 

showing that the integral of a periodic function with period ω taken over an arbitrary 

interval of length ω always has the same value. 

 

1.15.2 

 
f˜x) = 

{ 
f (x), 

 
 

a ≤ x < a + ω, 

 
 

periodic extension of f 

 

where n is an integer. 

f (x − nω),   a + nω ≤ x < a + (n + 1)ω, 

 

 
 

Figure 1.6: Periodic extension example 1 

Periodic Extension 
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n 

∑( 

 
 

 

 
Figure 1.7: Periodic extension example 2 

 

1.15.3 Trigonometric Polynomials 

Any linear combination of the trigonometric functions sin kx, cos kx, given by 

( )  

 

where ak and bk are real numbers, is known as trigonometric polynomials. 
 

Recall the Stone and Weierstrass theorem stating that the trigonometric polynomials 

are dense in C[a, b] for any closed interval [a, b], provided that b − a < 2π. 

 
sn(x) = 

 

a0 
+ 

2 

∑

k=1 

(

ak cos kx + bk sin kx 
)

, x ∈ R, 

The sequence {sn}, converges on a set E, then we may de ne a function f : E → R 
by 

 
f (x) = lim 

n→∞ 

T 

s (x) = 
a0 + 

∞ 

a 
n 2 k 

k=1 

 

cos kx + bk sin kx

)

, x ∈ E. 

 

 

We have taken the constant term in series as a0/2 rather than a0 so that we can 

make a0/2 t in a general formula later. 
 

We observe that if the series on the right converges for all real t[0, 2π], then the 

sum f must satisfy 

f (x) = f (x + 2π), x ∈ R. 

 
Vector Space: A vector space is a nonempty set V of objects, called vectors, on 

which are de ned two operations, called addition and multiplication by scalars (real 

numbers), subject to the ten axioms (or rules). The axioms must hold for all vectors 

u, v, and w in V and for all scalars c and d. 

1. The sum of u and v, denoted by u + v, is in V . 

(k ∈ N) are called coe cients of the trigonometric series. 

0 a 

k=1 

∑ 

he series on the right is called a trigonometric series. The constants a0, ak, bk 

n 

n s (x) = 
2 

+ ak cos kx + bk sin kx , x ∈ R, 
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2. u + v = v + u. 

3. (u + v) + w = u + (v + w) 

4. There is a zero vector 0 in V such that u + 0 = u. 

5. For each u in V , there is a vector −u in V such that u + (−u) = 0. 

6. The scalar multiple of u by c, denoted by cu, is in V . 

7. c(u + v) = cu + cv. 

8. (c + d)u = cu + du. 

9. c(du) = (cd)u. 

10. 1u = u. 
 

Remark: Using only these axioms, one can show that the zero vector in Axiom 4 is 

unique, and the vector −u, called the negative of u, in Axiom 5 is unique for each 
u in V . 

 

 

 
 

1. < v, u >=< u, v > 

2. < (v + u), w >=< v, w > + < u, w > 

3. < cu, v >=< u, cv >= c < v, u > 

4. < u, u >≥ 0, and < u, u >= 0 if and only if u = 0. 

1.16 The space E 
 

. 
 

Theorem: 

 
 

 
−π 

 

 

a scalar. Then an inner product is a function < ., . >: V × V → F such that 

 

π 
f (x)g(x)dx. 

1 
< f, g >= 

∫π 

The space E is a linear space, that is, a vector space. Moreover, E an 

function f on the interval [−π, π] 

The Inner Product: Let u, v, and w be vectors in vector space V , and let c be 

Let us de ne the space E be the set of all real valued piecewise de ned periodic 

inner product space with respect to the inner product 

The trigonometric functions: The set of functions 

Φ = { √
2 

, cos(nx), sin(nx) : n ∈ N} 
1 
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∑( 

∑( 

∑( 

∑(

|

 

 

 
 

 
−π 

Let Φ = {ϕ1, ϕ2, ..., ϕn, ...} be an orthonormal basis of an in nite dimensional 

inner product space X , and let f ∈ X . Then the in nite series 
 

 
∞ ∑

k=1 

 

< f, ϕk > ϕk(x) := ckϕk(x), 
  

 

. 

We introduce 
 

 

Suppose that we are given a trigonometric series of the form 

f (x) = 
a0 + 

∞ 

a 
2 k 

k=1 

 
cos kx + bk sin kx

)

, x ∈ E. 

 
 

Clearly, since each term of the series has period 2π, if it converges to a function 

f (x), then f (x) must be a periodic function with period 2π. 
 

Thus, only 2π-periodic functions are expected to have trigonometric series of the 

above form. 
 

Problem: Suppose that f is a 2π-periodic function. Under what conditions does 

the function have a representation of the form 

f (x) = 
a0 + 

∞ 

a 
2 n 

n=1 
 

When it does, what should be an, bn? 

 
cos nx + bn sin nx

)

. 

Assume for the moment that the series 

f (x) = 
a0 + 

∞ 

a 
2 n 

n=1 

 
cos nx + bn sin nx

)

, (∗) 

converges uniformly on R. This is the case if 

|a0| 
+ 

∞ 

a
 

2 
n=1 

| + |bn|

)

 

converges, so that the series (*) is dominated by the convergent series in R. 

is an in nite orthonormal system in E with respect to the inner product de ned 

∑ ∞ 

k=1 

 

π 

π 
2 

|f (x)| dx. 
−π 

∫ 
2 

∥f ∥  =< f, f >= 
π 1 

are called the kth Fourier coe cient of f 

1 
< f, g >= 

∫π 

f (x)g(x)dx. 

n 

is called the Fourier series of f (relative to Φ), and the coe cients ck =< f, ϕk  > 
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∞ 

∑( 

∑( ∫ 

∑( ∫ 

+ 
2 

(an cos nx + bn sin nx) 
n=1 

) 

) 

 
 

1 
∫ π 

 

 

1 
∫ π { 

a0 
∑ } 

 

 
 

a0 
{ 

1 
∫ π

 
dx

} 

+ ∑∞  { 
an  

∫ π 
 

 
cos nxdx 

2 π −π n=1 −π 

bn 
∫ π 

 

 

sin nx)

}

 

 

Recall: 

1 
∫ π 

π π 

= a0 

1 
∫ π 

π −π 
cos nx cos kxdx = δnk = 

π
 

∫ π 

sin nx sin kxdx 
−π 

 
 

and 

cos nx sin kxdx = 0 
−π 

2 cos α cos β = cos(α + β) + cos(α − β) 

2 sin α sin β = cos(α − β) − cos(α + β) 

2 sin α cos β = sin(α + β) + sin(α − β). 

f(x) = 
a0  +  

∞ 

a 
2 n 

n=1 

 
cos nx + bn sin nx

)

, (∗) 

Multiply by cos kx and the series forf (x) cos kx can be integrated term by term for 

each xed k, we can determine ak and bn. 

1 
∫ π  

f (x) cos kxdx   = a0 1 
∫ π

 
 
cos kxdx + 

π −π 2 π 
∞ 

 
n=1 

−π 

π 

an cos kx cos nxdx 
−π 

1 
∫ π 

+bn 
π 

sin nx cos kxdx  . 
−π 

ak = 
π

 f (x) cos kxdx. 
−π 

Multiply by sin kx and the series forf (x) sin kx can be integrated term by term 

for each xed k, we can determine bk and bn. 

1 
∫ π  

f (x) sin kxdx   = a0 1 
∫ π

 
 
sin kxdx + 

π −π 2 π 
∞ 

 
n=1 

−π 

π 

an sin kx cos nxdx 
−π 

+bn 
π 

sin nx sin kxdx  . 
−π 

− 

π 

−π π π 

∫ 

∫ 

−π f (x)dx = 

= 

+ 
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∑ ∞ 

k=1 

∑ ∞ 

k=1 

+ 

+ 

∫ 

∑(
∼

 

∫ ∫ 

∑( 

∑ 

( 

( 

 

1 π 

bk = 
π

 
−π 

 

f (x) sin kxdx. 

 

Fourier Series: For any integrable function f on [−π, π], the numbers ak and bk 
de ned by 

1 
ak = 

π
 

are called the Fourier coe cients of f. The corresponding trigonometric series 

a0 
a

 

2 k 

 
cos kx + bk sin kx

)

, 

 

is called the Fourier series of f . We express this association by writing 

f (x) = 
a0 

+ 
∞ 

a 
2 

k=1 

 
cos kx + bk sin kx

)

, 

to indicate that the Fourier series on the right may or may not converge to f at 

some point t ∈ [−π, π]. 

Theorem: If the trigonometric series of the form 

a0 
a

 

2 k 

 
cos kx + bk sin kx

)

, (∗) 

 

converges uniformly on [−π, π], then it is the Fourier series of its sum. 

More precisely, if the trigonometric series (*) converges uniformly to f on [−π, π], 
then the ak and bk are given by 

1 π 

ak = 
π

 
−π 

1 π 
f (x) cos kxdx, k ≥ 0, bk = 

π
 

−π 
f (x) sin kxdx, k ≥ 1. 

 
Remark: We have no idea what happens if the series 

a0  + 
∞ 

a 
2 k 

k=1 

 
cos kx + bk sin kx

)

, (∗) 

doesn't converge uniformly on [−π, π]. 

However, since 

|ak cos kx + bk sin kx| ≤ |ak| + |bk|, 

Weierstrass M-test shows that the trigonometric series (*) converges absolutely and 

uniformly on every closed interval [a, b] whenever 

∞ 

(|ak| + |bk|) 
k=1 

is convergent. 

∫ π 

−π 

f (x) cos kxdx, k ≥ 0, bk = 
π 

f (x) sin kxdx, k ≥ 1. 
1 

∫ π 

−π 

k 
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Let us further assume that f is even on (−π, π), i.e., f (x) = f (−x) 

∫ c 

f (x)dx = 2 f (x)dx, 

∫ c 

if f is even 
−c 0 

∑ ∫ 

∞ 

f (x) = + 
2 

cos kx, ak = 
π

 

2 π (2k + 1)2 

 

1.16.1 Fourier Series of Even and Odd Functions 

Even and odd functions possess certain simple but useful properties: 
 

• 

• The sum of two even (or odd) functions is an even (or odd) function. 

• The product of an even and an odd function is an odd function. 

• For a Riemann integrable function f de ned on [−c, c] (c > 0), it is evident 
that 

 
 

Fourier series of even function: Suppose that f (x) is a periodic function of 

period 2π. 

all x ∈ (−π, π). 

 
and hence we have the Fourier cosine series 

for 
 
 

for all k ≥ 1, 

∼ a0 
∑ 1 

∫ π 
 

 

 

 

Fourier series of odd function: Suppose that f (x) is a periodic function of 

period 2π.  Let us further assume that f  is odd on (−π, π), i.e., f (x) = −f (−x) for 

all x ∈ (−π, π). 

Then the product function f (x) cos kx is odd, which means that ak = 0 for all k ≥ 0, 
and hence we have the Fourier cosine series 

∞ 

f (x) ∼= 
k=1 

1 π 

ak sin kx, bk = 
π

 
−π 

 
f (x) sin kxdx. 

 
 

Example: Consider f (x) = |x| on [−π, π]. 

Then f is even and continuous on [−π, π]. 

2(1 − (−1)n) 
an = − 

n2π 
.
 

 

We have 

|x| = 
π 

− 
4 ∑ cos(2k + 1)x

.
 

 

 k=0 

−π 

ak 

Then the product function f (x) sin kx is odd, which means that bk = 0 

The product of two even (or odd) functions is an even function. 

∞ 

k=1 

f (x) cos kxdx. 

b 

∫ c 

f (x)dx = 0, if f is odd 
−c 
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Paul du Bois-Reymond constructed a continuous function 1876, 

∞ 

2 π (2k + 1)2 

π   
= 
∑ 1 

.
 

 

|x| = 
π 

− 
4 ∑ cos(2k + 1)x

.
 

Remark: Note that the Fourier series here converges uniformly to |x| on [−π, π] 

but not on the whole interval (−∞, ∞), and so outside the interval (−∞, ∞), f (x) 
is determined by the periodicity condition f (x) = f (x + 2π). 

 
we can make use of this series to nd the values of some numerical series. For instant 

x = 0 gives 
 

2 ∞ 

8 

Some natural questions arise: 

 

k=1 
(2k + 1)2 

 
 

• For what values of x does the Fourier series of f converge? Does it converge 

for all x in [−π, π]? If it converges on [−π, π] but not to f , what will be its 
sum? 

 

• If the Fourier series of f converges at x, does it converge to f ? 

 
• If the Fourier series of f converges to f on [−π, π], does it converge uniformly 

to f on [−π, π]? 

Is the continuity of f is su cient to guarantee convergence of the Fourier series 

of f on [−π, π]? 

In f : [−π, π] → 
R whose Fourier series failed to converge to f at each point in a dense subset of 

[−π, π]. 
Indeed, the following are true statements 

• 

 

• 

 

• There exists a continuous function whose Fourier series diverges for points in 

There exists a continuous function whose Fourier series converges everywhere 

There exists a continuous function whose Fourier series diverges at a point. 

k=0 

on [−π, π], but not uniformly. 

some set S and converges on (−π, π) \ S. 
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{

E  ∈ E h 

h 

 

The space E: Let us de ne the space E be the set of all real valued piecewise 

de ned periodic function f on the interval [−π, π]. 

De ne 

 
′ = f : lim 

h→0+ 

lim 
h→0− 

f (x + h) − f(x+) 
exists x ∈ [−π, π) 

f (x + h) − f (x−)  
exists x ∈ (−π, π]

}

 

 

 

Theorem: Let f ∈ E′.  Then for each x ∈ (−π, π), the Fourier series of f (x) 
converges to the value 

f (x−) + f (x+) 
.
 

2 

At the end points x = ±π, the series converges to 

f (π−) + f (−π+) 
.
 

2 
 

 

Remark: If f ∈ E′ is continuous at x, then f (x−) = f (x+) = f (x), and so at such 
points 

f (x−) + f (x+)  
= f (x).

 

2 
Thus, the Fourier series of f converges to f(x) at the point x where it is continuous. 

 
At the point of discontinuity x, the Fourier series of f assumes the mean of the 

one-sided limits of f . 

Corollary: 
 

 
 

Theorem: Suppose that f : [−π, π] → R is piecewise continuous on [−π, π] and 

piecewise monotone,that is, there exists a partition P = x0, x1, ..., xn of [−π, π] such 
that the restriction f |[xk−1,xk ],k = 1, 2..., n, is either increasing or decreasing. 

Let f (x) be de ned for other values of x by the periodicity condition f (x) = f (x + 

2π). Then the Fourier series of f on [−π, π] converges to 

• f (x) if f is continuous at x ∈ (−π, π). 

• (f (x+) + f (x−))/2 if f is discontinuous at x. 

• (f (π−) + f ((−π)−))/2 if f is discontinuous at x = ±π. 

every point x ∈ [−π, π]. 

If f : [−π, π] → R is continuous, and if f (−π) = f (π), f ′(x) exists and 

is piecewise continuous on [−π, π], then the Fourier series of f converges to f (x) at 
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∞ 

x = 2 sin kx. 
k 

2 2 3 4 5 

 
 

 
 
 

Figure 1.8: At discontinuous points 

 
Example:If f (x) = x on [−π, π) and f (π) = −π. Find the Fourier sine series 

of f . 
 
 

 
Figure 1.9: Example 

 

• f is odd function, hence an = 0. 

• b = 1 
∫ π   x sin nxdx = 2 

∫ π x sin nxdx = 2(−1)
n−1 

. 
n π    −π π    0 n 

 

∼ 
∑ (−1)k−1 

 

 

Remarks: Note that the Fourier series does not necessarily agree with f (x) = x 

at every point in [−π, π]. 

The Fourier series vanishes at both endpoints x = ±π, whereas the function 
does not vanish at either endpoint. 

However, the Dirichlet's theorem states that series converges to f (x) at every 

interior point of (−π, π). 
For example at x = π/2 the symbol ∼= could be replaced by = and so 

π 
= 2

(

1 − 
0 

+ 
(−1) 

− 
0 

+ 
1 

+ ...

)

. 

k=1 
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∞ 
− 

∫ 

− − 

 

x ∼= 2 
∑

k=1 

 
( 1)k−1 

sin kx. 
k 

Remarks: Finally, we remark that at the endpoints x = ±π, the series converges 
to 

f (π−) + f ((−π)−)  
=  

π + (−π)  
= 0.

 

2 2 

we could also consider f as follows: f (x) = x on (−π, π) and f (−π) = f (π) = 0. 
 
 

 
Figure 1.10: Example 

 

Example: If f (x) = ex on [−π, π) and f (x + 2π) = f (x) for x ∈ R. Determine 
the Fourier series of the function f . 

Some facts about complex numbers. 

Example: If f (x) = ex on [−π, π) and f (x + 2π) = f (x) for x ∈ R. Determine 
the Fourier series of the function f . 

∫ 

einx = 

∫ 

cos nxdx + i 

∫ 

sin nxdx. 

According to this, the Fourier coe cients are easy to derive quickly by writing 

an − ibn = 
1 π 

π   −π 

 
e−inxexdx 

1 e(1−in)x 
π

 
= 

π 1 − in  
|−π

 

1 
( 

e(1−in)π − e−(1−in)π 
) 

π 1 − in 

(−1)n(eπ − e−π) 

π(1 − in) 
 

 

an = 
2(   1)n sinh π 

π(1 + n2) 
, bn =

 

2( 1)n−1n sinh π 

π(1 + n2) 
.
 

= 

= 
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∑2 sinh π − 

∑2 sinh π 

∑ 1  

∞ 

π π (1 + n2) 

1 = 
sinh π 

+ 
2 sinh π ∑ (−1) 

.
 

2 (1 + n2) 

2 (1 + n2) 

f ( 
π 

t) = + 
2 

 
We have 

∞ n 

ex =∼ sinh π  
+ 

2 sinh π ∑   (−1)  
cos nx

 

∞ 

+ 
π 

n=1 

(  1)n−1n 

(1 + n2) 
sin nx. 

 

Remark: In particular, at the point of continuity x = 0, it follows that 

∞ n 

π 
 

Which can be written as 

π 
n=1 

 
 
 ∞ 

(1 + n2) 

 

 
n 

π csc π − 1 
= 
∑ (−1) 

.
 

Remark: According to Dirichlet's theorem, at the endpoint x = π, we have 
 

eπ + e−π 
= 

2 

 
sinh π 

+ 
π 

∞ 

π 
n=1 

  1  

(1 + n2) 
,
 

∞ 

π coth π = 1 + 2 . 
(1 + n2) 

 

Which reduces to 

n=1 

 

π coth π − 1 
= 
∑ 1 

.
 

 

 

 

1.17 
 

Suppose that f is a 2L-periodic and Riemann integrable function. The function 

f (at) has period 2L/a. 
 

In particular, f ((L/π)t) is 2π-periodic, and so the Fourier series expansion has the 

following in terms of the variable t: 

L ∼ a0 ∑∞  ( ) 

 

 
where 

f ( 
π 

t) = + 
2 

n=1 

an cos nt + bn sin nt , t ∈ [−π, π], 

1 
∫ π L 1 

∫ L kπ 
an = 

π
 f (   t) cos ntdt = 

−π π L 
f (x) cos( x)dx. 

−L L 

L ∼ a0 ∑∞  ( ) 

 

 

 

, t ∈ [−π, π], an cos nt + bn sin nt 
n=1 

n=1 

Fourier Series for Arbitrary Periodic Function 

n=1 

n=1 
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∑(
∼

 

L 

∫ 

∑a0∼
 

∫ 

∑ 

 

where 
1 
∫ π L 1 

∫ L kπ 

 
 

and similarly, 

an = 
π

 f (   t) cos ntdt = 
−π π L 

1 
∫ L 

f (x) cos( x)dx, 
−L L 

kπ 
bn = 

L
 f (x) sin( x)dx. 

−L L 

We remark that the interval of integration in the last two formulas for the Fourier 

coe cients can be replaced with an arbitrary interval [c, c + 2L], of length 2L. 

Changing the variable t, by setting t = (π/L)x. 

 

Theorem: Let f be a periodic function with period 2L. Then the Fourier expansion 

of f is given by 

 
 
 
 

where 

f (x) = 
a0 

+ 
∞ 

a 
2 

n=1 

 
nπ 

cos(  x) + bn 
L 

 

1 
∫ L 

sin( 
nπ

x)

)

, x ∈ [−L, L], 

nπ 
 
 

and 

an = 
L

 f (x) cos( x)dx, 
−L L 

1 L 

bn = 
L

 
−L 

nπ 
f (x) sin( x)dx. 

L 

 

Remark: The interval of integration in the last formulas for the Fourier coe cients 
can be replaced with the interval [c, c + 2L], where c is any real number; we usually 

let c = −L.  Notice that 

nπ 
cos( 

L 

nπ 
(x + 2L)) = cos( x) 

L 
nπ 

sin( 
L 

nπ 
(x + 2L)) = sin( 

L 

 

x). 

 
 

Corollary: The Fourier series of an even function f with period 2L is a Fourier 

cosine series 
 
 
 

where 

∞ 

f (x) = + an 
2 

n=1 

kπ 
cos( 

L 
x), x ∈ [c, c + 2L], 

1 c+2L 

an = 
c 

nπ 
f (x) cos( x)dx. 

L 

and the Fourier series of an odd function f with period 2L is a Fourier sine series 

∞ 

f (x) ∼= bn 
n=1 

nπ 
sin( 

L 
x), x ∈ [c, c + 2L], 

L 

n 
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∫ 

{ 

∫ 

∫ 

− 

∫ [ 

∫ [ 

− + 
2k + 1 . 

∫ 

0 

] 

0 

] 

 
where  

1 c+2L 

bn = 
c 

 
nπ 

f (x) sin( x)dx 
L 

where c is any real number. 

Example: Consider the function 

f (x) = 
0,  −2 ≤ x < 0, 

1,  0 ≤ x ≤ 2 

Here, we have L = 2, and the function is even. We have 
 
 

 
and 

 

 
we obtain 

1 L 

an = 
L

 
−L 

 
1 L 

bn = 
L

 
−L 

1 

kπ 
f (x) cos( x)dx, 

L 

 
kπ 

f (x) sin( x)dx. 
L 

 
 

bn = 

a0 = 
2 

, an = 0. 

1 + ( 1)n−1 

nπ 
, n ≥ 1. 

 

Example: Consider the function f (x) = | sin x|. The function is de ned for all x 
and the function has period π. 

Clearly, f represents a continuous, piecewise smooth, even function of period π, 

and therefore it is everywhere equal to its Fourier series, consisting of cosine terms 

only. 
We have c = 0, and L = π/2, then we have 

2 
∫ π 

2 π 
= sin x cos(2kx)dx 

π  0 

1 π 

= 
π 

sin(1 + 2k)x − sin(2k − 1)x dx 

 

 

1 π 

= 
π 

sin(1 + 2k)x − sin(2k − 1)x dx 

1 
( 

cos(1 + 2k)x cos(2k − 1)x 
)

.
π

 

 

1 
(

(−1)2k+1 − 1 (−1)2k−1 − 1 
)
 =   − 

π 2k + 1 
−

 
4 

2k − 1 

ak =  − 
π(4k2 − 1) 

.
 

L 

ak = f (x) cos(2kx)dx 

= 
π 2k − 1 

π 0 

0 
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¨ 

∑ n 
2 

k=1 

|c | ≤ k 
1 

π 
−π 

k=1 

∑ 

∞ 

∑ 

k=1 

∫ 
2 

2 2 

n 
2 2 

2 

∫ 
2 2 

n 

∑ 

π π 4k2 − 1 

∑ 

 

Thus, the Fourier series expansion of | sin x| is 

| sin x| = 
2 

− 
4 ∑ cos 2kx

, x ∈ [−π, π]. 

1.18 Best Approximation Theorem 
 

 

 
 

ck = 
 

If Tn(x) is an arbitrary Fourier polynomial relative to ϕk, that is,  Tn(x)  = 
n 
k=1 dkϕk(x) for some constants d1, ..., dn, then we have 

¨ 
 

¨f − ¨ ≤ ∥f − Tn∥ , 
 
 

 

Proof: Setting Sn = 
∑n

 

ckϕk(x). Then we have 

 
∥f − Tn∥ 

1   
π 

= 
π 

−π 

1 
∫π 

 
|f (x) − Tn(x)| dx 

1 
∫π 

= 
π 

|f (x)| dx + 
π

 

−π −π 

1 
∫π 

|Tn(x)| dx 

−2 
π

dk 

−π 

1 
∫π 

f (x)ϕk(x)dx 

 
∑ ∑ 

= 
 
 

1 
∫π 

π 
|f (x)| dx + 

−π 

 
∑ 

 
k=1 

 

 

|dk| − 2 

 
∑ 

 
k=1 

ckdk 

= 
π 

|f (x)| dx + 
−π 

 

k=1 |dk| − 2 
 

k=1 

ckdk 

π 
1 

= 
π 

|f (x)| dx + |ck − dk| − 2 
∑ 

ck 
−π k=1 

n 

k=1 

=   ∥f − Sn∥
2 + |ck − dk|

2. 
k=1 

ckϕk(x) 

product space E, and let ck be the Fourier coe cients of f relative to ϕk: 

1 

π 

∫ π 

f (x)ϕk(x)dx :=< f, ϕk > . 
−π 

n 2 
2 

2 

n 

n n 

n 

k=1 

Theorem: Let Φ = ϕ1, ..., ϕn be an orthonormal set of functions in the inner 

with equality if and only if ck = dk for each k = 1, ..., n. Moreover, 

∫π 
2 

|f (x)| dx. 

2 
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2 2 

2 2 

Tn 

∫ 
2 2 2 2 

n ∫ 
2 

∑ 

 
Therefore, 

∥f − Tn∥ ≥ ∥f − Sn∥ , 

with equality if and only if ck = dk for each k = 1, ..., n. 

 

∥f − Tn∥ ≥ ∥f − Sn∥ , 

Note that f and ϕk are xed, while the dk are allowed to vary. 

In particular, setting dk = ck, shows that the minimum value of ∥f − Tn∥2 ≥ 

∥f − Sn∥2, is given by 

 
min ∥f − Tn∥

2  = 

π 
1 

π 
|f (x)| dx − |ck|  = ∥f ∥ − 

∑
 

 
|ck| , 

−π 

which has to be nonnegative. This gives 

k=1 k=1 

 

∑

k=1 

|ck| 

π 
1 

≤ 
π 

|f (x)| dx for all n. 

−π 

n n 

2 
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2 

2 

 

 

Chapter  2 
 

 
 

 

 
2.1 

 

The vector sum of 
 

X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) 
 

is 

X + Y = (x1 + y1, x2 + y2, . . . , xn + yn). (2.1) 

If a is a real number, the scalar multiple of X by a is 
 

In R4, let 

Then 

aX = (ax1, ax2, . . . , axn). (2.2) 

 

X = (1, −2, 6, 5) and Y = 
(

3, −5, 4, 1 
) 

. 

 
 

and 
X + Y = 

(
4, −7, 10, 11 

)
 

6X = (6, −12, 36, 30). 
 

 

Theorem: If X, Y, and Z are in Rn and a and b are real numbers, then 

• X + Y = Y + X (vector addition is commutative). 

• (X + Y) + Z = X + (Y + Z) (vector addition is associative). 

• There is a unique vector 0, called the zero vector, such that X + 0 = X for all 

X in Rn. 

• For each X in Rn there is a unique vector −X such that X + (−X) = 0. 

• a(bX) = (ab)X. 

• (a + b)X = aX + bX. 

• a(X + Y) = aX + aY. 

• 1X = X. 

Euclidean Spaces 

Functions of Several Variables 
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In particular, |X| is the distance between X and the origin. If |X| = 1, then X is a 

2 

√
149 

xi − 2t 
i=1 xiyi + t i=1 yi 

∑ 

 
Remark: Clearly, 0 = (0, 0, . . . , 0) and, if X = (x1, x2, . . . , xn), then 

−X = (−x1, −x2, . . . , −xn). 

We write X + (−Y) as X − Y. The point 0 is called the origin. 

Length, distance: The length of the vector X = (x1, x2, . . . , xn) is 
 

2 2 2  1/2 

|X| = (x1 + x2 + · · · + xn) . 

The distance between points X and Y is |X − Y|. 
 

 

 

Example: The lengths of the vectors 

X = (1, −2, 6, 5) and Y = 
(

3, −5, 4, 1 
)
 

 

are 
 
 

and 

|X| = (1 + (−2) 

 
+ 62 

 
+ 52)1/2 = 

   
66 

√
201 

2 2 2 1  2  1/2    

|Y| = (3 + (−5) + 4  + ( 2 ) ) = 
2 

. 

The distance between X and Y is 

 
2 2 

 
 

2 1  2  1/2    

|X − Y| = ((1 − 3) + (−2 + 5) + (6 − 4) + (5 − 2 ) ) = 
2 

. 
 

of X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) is 
 

 

2.2 
 

 

 

 

Proof: Suppose that Y ̸= 0 and t is any real number. Then 

n 

0  ≤ (xi − tyi)2 
i=1 
∑n 

2 ∑n 
 

 

2 ∑n 2 (2.4) 

=  |X|2 − 2(X · Y)t + t2|Y|2. 
i=1 

The inner product  X · Y 

Schwarz's Inequality 

2 √ 

= 

2 

unit vector. 

X · Y = x1y1 + x2y2 + · · · + xnyn. 

Lemma: If X and Y are any two vectors in Rn, then 

|X · Y| ≤ |X| |Y|, (2.3) 

with equality if and only if one of the vectors is a scalar multiple of the other. 
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If X and Y are in Rn, then 

| 2

 
.
Y| 

∑ 

i=1 
∑
| | 

2 2 

i i=1 i=1 i 

 
The last expression is a second-degree polynomial p in t. From the quadratic formula, 

the zeros of p are 
 
 

Hence, 

(X · Y) ± 
√

(X · Y)2 − |X|2|Y|2 

 
 
 

(2.5) 
 

because if not, then p would have two distinct real zeros and therefore be negative 

between them, contradicting the inequality (2.4). 
 

Proof: 

(X · Y)2 ≤ |X|2|Y|2, (2.6) 

Taking square roots in (2.6) yields (2.3) if Y 0. If X = tY, then |X · Y| = 

|X||Y| = |t||Y|2 (verify), so equality holds in (2.3). 

Conversely, if equality holds in (2.3), then p has the real zero t0 = (X · Y)/|Y|2, 
and 

 
 
 

from (2.4); therefore, X = t0Y. 

Theorem: 

n 

(xi − t0yi)2 = 0 
i=1 

 
 
 
 
 
 

(2.7) 

 
 

 

 

Proof: By de nition, 
 

X + Y 2 = n 

= 
∑n 

(xi + yi)2 

x2 + 2 
∑n

 xiyi + 
∑n y2 

 

 
 
 
 

 
Hence, 

=   |X|2 + 2(X · Y) + |Y|2
 

≤   |X|2 + 2|X| |Y| + |Y|2 (by Schwarz's inequality) 

=  (|X| + |Y|)2. 

 
|X + Y|  ≤ (|X| + |Y|) . 

(2.8) 

Taking square roots yields (2.7). 
 

From the third line of (2.8), equality holds in (2.7) if and only if X · Y = |X||Y|, 

which is true if and only if one of the vectors X and Y is a nonnegative scalar 
multiple of the other. 

with equality if and only if one of the vectors is a nonnegative multiple of the other. 

|X + Y| ≤ |X| + |Y|, 

(X · Y) ≤ |X| |Y| . 
2 2 2 

i=1 

t = 
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If X and Y are in Rn, then 

 
 

 
 

|X − Z| ≤ |X − Y| + |Y − Z|. 
 
 
 

Proof: Write 

X − Z = (X − Y) + (Y − Z), 

and apply triangle inequality with X and Y replaced by X − Y and Y − Z. 

Corollary: 
 

Proof: Since 
 
 

Triangle inequality implies that 

X = Y + (X − Y), 

 

|X| ≤ |Y| + |X − Y|, 

which is equivalent to |X| − |Y| ≤ |X − Y|. 

Interchanging X and Y yields 
 

Since |X − Y| = |Y − X|, the last two inequalities imply the stated conclusion. 

Theorem: If X, Y, and Z are members of Rn and a is a scalar, then 

 
 

 
 

 

• (cX) · Y = X · (cY) = c(X · Y). 

• X · Y = Y · X. 

• X · (Y + Z) = X · Y + X · Z. 

• |X| ≥ 0, with equality if and only if X = 0. 

• |X − Y| ≥ 0, with equality if and only if X = Y. 

• |aX| = |a| |X|. 

Corollary: If X, Y, and Z are in Rn, then 

|X − Y| ≥ ||X| − |Y|| . 

|Y| − |X| ≤ |Y − X|. 
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2.2.1 

The equation of a line through 

parametrically as 
 

 

 
a point X0 = (x0, y0, z0) in R3 can be written 

 
−∞ < t < ∞, 

 

where u1, u2, and u3 are not all zero. We write this in vector form as 

X = X0 + tU, −∞ < t < ∞, (2.9) 

with U = (u1, u2, u3), and we say that the line is through X0 in the direction of U. 

There are many ways to represent a given line parametrically. 

For example, 

X = X0 + sV, −∞ < s < ∞, (2.10) 

represents the same line as (2.9) if and only if V = aU for some nonzero real number 

a. 
 

Then the line is traversed in the same direction as s and t vary from −∞ to ∞ if 
a > 0, or in opposite directions if a < 0. To write the parametric equation of a line 

through two points X0 and X1 in R3. 

We take U = X1 − X0 in (2.9), which yields 
 

The line segment from X0 to X1 consists of those points for which 0 ≤ t ≤ 1. 

Suppose that X0  and U are in Rn  and U ≠ 0. 

Then the line through X0 in the direction of U is the set of all points in Rn of the 

form 

X = X0 + tU, −∞ < t < ∞. 
 

 

is called a line segment. The line segment from X0 to X1 is the set of points of the 

form 

 
 

2.3 Neighbourhoods and Open Sets in Rn
 

is the set 
 

 

 Nε(X0)  in R2
 

X = X0 + t(X1 − X0) = tX1 + (1 − t)X0, 0 ≤ t ≤ 1. 

x = x0 + u1t, 

If ε > 0, the ε-neighborhood of a point X0 in Rn
 

z = z0 + u3t, y = y0 + u2t, 

Line Segment in Rn
 

X = X0 + t(X1 − X0) = tX1 + (1 − t)X0, −∞ < t < ∞. 

A set of points of the form 

X = X0 + tU, t1 ≤ t ≤ t2, 

Nε(X0) = {X|X − X0| < ε}. 
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We are going to de ne neighborhood, interior point, interior of a set, open set, 

closed set,limit point, boundary point, boundary of a set, closure of a set, isolated 

point, exterior point, and exterior of a set. 
 

Example: Let S be the set of points in R2 in the square bounded by the lines 

x = ±1, y = ±1, except for the origin and the points on the vertical lines x = ±1 
thus, 

S = {(x, y) : (x, y) ̸= (0, 0), −1 < x < 1,  −1 ≤ y ≤ 1}. 

Every point of S not on the lines y = ±1 is an interior point. 

y 
 
 

 

 

 
 

 

 

 
x 

 

 

 

 

 

 

Figure 2.1: The set S 
 

S0 = {(x, y) : (x, y) (0, 0), −1 < x, y < 1}. 
 

S is a deleted neighborhood of (0, 0) and is neither open nor closed. 

The closure of S is 

S = {(x, y) : −1 ≤ x, y ≤ 1}, 

and every point of S is a limit point of S. 
The origin and the perimeter of S form ∂S, the boundary of S. The exterior of 

S consists of all points (x, y) such that |x| > 1 or |y| > 1. The origin is an isolated 
point of Sc. 

 

Example: 

 

Thus, ε-neighborhoods are open n-balls. If X1 is in Sr(X0) and 

|X − X1| < ε = r − |X − X0|, 

then X is in Sr(X0). Thus, Sr(X0) contains an ε-neighborhood of each of its points, 

and is therefore open. 

(1, 1) (1, 1) 

(1, 1) (1, 1) 

x 

If X0  is a point in Rn and r is a positive number, the open n-ball of 

78 Lectures 

radius r about X0 is the set 

Br(X0) = {X : |X − X0| < r}. 
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≤ ≤ 

 
 

 
 

 

 
Sr(X0) = {X : |X − X0| ≤ r}. 

 
Remark: Open and closed n-balls are generalizations to Rn of open and closed 

intervals. 
 

Lemma: If X1 and X2 are in Sr(X0) for some r > 0, then so is every point on the 

line segment from X1 to X2. 
 

Proof: The line segment is given by 
 

X = tX2 + (1 − t)X1, 0 < t < 1. 
 

Suppose that r > 0. If 
 
 
 

and 0 < t < 1, then 

 
|X1 − X0| < r, |X2 − X0| < r, 

 

|X − X0|   =   |tX2 + (1 − t)X1 − tX0 − (1 − t)X0| 

=   |t(X2 − X0) + (1 − t)X1 − X0)| 

<  tr + (1 − t)r = r. 

2.4 
 

 

 
 

 
 

 

 

 
Theorem: Let 

 

X = (x1, x2, . . . , xn) and Xr = (x1r, x2r, . . . , xnr), r ≥ 1. 
 

Then limr→∞ Xr = X if and only if 

lim xir = xi, 1 i n; 
r→∞ 

that is, a sequence {Xr} of points in Rn converges to a limit X if and only if the 

sequences of components of {Xr} converge to the respective components of X. 

lim Xr = X. 
r→∞ 

In this case we write 

r→∞ 
lim  |Xr − X| = 0. 

de ned by 

We can show that the closure of Br(X0) is the closed n-ball of radius r about X0, 

Convergence of a Sequence in Rn 

Q1. Use Bolzano-Weierstrass theorem to show that if is an infinite sequence of nonempty compact sets 
and then is nonempty. 
Show that the conclusion does not follow if the sets are assumed to be closed rather than compact. 

Assignment # 02 MTH631 (Spring 
2018) 

A sequence of points {Xr} in Rn  converges to the limit X if 
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∩ 

 

Theorem (Cauchy's Convergence Criterion): A sequence {Xr} in Rn con- 
verges if and only if for each ε > 0 there is an integer K such that 

 

|Xr − Xs| < ε if r, s ≥ K. 

Diameter of a Set: If S is a nonempty subset of Rn, then 

d(S) = sup{|X − Y| : X, Y ∈ S} 
 

is the diameter of S. 
 

If d(S) < ∞, S is bounded ; if d(S) = ∞, S is unbounded . 

2.5 Principle of nested sets 

Theorem: If S1, S2, . . . are closed nonempty subsets of Rnsuch that 

S1 ⊃ S2 ⊃ · · · ⊃ Sr ⊃ · · · (2.11) 
 

and 
 
 

then the intersection 

 
lim d(Sr) = 0, (2.12) 

r→∞ 

 
 
 

contains exactly one point. 

∞ 

I = Sr 
r=1 

 

Proof: Let {Xr} be a sequence such that Xr ∈ Sr (r ≥ 1). 

Because of S1 ⊃ S2 ⊃ · · · ⊃ Sr ⊃ · · · , Xr ∈ Sk if r ≥ k, so 

|Xr − Xs| < d(Sk) if r, s ≥ k. 

From limr→∞ d(Sr) = 0 and Cauchy's convergence theorem, Xr converges to a 

limit X. Since X is a limit point of every Sk and every Sk is closed, X is in every 

Sk (A set is closed if and only if it contains all its limit points). Therefore, 

X ∈ I, so I ̸= ∅. Moreover, X is the only point in I, since if Y ∈ I, then 

|X − Y| ≤ d(Sk), k ≥ 1, 
 

and (2.12) implies that Y = X. 

79 module 
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∪ 

 
 

 
 

We are going to state and prove the Heine-Borel theorem for Rn. 
 

 

 

 

Recall that a 
 
 

Theorem: 

 
S ⊂ ∪{H : H ∈ H}. 

 

 
 

Proof: The proof is by contradiction. We rst consider the case where n = 2, so 

that you can visualize the method. 

Suppose that there is a covering H for S from which it is impossible to select a 
 nite subcovering. 

 

Since S is bounded, S is contained in a closed square 

T = {(x, y)|a1 ≤ x ≤ a1 + L, a2 ≤ x ≤ a2 + L} 

with sides of length L 
 

 
 
 

T (1) 

 
 

S (1) 

 
 
 

T (2) 

 
 

S (2) 

 

 
S (4) 

 

T (4) 

 

 
S (3) 

 

T (3) 

 
Figure 2.2: Heine-Borel Theorem for n = 2 

 

Bisecting the sides of T leads to four closed squares, T (1), T (2), T (3), and T (4), 

with sides of length L/2. Let 

S(i) = S ∩ T (i), 1 ≤ i ≤ 4. 

Each S(i), being the intersection of closed sets, is closed, and 

4 

S = S(i). 
i=1 

by nitely many sets from H. 

bounded set. 

2.6 Heine-Borel Theorem 

collection H of open sets is an open covering of a set S if 

If H is an open covering of a compact subset S, then S can be covered 

23 lecture 81 

This theorem concerns compact sets. As in R, a compact set in Rn is a closed and 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


2.6.  Heine-Borel Theorem 80 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

 

Moreover, H covers each S(i), but at least one S(i) cannot be covered by any nite 

subcollection of H, since if all the S(i) could be, then so could S. Let S1 be a set 
with this property, chosen from S(1), S(2), S(3), and S(4). 

 

We are now back to the situation we started from: a compact set S1 covered by H, 

but not by any nite subcollection of H. However, S1 is contained in a square T1 

with sides of length L/2 instead of L. Bisecting the sides of T1 and repeating the 

argument, we obtain a subset S2 of S1 that has the same properties as S, except that 

it is contained in a square with sides of length L/4. Continuing in this way produces 

a sequence of nonempty closed sets S0 (= S), S1, S2, . . . , such that Sk ⊃ Sk+1 and 

d(Sk) ≤ L/2k−1/2 (k ≥ 0). 

From Principle of Nested Sets Theorem, there is a point X in 
∩∞

k=1 Sk. 

Since X ∈ S, there is an open set H in H that contains X, and this H must also 
contain some ε-neighborhood of X. Since every X in Sk satis es the inequality 

|X − X| ≤ 2−k+1/2L, 

it follows that Sk ⊂ H for k su ciently large. 

This contradicts our assumption on H, which led us to believe that no Sk could be 

covered by a nite number of sets from H. 

Consequently, this assumption must be false: H must have a nite subcollection 
that covers S. This completes the proof for n = 2. 

The idea of the proof is the same for n > 2. The counterpart of the square T is 

the hypercube with sides of length L: 

T = {(x1, x2, . . . , xn) : ai ≤ xi ≤ ai + L, i = 1, 2, . . . , n}. 

Halving the intervals of variation of the n coordinates x1, x2, . . . , xn divides T into 

2n closed hypercubes with sides of length L/2: 

T (i) = {(x1, x2, . . . , xn) : bi ≤ xi ≤ bi + L/2, 1 ≤ i ≤ n}, 

where bi = ai or bi = ai + L/2.  If no  nite subcollection of H covers S, then at least 
one of these smaller hypercubes must contain a subset of S that is not covered by 
any nite subcollection of S. Now the proof proceeds as for n = 2. 

 

Remark: The Bolzano Weierstrass theorem is valid in Rn; its proof is the same as 

in R. 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

2.7.  Connected Sets in Rn 81 

2.7 Connected Sets in Rn 

 

 

 

If S cannot be expressed as S = A ∪ B, where 

A ̸= ∅, B ≠ ∅, A ∩ B = ∅, and A ∩ B = ∅. (2.13) 

 

If S can be expressed in this way, then S is disconnected . 
 

Example: The empty set and singleton sets are connected, because they cannot be 

represented as the union of two disjoint nonempty sets. 
 

Example: The space Rn is connected.              

If Rn = A ∪ B with A ∩ B = ∅ and A ∩ B = ∅, then A ⊂ A and B ⊂ B. 
That is, A and B are both closed and therefore are both open. 

Since the only nonempty subset of Rn that is both open and closed is Rn itself, 

one of A and B is Rn and the other is empty. 

 
2.7.1 Polygonal Path 

If X1, X2, . . . , Xk are points in Rn
 

Let Li is the line segment from Xi to Xi+1, 1 ≤ i ≤ k − 1, we say that L1, L2, 

. . . , Lk−1 form a polygonal path from X1 to Xk. 

We say that X1 and Xk are connected by the polygonal path. 

 

 
2.8 Polygonally Connected Set 

A set S is polygonally connected if every pair of points in S can be connected by a 

polygonal path lying entirely in S. 
 

Theorem: An open set S in Rn is connected if and only if it is polygonally 

connected. 
 

Proof: For su ciency, we will show that if S is disconnected, then S is not poly- 

gonally connected. 
 

Let S = A ∪ B, where A and B satisfy 

A ̸= ∅, B ̸= ∅, A ∩ B = ∅, and A ∩ B = ∅. 

disjoint nonempty sets such that neither contains a limit point of the other. 
A subset S of Rn is connected if it is impossible to represent S as the union of two 
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. 

Suppose that X1 ∈ A and X2 ∈ B, and assume that there is a polygonal path 
in S connecting X1 to X2. Then some line segment L in this path must contain a 

point Y1 in A and a point Y2 in B. 

The line segment 
 

X = tY2 + (1 − t)Y1, 0 ≤ t ≤ 1, 

is part of L and therefore in S. Now de ne 
 

ρ = sup{τ : tY2 + (1 − t)Y1 ∈ A, 0 ≤ t ≤ τ ≤ 1}. 

Let Xρ = ρY2 + (1 − ρ)Y1. Then Xρ ∈ A ∩ B. 

However, since Xρ ∈ A ∪ B and A ∩ B = A ∩ B = ∅, this is impossible. 

Therefore, the assumption that there is a polygonal path in S from X1 to X2 must 

be false. 

For necessity, suppose that S is a connected open set and X0 ∈ S. Let A be the set 
consisting of X0 and the points in S can be connected to X0 by polygonal paths in 

S. Let B be set of points in S that cannot be connected to X0 by polygonal paths. 

If Y0 ∈ S, then S contains an ε-neighborhood Nε(Y0) of Y0, since S is open. Any 
point Y1 in Nε(Y0 can be connected to Y0 by the line segment 

X = tY1 + (1 − t)Y0, 0 ≤ t ≤ 1, 

which lies in Nε(Y0) and therefore in S. This implies that Y0 can be connected 

to X0 by a polygonal path in S if and only if every member of Nε(Y0) can also. 

Thus, Nε(Y0) ⊂ A if Y0 ∈ A, and Nε(Y0) ∈ B if Y0 ∈ B. Therefore, A and B are 

open. Since A ∩ B = ∅, this implies that A ∩ B = A ∩ B = ∅. Since A is nonempty 

(X0 ∈ A), it now follows that B = ∅, since if B ̸= ∅, S would be disconnected. 

Therefore, A = S, which completes the proof of necessity. 
 

Remark: 

 

Regions in Rn: 
 

 
 

Example: Intervals are the only regions in R. The n-ball Br(X0) is a region in Rn, 

as is its closure Sr(X0).  The set S = {(x, y) : x2 + y2  ≤ 1   or    x2 + y2  ≥ 4} is not 
a region in R2, since it is not connected. 

The set S1 obtained by adding the line segment 

L1 : X = t(0, 2) + (1 − t)(0, 1), 0 < t < 1, 

point of S0. 

A region S in Rn is the union of an open connected set with some, 

Any polygonally connected set, open or not, is connected. The converse 

is false. A set (not open) may be connected but not polygonally connected. 

all, or none of its boundary; thus, S0 is connected, and every point of S is a limit 
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Figure 2.3: Disconnected set which is not a region 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.4: A connected set which is not a region 
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1 

 
to S is connected but is not a region, since points on the line segment are not limit 

points of S0. The set S2 obtained by adding to S1 the points in the rst quadrant 

bounded by the circles x2 + y2 = 1 and x2 + y2 = 4 and the line segments L1 and 

L2 : X = t(2, 0) + (1 − t)(1, 0), 0 < t < 1, 
 

is a region. 
 

 
Figure 2.5: A region 

 

 

2.9 Sequences in Rn 
 

A sequence {Xr} of points in Rn converges to a limit X if and only if for every ε > 0 
there is an integer K such that 

 

|Xr − X| < ε if r ≥ K. 

The Rn de nitions of divergence, boundedness, subsequence, and sums, di erences, 

and constant multiples of sequences are analogous to those we discussed in Analysis 

I. 
 

Since Rn is not ordered for n > 1, monotonicity, limits inferior and superior of 

sequences in Rn, and divergence to ±∞ are unde ned for n > 1. 

Products and quotients of members of Rn are also unde ned if n > 1. 

Several theorems from Analysis I remain valid for sequences in Rn, with proofs 

unchanged, provided that | | is interpreted as distance in Rn. 

1. uniqueness of the limit. 
 
 

2. Boundedness of a convergent sequence. 
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1 2 n 

 
3. Concerning limits of sums, di erences, and constant multiples of convergent 

sequences. 

 
4. Every subsequence of a convergent sequence converges to the limit of the 

sequence. 

 
2.10 Domain of Function of n Variable 

We denote the domain of a function f by Df and the value of f at a point X = 

(x1, x2, . . . , xn) by f (X) or f (x1, x2, . . . , xn). 

If a function is de ned by a formula such as 

f (X)  =  
(

1 − x2 − x2 − · · · − x2 
)1/2 

(2.14) 

 

g(X)  =  
(

1 − x2 − x2 − · · · − x2 
)−1 

(2.15) 

without speci cation of its domain, it is to be understood that its domain is the 

largest subset of Rn  for which the formula de nes a unique real number. 

 
2.11 Limit at a Point of a Function of n Variables 

A function f (X) approaches the limit L as X approaches X0 and write 
 

lim 
X→X0 

f (X) = L, 

if X0 is a limit point of Df and, for every ε > 0, there is a δ > 0 such that 

|f (X) − L| < ε 

for all X in Df such that  
0 < |X − X0| < δ. 

 
 

Example: If g(x, y) = 1 − x2 − 2y2, then 
2 2 lim g(x, y) = 1 − x − 2y (2.16) 

 

for every (x0, y0). 

To see this, we write 

0 0 
(x,y)→(x0,y0) 

|g(x, y) − g(x0 − y0)|   =    |(1 − x2 − 2y2) − (1 − x2 − 2y2)| 
0 0 

≤   |x2 − x2| + 2|y2 − y2| 
0 0 

=  |(x + x0)(x − x0)| 

 

(2.17) 

+2|(y + y0)(y − y0)| 

≤  |X − X0|(|x + x0| + 2|y + y0)|), 

1 2 n 
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X 
0        X  X 

0 

x2 y2 = 1 

√ 
− − 

0 0 

 
since 

|x − x0| ≤ |X − X0| and |y − y0| ≤ |X − X0|. 

If |X − X0| < 1, then |x| < |x0| + 1 and |y| < |y0| + 1. 
This and (2.17) imply that 

|g(x, y) − g(x0 − y0)| < K|X − X0| if |X − X0| < 1, 
 

where 
 

Therefore, if ε > 0 and 
 
 

then 

K = (2|x0| + 1) + 2(2|y0| + 1). 

 
|X − X0| < δ = min{1, ε/K}, 

 
.g(x, y) − (1 − x2 − 2y2). < ε. 

 

 

Example: The function  
 

h(x, y) = 

 
 
sin 1 x2 2y2 

√
1 − x2 − 2y2 

is de ned only on the interior of the region bounded by the ellipse 
 

x2 + 2y2 = 1. 

It is not de ned at any point of the ellipse itself or on any deleted neighborhood of 
 

y y 

 
 

 



x x 

 

 

 
 

(a) (b) 

 

Figure 2.6: Domain of the function 

such a point. Nevertheless, 

lim 
(x,y)→(x0,y0) 

if 

h(x, y) = 1 (2.18) 

x2 + 2y2 = 1. (2.19) 
0 0 

To see this, let 

u(x, y) = 
√

1 − x2 − 2y2. 

x2 y2 = 1 
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. . 

1 

√ 

— 1 < ε if 0 < |u| < δ . (2.21) 

 
Then 

 

 
Recall that 

 

h(x, y) = 

 

sin u(x, y) 
 

 

u(x, y) 

 
. (2.20) 

lim 
r→0 

sin r 
 

 

r 
= 1. 

Therefore, if ε > 0, there is a δ1 > 0 such that 

sin u 
. u . 1 

 

From previous example, we have 
 

2 2 
lim (1 − x − 2y  ) = 0. 

(x,y)→(x0,y0) 

If (2.19) holds, so there is a δ > 0 such that 
 

0 < u2(x, y) = (1 − x2 − 2y2) < δ2. 

if X = (x, y) is in the interior of the ellipse and |X − X0| < δ; that is, if X is in the 
shaded region. 

Therefore, 

0 < u = 1 − x2 − 2y2 < δ1 (2.22) 

if X is in the interior of the ellipse and |X − X0| < δ; that is, if X is in the shaded 
region. This, (2.20), and (2.21) imply that 

 

|h(x, y) − 1| < ε 

for such X, which is the required result. 
 

Theorem: If limX→X0 f (X) exists, then it is unique. 

Proof: See lecture. 
 

Example: The function xy 
f (x, y) = 

x2 + y2
 

is de ned everywhere in R2 except at (0, 0). Does lim(x,y)→(0,0) f (x, y) exist? 

If we try to answer this question by letting (x, y) approach (0, 0) along the line 

y = x, we see the functional values 
 

x2 1 
f (x, x) = 

2x2  
= 

2
 

and conclude that the limit is 1/2. 
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— − 

̸2 

g L2 

1 2 n 

 

However, if we let (x, y) approach (0, 0) along the line y = −x, we see the 
functional values 

x2 1 
f (x, −x) = − 

2x2  
= − 

2
 

and conclude that the limit equals −1/2. 
In fact, they are both incorrect. What we have shown is that 

 

1 
lim f (x, x) = 
x→0 2 

1 
and lim f (x, x) = . 

x→0 2 

Since limx→0 f (x, x) and limx→0 f (x, −x) must both equal lim(x,y)→(0,0) f (x, y). 

Theorem: Suppose that f and g are de ned on a set D, X0 is a limit point of D, 

and 
 
 

Then 

lim 
X→X0 

f (X) = L1, lim 
X→X0 

g(X) = L2. 

 

lim 
X→X0 

lim 
X→X0 

(f + g)(X)    =   L1 + L2, (2.23) 

(f − g)(X)   =   L1 − L2, (2.24) 

lim 
X→X0 

(fg)(X)   =   L1L2, (2.25) 

 
 

lim 

if L  = 0, 
( 

f 
) 

(X)    = 
L1 

. (2.26) 

 

2.12 In nite Limits and Limits at X → ∞ 

We say that f (X) approaches ∞ as X approaches X0 
 

lim 
X→X0 

f (X) = ∞ 
 

if X0 is a limit point of Df and, M , there is a δ > 0 such that 

f (X) > M whenever 0 < |X − X0| < δ and X ∈ Df . 
 

We say that  

 
lim 

X→X0 

 
f (X)  =   −∞ 

if 

lim 
X→X0 

(−f )(X)    =    ∞. 

 

 
Example: If 

f (X) = (1 − x2 − x2 − · · · − x2 )−1/2, 

X→X0 
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0 

2 

x +y2+z 

x2 + y2 + z2 

 

then 
 
 

if |X0| = 1, because 

 
lim 

X→X0 
f (X) = ∞ 

 
1 

f (X) = 

so 

, 
|X − X0| 

1 
f (X) > M if 0 < |X − X0| < δ = 

M 
. 

 
 

Example: If  

f (x, y) = 

 
1 

, 
x + 2y + 1 

then lim(x,y)→(1,−1) f (x, y) does not exist (why not?). 

But 

lim 
(x,y)→(1,−1) 

|f (x, y)| = ∞. 

 
 

To see this, we observe that 

|x + 2y + 1|   =   |(x − 1) + 2(y + 1)| 

≤ 
√

5|X − X0| (by Schwarz's inequality), 
 

where X0 = (1, −1). So 

1 1 
 

 
Therefore, 

|f (x, y)| =  
|x + 2y + 1| 

≥ √
5|X − X  | 

. 

1 
|f (x, y)| > M if 0 < |X − X0| <  

M 
√

5 
. 

 
 

Example: The function 

sin 
( 

2      
1 

2 

)
. 

 . 
 

 

 

assumes arbitrarily large values in every neighborhood of (0, 0, 0). 

For example, if Xk = (xk, yk, zk), where 

1 
xk = yk = zk = √ ( 

1 
) 

 
then 

3  k + 2   π 

 

f (Xk ) = 

(

k + 
1 
) 

π. 

f (x, y, z) = 

, 
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( 

√

 

( ) 

k 

) 

 

However, this does not imply that limX→0 f (X) = ∞. Since, for example, every 
neighborhood of (0, 0, 0) also contains points 

 

X  = 
1

 
3kπ 

1 
, √

3kπ 

1 
, √

3kπ 
.
 

 
 

For which f (Xk) = 0. 

 
2.12.1 Limit at In nity 

If Df is unbounded, we say that 
 

lim 
|X|→∞ 

f (X) = L ( nite) 

 

if for every ε > 0, there is a number R such that 
 

|f (X) − L| < ε whenever |X| ≥ R and X ∈ Df . 
 
 
 

Example: If 
 
 

then 

f (x, y, z) = cos 
  1  

, 
x2 + 2y2 + z2 

lim 
|X|→∞ 

f (X) = 1. (2.27) 

To see this, we recall that the continuity of cos u at u = 0 implies that for each 

ε > 0 there is a δ > 0 such that 
 

| cos u − 1| < ε if |u| < δ. 
 

Since 
1 1 

x2 + 2y2  + z2 
≤ 

|X|2 
.
 

It follows that if |X| > 1/
√

δ, then 
 
 

 
Therefore, 

1 

x2 + 2y2 + z2 
< δ.

 

 
|f (X) − 1| < ε. 

 

 
Example: Consider the function de ned only on the domain 

 

D = {(x, y) : 0 < y ≤ ax}, 0 < a < 1, 
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≥ √ 

2 2 2 2 2 

−  

 

by 
 

 
We will show that 

 

f (x, y) = 

 
1 

. 
x − y 

lim 
|X|→∞ 

f (x, y) = 0. (2.28) 

It is important to keep in mind that we need only consider (x, y) in D, since f is 

not de ned elsewhere. 

In D, 
 

and 

So 

This and (2.29) imply that 

x − y ≥ x(1 − a) (2.29) 

|X|  = x  + y  ≤ x  (1 + a  ). 

x 
|X| 

.
 

1 + a2 

 

   1 − a  
 x − y ≥ √

1 + a2 
|X|, X ∈ D. 

 

So √  1 + a2  1 
|f (x, y)| ≤ 

This and (2.29) imply that 

1 − a |X| 
, X ∈ D. 

   1 a  
x − y ≥ √

1 + a2 
|X|, X ∈ D. 

 

So √  1 + a2  1 
 
 

Therefore, 

|f (x, y)| ≤ 
1 − a |X| 

, X ∈ D. 

|f (x, y)| < ε 

if X ∈ D and √
1 + a2 1 

|X| > . 
1 − a ε 

 

Remarks: In the same manner we can de ne lim|X|→∞ f (X) =   ∞ and 

lim|X|→∞ f (X) = −∞. We will have the following notion limX→X0 f (X) exists 
means that limX→X0 f (X) = L, where L is nite; to leave open the possibility that 

L = ±∞. 

We will say that limX→X0 f (X) exists in the extended reals. A similar convention 

applies to limits as |X| → ∞. 
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2.13 Continuity 
 

 

. 
X→X0 

 

 

Theorem: 

 

 

|X − X0| < δ and X ∈ Df . 

Example: The function 
 

f (x, y) = 1 − x2 − 2y2 

is continuous on R2. 

Solution: See lecture. 

Example: Consider the function 
 
 

h(x, y) = 

sin 
√

1−x2−2y2 2 2 

√
1−x2−2y2     

,  x  + 2y  < 1, 
 1, x2 + 2y2 = 1, 

 

 

 
 
 

Example: Can we rede ne the function 

xy 
f (x, y) =  , 

x2 + y2 

to make it continuous at (0, 0). 

The limit 
 

 
does not exist. 

lim 
(x,y)→(0,0) 

f (x, y) 

 

Consequently, it is impossible to de ne the function at origin to make it contin- 

uous. 
 

Theorem: 

x2 + 2y2 = 1. 

If f and g are continuous on a set S in Rn, then so are f + g, f − g, and 

Suppose that X0 is in Df and is a limit point of Df . Then f is continuous 

f (X) = f (X0) lim 

If X0 is in Df and is a limit point of Df , then we say that f is continuous at X0 if 

at X0 if and only if for each ε > 0 there is a δ > 0 such that 

|f (X) − f (X0)| < ε 

whenever 

then it follows from the example we have discussed that h is continuous on the 

ellipse 

fg. Also, f/g is continuous at each X0 in S such that g(X0) ̸= 0. 
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Suppose that g1, g2, . . . , gn are real-valued functions de ned on a subset T of Rm. 

We de ne the vector-valued function G on T by 
 

G(U) = (g1(U), g2(U), . . . , gn(U)) , U ∈ T. 

Then g1, g2, . . . , gn are the component functions of G = (g1, g2, . . . , gn). We say 

that 

lim 
U→U0 

if 

G(U) = L = (L1, L2, . . . , Ln) 

lim 
U→U0 

gi(U) = Li, 1 ≤ i ≤ n, 

and that G is continuous at U0 if g1, g2, . . . , gn are each continuous at U0. 

Theorem: For a vector-valued function G, 

lim 
U→U0 

G(U) = L 

 

if and only if for each ε > 0 there is a δ > 0 such that 
 

|G(U) − L| < ε whenever 0 < |U − U0| < δ and U ∈ DG. 

Similarly, G is continuous at U0 if and only if for each ε > 0 there is a δ > 0 such 

that 
 

|G(U) − G(U0)| < ε whenever |U − U0| < δ and U ∈ DG. 

2.14.1 Composite Function 

Let f be a real-valued function de ned on a subset of Rn, and let the vector-valued 

function G = (g1, g2, . . . , gn) be de ned on a domain DG in Rm. 

Let the set 
 
 

be nonempty. 

T = {U : U ∈ DG and G(U) ∈ Df }, 

Composite function: De ne the real-valued composite function 
 

h = f ◦ G 
 

on T by 

h(U) = f (G(U)), U ∈ T. 

 
T = {U : U ∈ DG and G(U) ∈ Df }, 

2.14 Vector Valued Functions 

End 26 lec 93 
module 
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f (s) = 
√

s 

 
R(G)  = range of G 

 
n 

m 

G 

 

 

 

 

 

DG 

Df 

 

Figure 2.7: Composite of vector valued functions 
 
 

 

 

Proof: Suppose that ε > 0.  Since f is continuous at X0 = G(U0), there is an 

ε1 > 0 such that 

|f (X) − f (G(U0))| < ε (2.30) 

if 

|X − G(U0)| < ε1 and X ∈ Df . (2.31) 

Since G is continuous at U0, there is a δ > 0 such that 

|G(U) − G(U0)| < ε1 if |U − U0| < δ and U ∈ DG. 

By taking X = G(U) in (2.30) and (2.31), we see that 
 

|h(U) − h(U0)| = |f (G(U) − f (G(U0))| < ε 
 

if 

|U − U0| < δ and U ∈ T. 
 

 
Example: If 

 
 

 

 

 
 

 

We have proved that g is continuous on R2. 

We can obtain the same conclusion by observing that the functions p1(x, y) = x 

and p2(x, y) = y are continuous on R2. 

T = {(x, y) : x  + 2y  ≤ 1}. 
2 2 

then Df  = [0, ∞], Dg = R2, and 

g(x, y) = 1 − x − 2y , 
2 2 

U0, and f is continuous at X0 = G(U0). Then h = f ◦ G is continuous at U0. 

Theorem: Suppose that U0 is in T and is a limit point of T, G is continuous at 

and 
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h(x, y) = f (g(x, y)) = 
√

1 − x2 − 2y2 

f (X), β = sup 

s 

 
Theorem: 

 

 
 

 
 

is continuous on T . 
 

Example: If 
 
 and 

g(x, y) = 
√

1 − x2 − 2y2 

 
f (s) = 

{ 
sin s,  s 0, 

then Df = (−∞, ∞) and 

1, s = 0, 

Dg = T = {(x, y) : x2 + 2y2 ≤ 1}. 

We have proved that g is continuous on T . Since f is continuous on Df , the 

composite function h = f ◦ g de ned by 
 

h(x, y) = 

sin 
√

1−x2−2y2 2 2 

√
1−x2−2y2     

,  x  + 2y  < 1, 

is continuous on 

 1, x2 + 2y2 = 1, 

Dg = T = {(x, y) : x2 + 2y2 ≤ 1}. 

 

2.15 Bounded Functions 

The de nitions of bounded above, bounded below, and bounded on a set S are the 

same for functions of n variables as for functions of one variable, as are the de nitions 

of supremum and in mum of a function on a set S. 
 

Theorem: If f is continuous on a compact set S in Rn, then f is bounded on S. 
 

Theorem: 

 
 

X∈S X∈S 

 
 

 

 

. 
 

Proof: See lecture. 

Then 

α = inf 

Then h = f ◦ G is continuous at U0. Since f is continuous on Df , the function 

f (X). 

Suppose that U0 is in T and is a limit point of T, G is continuous at 

for some X1 and X2 in S 

Let f be continuous on a compact set S in Rn and 

U0, and f is continuous at X0 = G(U0). 

f (X1) = α and f (X2) = β 
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Theorem: 

 

 

. 
 

Proof: 

 
R = {X : X ∈ S and f (X) < u} 

T = {X : X ∈ S and f (X) > u}. 
 

 

and X ∈ S. 
   

 
 

 
 

 
 

Theorem: 

 

 

 

  
 
 

 
 

Theorem: 

 

Proof: See lecture. 
 

2.16 Directional Derivative 
 

 

 
 

∂f(X) 
= lim 

f(X + tΦ) − f(X) 

 
if the limit exists. 

∂Φ t→0 t 

The directional derivative of f at X in the direction of Φ is de ned by 

particular points X and X′. 

|X − X′| < δ 

and X, X′ ∈ S. 

conclude that f (C) = u for some C in S. 

S is disconnected, which contradicts the assumption that S is a region. Hence, we 

This means that X0 ̸∈ T . Therefore, R ∩ T = ∅. Similarly, R ∩ T = ∅. Therefore, 

If there is no such C, then S = R ∪ T , where 

A function f is uniformly continuous on a subset S of its domain in Rn
 

Let f be continuous on a region S in Rn. 

If f is continuous on a compact set S in Rn, then f is uniformly contin- 

Then f (C) = u for some C in S 

Suppose that A and B are in S and 

f (A) < u < f (B). 

If X0 ∈ R, the continuity of f implies that there is a δ > 0 such that 

f (X) < u if |X − X0| < δ 

if for every ε > 0 there is a δ > 0 such that 

|f (X) − f (X′)| < ε 

whenever 

We emphasize that δ must depend only on ε and S, and not on the Remark: 

uous on S. 

Let Φ be a unit vector and X a point in Rn. 
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Example: Let Φ = (ϕ1, ϕ2, ϕ3) and 
 

f (x, y, z) = 3xyz + 2x2 + z2. 
 

Then 
 

h(t)  =   f (x + tϕ1, y + tϕ2, z + tϕ3), 

=  3(x + tϕ1)(y + tϕ2)(z + tϕ3) + 2(x + tϕ1)2 

+(z + tϕ3)2. 

 

h(t) = 3(x + tϕ1)(y + tϕ2)(z + tϕ3) + 2(x + tϕ1)2 + (z + tϕ3)2 

Then we have 
 

h′(t)   =    3ϕ1(y + tϕ2)(z + tϕ3) + 3ϕ2(x + tϕ1)(z + tϕ3) 

+ 3ϕ3(x + tϕ1)(y + tϕ2) + 4ϕ1(x + tϕ1) 

+2ϕ3(z + tϕ3). 
 

Therefore,  
∂f (X) 

= h′(0) = (3yz + 4x)ϕ 
∂Φ 

 

 
+ 3xzϕ2 

 

 
+ (3xy + 2z)ϕ3. 

 

2.16.1 Partial Derivative 

Consider the unit vectors 
 

E1 = (1, 0, . . . , 0), E2 = (0, 1, 0, . . . , 0), . . . , En = (0, . . . , 0, 1). 
 

Since X and X + tEi di er only in the ith coordinate, ∂f (X)/∂Ei is called the 

partial derivative of f with respect to xi at X. 

It is also denoted by ∂f (X)/∂xi or fxi (X); thus, 

∂f (X) = f 
 

 (X) = lim 
f (x1 + t, x2, . . . , xn) − f (x1, x2, . . . , xn) 

,
 

 
 

∂x1 x1 
t→0 t 

 

f   (X) = lim 
f (x1, . . . , xi−1, xi + t, xi+1, . . . , xn) − f(x1, x2, . . . , xn) 

xi 

if 2 ≤ i ≤ n, and 

t→0 t 

∂f (X) = f 
 

 (X) = lim 
f (x1, . . . , xn−1, xn + t) − f (x1, . . . , xn−1, xn) 

,
 

 

 

∂xn xn 
t→0 t 

That is, ∂f (X)/∂Φ is the ordinary derivative of the function 

1 

h(t) = f (X + tΦ) 

at t = 0, if h′(0) exists. 
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y 

= 
∂x 

 
if the limits exist. If we write X = (x, y), then we denote the partial derivatives 

accordingly; thus, 

∂f (x, y) 
 

 

 
=  fx (x, y) = lim 

f (x + h, y) − f (x, y) 

∂x h→0 h 
∂f (x, y) f (x, y + h) − f (x, y) 

=   f (x, y) = lim . 
∂y h→0 h 

It can be seen from these de nitions that to compute fxi (X) we simply di erentiate 

f with respect to xi according to the rules for ordinary di erentiation, while treating 
the other variables as constants. 

 

Example: Let  
f (x, y, z) = 3xyz + 2x2 + z2. 

Taking Φ = E1 (that is, setting ϕ1 = 1 and ϕ2 = ϕ3 = 0), we nd that 

∂f (X) 
 

 

∂x 

∂f (X) 
= 

∂E1 

 
= 3yz + 4x, 

which is the result obtained by regarding y and z as constants in and taking the 

ordinary derivative with respect to x. Similarly, 

∂f (X) 
= 

∂y 
∂f (X) 

= 
∂z 

∂f (X) 
 

 

∂E2 
∂f (X) 

 
 

∂E3 

 
= 3xz 

 
= 3xy + 2z. 

 
 

Theorem:  If fxi (X) and gxi (X) exist, then 

∂(f + g)(X) 

∂xi 
=    fxi (X) + gxi (X), 

 
and, if g(X) ̸= 0, 

∂(fg)(X) 
 

 

∂xi 
=    fxi (X)g(X) + f (X)gxi (X), 

∂(f/g)(X)  
=  

g(X)fxi (X) − f (X)gxi (X) 
.
 

∂xi [g(X)]2 

If fxi (X) exists at every point of a set D, then it de nes a function fxi on D. 

If this function has a partial derivative with respect to xj on a subset of D, we 

denote the partial derivative by 

  ∂  
(
 ∂f 

)
 ∂2f 

 
 

 

Similarly, 

∂xj ∂xi 
= 

∂xj∂xi 
= fxixj . 

  ∂  
( 

∂2f 
)
 

 

 
 

   

∂3f 
 

 
 

  i ∂xj∂x k i ∂xj∂x k ∂x 
= fxixjxk . 
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x2+y2 

—  , (x, y) 

y 

x2+y2 

0, (x, y) = (0, 0). 

x 

x 

 
The function obtained by di erentiating f successively with respect to 

xi1 , xi2 , . . . , xir is denoted by 

 

∂xir 

∂rf 

∂xir−1 

 
· · · ∂xi1 

= fxi1  
· · · xir−1 xir ; 

it is an rth-order partial derivative of f . The function 
 

f (x, y) = 3x2y3 + xy 

has partial derivatives everywhere. Its rst-order partial derivatives are 
 

 

 
fxx(x, y) = 6y3, fyy(x, y) = 18x2y,  

+ 1. fxy(x, y) = 18xy2 + 1,  fyx(x, y) = 18xy2 
 

There are eight third-order partial derivatives. Some examples are 
 

fxxy(x, y) = 18y2, fxyx(x, y) = 18y2, fyxx(x, y) = 18y2. 

Compute fxx(0, 0), fyy(0, 0), fxy(0, 0), and fyx(0, 0) if 

{ 
(x2y+xy2) sin(x−y) ,  (x, y) ̸= (0, 0), 

 

If (x, y) ̸= (0, 0), the ordinary rules for di erentiation, applied separately to x 

and y, yield 

f  (x, y)    = (2xy+y2) sin(x−y)+(x2y+xy2) cos(x−y) 

2x(x2y+xy2) sin(x−y) 
 

 

 

(2.32) 

 
and 

— (x2+y2)2 , (x, y) ̸= (0, 0), 

f  (x, y)    = (x2+2xy) sin(x−y)−(x2y+xy2) cos(x−y) 
y x2+y2 

2y(x2y+xy2) sin(x y) 
(x2+y2)2 

 

(0, 0). 
(2.33) 

These formulas do not apply if (x, y) = (0, 0), so we nd fx(0, 0) and fy(0, 0) from 

their de nitions as di erence quotients: 

f (0, 0)   = lim 
f(x, 0) − f (0, 0) 

= lim 
0 − 0 

= 0, 
x→0 x x→0 x 

f (0, 0)   = lim 
f (0, y) − f (0, 0) 

= lim 
0 − 0 

= 0. 
y→0 y 

Setting y = 0 in (2.32) and (2.33) yields 

y→0 y 

 

fx(x, 0) = 0, fy(x, 0) = sin x, x ̸= 0, 

f (x, y) = 

− 

fx (x, y) = 6xy3 + y, fy(x, y) = 9x2y2 + x. 

Its second-order partial derivatives are 
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so 

fxx (0, 0) = lim 
fx(x, 0) − fx(0, 0) 

= lim 
0 − 0 

= 0.
 

x→0 x x→0 x 

fyx (0, 0) = lim 
fy(x, 0) − fy(0, 0) 

= lim 
sin x − 0 

= 1.
 

x→0 x x→0 x 

Setting x = 0 in (2.32) and (2.33) yields 
 

fx(0, y) = − sin y, fy(0, y) = 0, y ̸= 0, 
 

so 

 
fxy (0, 0)   = lim 

fx(0, y) − fx(0, 0) 
= lim 

− sin y − 0 
= −1,

 

y→0 y y→0 y 
 

fyy (0, 0)   = lim 
fy(0, y) − fy(0, 0) 

= lim 
0 − 0 

= 0. 
y→0 y y→0 y 

 

2.16.2 Equality of Mixed Partial Derivatives 

Theorem: 
 

 
 

(2.34) 
 
 

 

Proof: Suppose that ε > 0. Choose δ > 0 so that the open square 
 

Sδ = {(x, y) : |x − x0| < δ, |y − y0| < δ} 
 

is in N . 
 

|fxy(x̂, ŷ) − fxy(x0, y0)| < ε if (x̂, ŷ) ∈ Sδ. (2.35) 

This is possible because of the continuity of fxy at (x0, y0). The function 

A(h, k) = f (x0 + h, y0 + k) − f (x0 + h, y0) − f (x0, y0 + k) + f (x0, y0) (2.36) 

is de ned if −δ < h, k < δ. 
Moreover, 

 
 

where 

Since 

A(h, k) = ϕ(x0 + h) − ϕ(x0), (2.37) 

 
ϕ(x) = f (x, y0 + k) − f (x, y0). 

 

ϕ′(x) = fx(x, y0 + k) − fx(x, y0), |x − x0| < δ, 

Then fyx(x0, y0) exists, and 

fyx(x0, y0) = fxy(x0, y0). 

Suppose that f, fx, fy, and fxy exist on a neighborhood N of (x0, y0), 

and fxy is continuous at (x0, y0). 
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^ 

^ ^ 

^ ^ 

^ 

^ ^ ^ ̂  

. 

. − f 

 
(2.37) and the mean value theorem imply that 

A(h, k) = [fx(x, y0 + k) − fx(x, y0)] h. (2.38) 

where x is between x0 and x0 + h. 

The mean value theorem, applied to fx(x, y) (where x is regarded as constant), 

also implies that 

fx(x, y0 + k) − fx(x, y0) = fxy(x, y)k, 

where y is between y0 and y0 + k. 

From this and (2.38), 
 
 

Now (2.35) implies that 

A(h, k) = fxy(x̂, ŷ)hk. 

 

A(h, k) — f (x  , y  ).  =    |f (x̂, ŷ) − f (x , y )| < ε 
. hk xy 0 0 . xy xy 0 0 

 
 

Since (2.36) implies that 
 

A(h, k) 
lim 

if 0 < |h|, |k| < δ. 

 
= lim 

f (x0 + h, y0 + k) − f (x0 + h, y0) 

k→0 hk k→0 hk 

— lim 
f(x0, y0 + k) − f (x0, y0) 

k→0 hk 

= 
fy(x0 + h, y0) − fy(x0, y0) 

.
 

h 

It follows from (2.39) that 

fy(x0 + h, y0) − fy(x0, y0) 
. h xy (x0, y0). ≤ ε if 0 < |h| < δ. 

 

Taking the limit as h → 0 yields 

|fyx(x0, y0) − fxy(x0, y0)| ≤ ε. 

Since ε is an arbitrary positive number, this proves (2.34). 

 
2.16.3 Generalization of Equality of Mixed Partial Derivative 

Theorem: Suppose that f and all its partial derivatives of order ≤ r are continuous 
on an open subset S of Rn. 

Then 

fxi1 
xi2 

,...,xir 
(X) = fxj1 

xj2 
,...,xjr 

(X), X ∈ S. (2.39) 

If each of the variables x1, x2, . . . , xn appears the same number of times in 

{xi1 , xi2 , . . . , xir } and {xj1 , xj2 , . . . , xjr }. 
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k 

y 

f 

x2+y2 

0, (x, y) = (0, 0). 

x 

 
If this number is rk, we denote the common value of the two sides of (2.39) by 

∂rf (X) 
∂xr1 ∂xr2  · · · ∂xrn 

. (2.40)
 

1 2 n 

It being understood that 
 

0 ≤ rk ≤ r, 1 ≤ k ≤ n, (2.41) 

r1 + r2 + · · · + rn = r, (2.42) 

and, if rk = 0, we omit the symbol ∂x0 from the denominator of (2.40). 

Remark: 

 

Example: Consider the function 

{ xy  ,   (x, y) 

 
 

(0, 0), 
 

 

Then  
f (0, 0)   = lim 

f (h, 0) − f (0, 0) 
= lim 

0 − 0 
= 0

 

h→0 h h→0 h 

f (0, 0)   = lim 
f (0, k) − f (0, 0) 

= lim 
0 − 0 

= 0, 
k→0 k 

but f is not continuous at (0, 0). 

k→0 k 

 

Remark: If di erentiability of a function of several variables is to be a stronger 

property than continuity, as it is for functions of one variable, the de nition of 

di erentiability must require more than the existence of rst partial derivatives. 

 

 

 
 

x→x0 

f (x) − f(x0) − m(x − x0) 

x − x0 
 

 
 

2.17 Di erentiability of Functions of Several Variables 
 

 

 

if X0 ∈ D0 and there are constants m1, m2, . . . , mn such that 

 
 

 

X→X0 
(2.44) lim 

for some constant m, in which case m = f ′(x0). 

lim 

|X − X0| 

) − 
∑n 

mi(xi − xi0) = 0. i=1 f (X) − f (X0 

= 0 

A function of several variables may have rst-order partial derivatives at 

f (x, y) = (2.43) 

a point X0 but fail to be continuous at X0. 

A function f is di erentiable at x0 if and only if 

A function f is di erentiable at 

X0 = (x10, x20, . . . , xn0) 
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0 

0 

 
 
 
 

Example: 

 
 

f (x, y) − f (x0, y0)  =   x2 + 2xy − x2 − 2x0y0 

=  x2 − x2 + 2(xy − x0y0) 

=  (x − x0)(x + x0) + 2(xy − x0y) 

+2(x0y − x0y0) 

=  (x + x0 + 2y)(x − x0) + 2x0(y − y0) 

=  2(x0 + y0)(x − x0) + 2x0(y − y0) 

+ (x − x0)(x − x0 + 2y − 2y0) 

=  m1(x − x0) + m2(y − y0) + (x − x0)(x − x0 + 2y − 2y0), 
 

where 
 

m1 = 2(x0 + y0) = fx(x0, y0) and m2 = 2x0 = fy(x0, y0). (2.45) 
 

Therefore,  
|f (x, y) − f (x0, y0) − m1(x − x0) − m2(y − y0)| 

|X − X0| 

= 
|x − x0||(x − x0) + 2(y − y0)| 

√ 
|X − X0| 

≤ 5|X − X0|, 
 

by Schwarz's inequality. This implies that 
 

 

lim 
X→X0 

f (x, y) − f(x0, y0) − m1(x − x0) − m2(y − y0) 
= 0,

 

|X − X0| 
 

 
 

Theorem: If f is di erentiable at X0 = (x10, x20, . . . , xn0), then fx1 (X0), fx2 (X0), 

. . . , fxn (X0) exist and the constants m1, m2, . . . , mn in 

f (X) − f (X0) − 
∑n mi(xi − xi0) 

 

 
are given by 

lim 
X→X0 

  i=1 = 0, 

|X − X0| 
 

 
 

(2.46) 

so f is di erentiable at (x0, y0). 

mi = fxi (X0), 1 ≤ i ≤ n; 

Show that the following function f (x, y) = x2 + 2xy, is di erentiable at 

any point (x0, y0). 
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i 

1 2 n 

 
that is, f (X) − f (X0) − 

∑n fx (X0)(xi − xi0) 
lim 

X→X0 

  i=1 i = 0. 

|X − X0| 

 

Proof:   Let i be a given integer in {1, 2, . . . , n}. Let X  =  X0 + tEi,  so  that 

xi = xi0 + t, xj = xj0 if j ̸= i, and |X − X0| = |t|. Then 
f (X) − f (X0) − 

∑n mi(xi − xi0) 
lim 

X→X0 

  i=1 = 0. 

|X − X0| 
and the di erentiability of f at X0 imply that 

lim 
f (X0 + tEi) − f (X0) − mit 

= 0.
 

 
Hence, 

t→0 t 

lim 
f(X0 + tEi) − f (X0) 

= m .
 

t→0 t 
This proves (2.46), since the limit on the left is fxi (X0), by de nition. 

 

2.17.1 Linear Function 

A linear function  is a function of the form 

(2.47) 
 

where m1, m2, . . . , mn are constants. From de nition of di erentiability, f is 

di erentiable at X0 if and only if there is a linear function L such that f (X)− f (X0) 
can be approximated so well near X0 by 

 

 

 
 

 

where 

 
 

lim 
X→X0 

 

 
E(X) = 0. 

(2.48) 
 

(2.49) 

 
 

Theorem: 

Proof: From L(X) = m1x1 + m2x2 + · · · + mnxn, and Schwarz's inequality, 

|L(X − X0)| ≤ M |X − X0|, 

where 

M = (m2 + m2 + · · · + m2 )1/2. 

This and f (X) − f (X0) = L(X − X0) + E(X)(|X − X0|), imply that 

|f (X) − f (X0)| ≤ (M + |E(X)|)|X − X0|. 

which, with (2.49), implies that f is continuous at X0. 

that 

L(X) = m1x1 + m2x2 + · · · + mnxn, 

f (X) − f (X0) = L(X − X0) + E(X)(|X − X0|), 

If f is di erentiable at X0, then f is continuous at X0. 

L(X) − L(X0) = L(X − X0) 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


2.17.  Di erentiability of Functions of Several Variables 105 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

 

2.17.2 Di erential 

The linear function 
 

This function is called the di erential of f at X0. We will denote it by dX0 f 

and its value by (dX0 f )(X). 
Thus, 

 

(2.50) 
 

In terms of the di erential, di erentiability can be rewritten as 
 

lim 
X→X0 |X − X0| 

= 0. 

 

 
 

 
 

 

that is, dxi is the function whose value at a point in Rn is the ith coordinate of the 

point. 

It is the di erential of the function gi(X) = xi. From (2.50), 

dX0 f = fx1 (X0) dx1 + fx2 (X0 dx2 + · · · + fxn (X0) dxn. (2.51) 

If we write X = (x, y, . . . , ), then we write 

 

 
 

When it is not necessary to emphasize the speci c point X0, (2.51) can be written 

more simply as 

When dealing with a speci c function at an arbitrary point of its domain, we may 

use the hybrid notation 
 

 

 

Example: 

 

duce the function dxi, de ned by 

For convenience in writing dX0 f , and to conform with standard notation, we intro- 

(dX0 f )(X) = fx1 (X0)x1 + fx2 (X0)x2 + · · · + fxn (X0)xn. 

f (X) − f (X0) − (dX0 f )(X − X0) 

The function 

L(X) = fx1 (X0)x1 + fx2 (X0)x2 + · · · + fxn (X0)xn. 

dxi(X) = xi; 

dX0 f = fx(X0) dx + fy(X0) dy + · · · , 

where dx, dy, . . . are the functions de ned by 

dx(X) = x, dy(X) = y, . . . 

df = fx1 dx1 + fx2 dx2 + · · · + fxn dxn. 

df = fx1 (X) dx1 + fx2 (X) dx2 + · · · + fxn (X) dxn. 

f (x, y) = x2 + 2xy 

is di erentiable at every X in Rn. 
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meaning in f (x) dx, where it serves merely to identify the variable of integration; 

indeed, some authors omit it in the latter context and write simply f . 

∫ b 
a 

 
 

Lemma: If f is di erentiable at X0, then 

∫ b 
a 

 
 

 

 

 

To nd dX0 f  with X0 = (1, 2), we set x0 = 1 and y0 = 2; thus, 

dX0 f =  6 dx + 2 dy 

(dX0 f )(X − X0)  =   6(x − 1) + 2(y − 2). 

Since f (1, 2) = 5, the di erentiability of f at (1, 2) implies that 

f (x, y) − 5 − 6(x − 1) − 2(y − 2) 
 lim 

(x,y)→(1,2) √
(x − 1)2 + (y − 2)2 

= 0.
 

 

Example: The di erential of a function f = f (x) of one variable is given by 
 

dx0 f = f ′(x0) dx, 

where dx is the identity function; that is, 
 

dx(t) = t. 
 

For example, if 

then 

If x0 = −1, then 

 
f (x) = 3x2 + 5x3, 

df = (6x + 15x2) dx. 

dx0 f = 9 dx, (dx0 f )(x − x0) = 9(x + 1), 
 

and, since f (−1) = −2,  
 

lim 
x→−1 

 
f (x) + 2 − 9(x + 1) 

= 0.
 

x + 1 
 

 

Remark: 
 

 
 

  
 

  
 
 
 
 
 

f (X) − f (X0) = (dX0 f )(X − X0) + E(X)|X − X0|, 

This meaning of the symbol dx di ers from its quantities at all, but linear functions. 

However, in modern usage they are not (in nitesimal) increments in the variables. 

introduced in the early stages of the development of calculus to represent very small 

The di erential of the functions is 

Unfortunately, the notation for the di erential is so complicated that it 

df = (2x + 2y) dx + 2xdy. 

obscures the simplicity of the concept. The peculiar symbols df , dx, dy, etc., were 
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∑ 

X0 g [g(X0)]2 

 
 

 

 

X→X0 

 

 

Theorem: If f and g are di erentiable at X0, then so are f + g and fg. The same 

is true of f/g if g(X0) ̸= 0. The di erentials are given by 
 

dX0 (f + g) = dX0 f + dX0 g, 

dX0 (fg) = f (X0)dX0 g + g(X0)dX0 f, 

and 

d 

(
 f 
) 

= 
g(X0)dX0 f − f (X0)dX0 g 

.
 

 
2.17.3 A su cient Condition for Di erentiability 

Theorem: 

 

Proof: Let X0 = (x10, x20, . . . , xn0) and suppose that ε > 0. Our assumptions 

imply that there is a δ > 0 such that fx1 , fx2 , . . . , fxn are de ned in the n-ball 

Sδ(X0) = {X : |X − X0| < δ} 
 

and 

|fxj (X) − fxj (X0)| < ε if |X − X0| < δ, 1 ≤ j ≤ n. (2.52) 

Let X = (x1, x, . . . , xn) be in Sδ(X0). De ne 

Xj = (x1, . . . , xj, xj+1,0, . . . , xn0), 1 ≤ j ≤ n − 1, 

and Xn = X.  Thus, for 1 ≤ j ≤ n, Xj  di ers from Xj−1 in the jth component only, 
and the line segment from Xj−1  to Xj  is in Sδ(X0).  Now write 

n 

f (X) − f (X0) = f (Xn) − f (X0) = [f (Xj) − f (Xj−1)], (2.53) 
j=1 

 

and consider the auxiliary functions 
 
 

(2.54) 
 

 
where, in each case, all variables except t are temporarily regarded as constants. 

Since 

f (Xj) − f (Xj−1) = gj(xj) − gj(xj0), 

where E is de ned in a neighborhood of X0 and 

E(X) = E(X0) = 0. 

If fx1 , fx2 , . . . , fxn exist on a neighborhood of X0 and are continuous 

g1(t) = f (t, x20, . . . , xn0),  

gj(t) 

gn(t) 

= 

= 

f (x1, . . . , xj−1, t, xj+1,0, . . . , xn0), 

f (x1, . . . , xn−1, t), 

2 ≤ j ≤ n − 1, 

 

If f is dierentiable at X0, then f is continuous at X0. 

lim 

at X0, then f is di erentiable at X0. 
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^ 

^ 

^ 

∑ 
^
 

n n 

 
the mean value theorem implies that 

 

f (Xj) − f (Xj−1) = gj
′ (τj)(xj − xj0), 

where τj  is between xj  and xj0.  From (2.54), 

gj
′ (τj) = fxj (Xj), 

where Xj  is on the line segment from Xj−1  to Xj .  Therefore, 

f (Xj) − f (Xj−1) = fxj (Xj)(xj − xj0), 

and (2.53) implies that 
 

f (X) − f (X0)   = 

n 

fxj (Xj)(xj − xj0) 
j=1 

n n 

=    
∑ 

fxj (X0)(xj − xj0) + 
∑ 

[fxj (X̂ j ) − fxj (X0)](xj − xj0). 
  

 

From this and (2.52), 
 
 

.
f (X) − f (X0) − 

∑

j=1 

fxj (X0)(xj − xj0)
. 

≤ ε 
∑

j=1 

 

|xj − xj0| ≤ nε|X − X0|, 

 

which implies that f is di erentiable at X0. 

 
 

2.17.4 Continuously Di erentiable Function 
 

an open set on which fx1 , fx2 , . . . , fxn are continuous. 

The above theorem implies that such a function is di erentiable at each X0 inS. 
 
 
 

 

 
 

then 

f (x, y) = 
x2 + y2 

, 
x − y 

2x x2 + y2 
fx(x, y) = 

x − y 
− 

(x − y)2
 

2y x2 + y2 
fy(x, y) = 

x − y 
+ 

(x − y)2 
. 

 

 

S = {(x, y) : x ̸= y}, 

Example: If 

j=1 j=1 

We say that f is continuously di erentiable on a subset S of Rn if S is contained in 

Since fx and fy are continuous on 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


2.17.  Di erentiability of Functions of Several Variables 109 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

{ 
−

 

{ 
− ̸ 

   √ 

√ 

. 

√ = 0, 

{ 

 
 

 
 

Remark: 
 

 
 

 

Example: let  
 

f (x, y) = 

 
(x y)2 sin   1  ,   x y, 

x−y 

0, x = y. 

Then 
1 1 

 

and 

fx(x, y) = 2(x − y) sin 
x − y  

− cos 
x − y 

, x ≠ y, 

fx(x, x) = lim 
h→0 

f(x + h, x) − f(x, x) 
h 

= lim 
h→0 

h2 sin(1/h) − 0 
h 

= 0, 

 

 
 

Example: Let  
 

f (x, y) = 

 
(x y)2 sin  1  ,  x = y, 

x−y 

0, x = y. 

The same is true of fy, since 

1 1 
 
 

and 

fy(x, y) = −2(x − y) sin 
x − y  

+ cos 
x − y 

, x ≠ y, 

 

 
Now, 

fy(x, x) = lim 
k→0 

f (x, x + k) − f (x, x) 
k 

= lim 
k→0 

k2 sin(−1/k) − 0 
k 

= 0. 

f(x, y) − f(0, 0) − fx(0, 0)x − fy(0, 0)y 

x2 + y2 

(x−y)2 
 

 

= x2+y2 

sin   1  ,   x y, 
x−y 

0, x = y, 

and Schwarz's inequality implies that 
 

. (x − y)2 1 2(x2 + y2) √ 

 
Therefore, 

. 
√

x2 + y2 
sin 

x − y . 
≤ 

√
x2 + y2   

= 2
 

x2 + y2 , x ̸= y. 

 

 

lim 
(x,y)→(0,0) 

f(x, y) − f(0, 0) − fx(0, 0)x − fy(0, 0)y 

x2 + y2 
 

so f is di erentiable at (0, 0), but fx and fy are not continuous at (0, 0). 

so fx exists for all (x, y), but is not continuous on the line y = x. 

entiability; that is, a function may be di erentiable at a point X0 even if its rst 

f is continuously di erentiable on S. 

If fx1 , fx2 , . . . , fxn   exist on a neighborhood of X0 and are continuous 

   

at X0, then f is di erentiable at X0. These conditions are not necessary for di er- 

partial derivatives are not continuous at X0. 
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2.17.5 Geometric Interpretation of Di erentiability 

If a function f of one variable is di erentiable at x0, then the curve y = f (x) has a 

tangent line 

y = T (x) = f (x0) + f ′(x0)(x − x0). 

The tangent line approximates it so well near x0 that 
 

 
lim 

x→x0 

f(x) − T (x) 
= 0.

 

x − x0 

Moreover, the tangent line is the limit of the secant line through the points 

(x1, f (x0)) and (x0, f (x0)) as x1 approaches x0. Di erentiability of a function of n 

variables has an analogous geometric interpretation. We will illustrate it for n = 2. 

If f is de ned in a region D in R2, then the set of points (x, y, z) such that 

z = f (x, y), (x, y) ∈ D, (2.55) 

is a surface in R3 Geometric interpretation of di erentiability: 

z 

 

 

 
 

 

 

 
 

y 

 

 
 

 

x 

 

Figure 2.8: Domain of the function 

If f is di erentiable at X0 = (x0, y0), then the plane 

z = T (x, y) = f (X0) + fx(X0)(x − x0) + fy(X0)(y − y0) (2.56) 

intersects the surface z = f (x, y) at (x0, y0, f (x0, y0)) and approximates the surface 

so well near (x0, y0) that 

  f (x, y) − T (x, y)  
 lim 

(x,y)→(x0,y0) √
(x − x0)2 

+ (y − y0) 
= 0. 

2 

Moreover, (2.56) is the only plane in R3 with these properties. 

We say  that  this  plane  is  tangent  to  the  surface  z  =  f (x, y)  at  the  point 

(x0, y0, f (x0, y0)). 

z  f (x, y) 

D 
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z 

 

 

 

 
 

 

 
y 

 

 
 

 

x 

 

Figure 2.9: Geometric interpretation of di erentiability 
 
 

. 

Let Xi = (xi, yi) (i = 1, 2, 3). The equation of the secant plane through the 

points (xi, yi, f (xi, yi)) (i = 1, 2, 3) on the surface z = f (x, y) is of the form 

z = f (X0) + A(x − x0) + B(y − y0), (2.57) 

where A and B satisfy the system 

f (X1)   =   f (X0) + A(x1 − x0) + B(y1 − y0), 

f (X2) = f (X0) + A(x2 − x0) + B(y2 − y0). 

Solving for A and B yields 

A   = 
(f (X1) − f(X0))(y2 − y0) − (f (X2) − f (X0))(y1 − y0) 

(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0) 

B = 
(f (X2) − f(X0))(x1 − x0) − (f (X1) − f (X0))(x2 − x0) 

(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0) 

if 

 
(2.58) 

 
(2.59) 

(x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0) ̸= 0, (2.60) 

which is equivalent to the requirement that X0, X1, and X2 do not lie on a line. If 

we write 

X1 = X0 + tU and X2 = X0 + tV, 

where U = (u1, u2) and V = (v1, v2) are xed nonzero vectors, then (2.58), (2.59), 

and (2.60) take the more convenient forms 
 

f (X0+tU)−f (X0) v2  − f (X0+tV)−f (X0) u2
 

 

A   = t t 

u1v2 − u2v1 
, (2.61) 

f (X0+tV)−f (X0) u1  − f (X0+tU)−f (X0) v1
 

 

B = t t 

u1v2 − u2v1 
, (2.62) 

z  f ( x, y ) 

(x
0
, y

0 
) 

secant planes 

Show that the tangent plane to the surface z = f (x, y) is the limit of the 
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1 

2 

 
and 

u1v2 − u2v1 ̸= 0. 

If f is di erentiable at X0, then 

 
 

where 

lim 
X→X0 

 

 
(2.63) 

 

 
ε(X) = 0. (2.64) 

Substituting rst X = X0 + tU and then X = X0 + tV in (2.63) and dividing by t 

yields 
f(X0 + tU) − f (X0) 

= f
 (X )u + f (X )u + E (t)|U| (2.65) 

 
and 

t 
x 0 1 y 0 2 1 

f (X0 + tV) − f (X0) 
= f

 (X )v + f (X )v + E (t)|V|, (2.66) 

where 

t 
x 0 1 y 0 2 2 

E1(t) = ε(X0 + tU)|t|/t and E2(t) = ε(X0 + tV)|t|/t, 

so 
lim Ei(t) = 0, i = 1, 2, (2.67) 
t→0 

because of (2.64). Substituting (2.65) and (2.66) into (2.61) and (2.62) yields 
 

A = fx(X0) + ∆1(t), B = fy(X0) + ∆2(t), (2.68) 
 

where 

∆  (t) =  
v2|U|E1(t) − u2|V|E2(t) 

 
and 

u1v2 − u2v1 

∆  (t) =  
u1|V|E2(t) − v1|U|E1(t) 

,
 

 

so 
 
 

because of (2.67). 

u1v2 − u2v1 

lim ∆i(t) = 0, i = 1, 2, (2.69) 
t→0 

From (2.57) and (2.68), the equation of the secant plane is 
 

z = f (X0) + [fx(X0) + ∆1(t)](x − x0) + [fy(X0) + ∆2(t)](y − y0). 

Therefore, because of (2.69), 

f (X) − f (X0) = fx(X0)(x − x0) + fy(X0)(y − y0) + ε(X)|X − X0|, 

the secant plane approaches the tangent plane (2.56) 
as t approaches zero. 
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1 Suppose that f is de ned in a neighborhood of X0 in Rn and fx (X0), 

fx2 (X0), . . . , fxn (X0) exist. 

 

2.18 Maxima and Minima 
 

if there is a δ > 0 such that 
 

f (X) − f (X0) 

does not change sign in Sδ(X0) ∩ Df . 
More speci cally, X0 is a local maximum point if 

f (X) ≤ f (X0) 
 

or a local minimum point if 
 

for all X in Sδ(X0) ∩ Df . 

Theorem: 

f (X) ≥ f (X0) 

 

 
 

(2.70) 
 
 
 

Proof: Let E1 = (1, 0, . . . , 0), E2 = (0, 1, 0, . . . , 0), . . . ,  En = (0, 0, . . . , 1), and 

gi(t) = f (X0 + tEi), 1 ≤ i ≤ n. 

Then gi is di erentiable at t = 0, with 

gi
′(0) = fxi (X0). 

Since X0 is a local extreme point of f , t0 = 0 is a local extreme point of gi. 
 

Remark: The converse of theorem is false, since (2.70) fxi (X0) = 0, 1 ≤ i ≤ n. 
may hold at a point X0 that is not a local extreme point of f . 

For example, let X0 = (0, 0) and 
 

f (x, y) = x3 + y3. 
 

We say that a point X0 where (2.70) holds is a critical point of f . Thus, if f is 

de ned in a neighborhood of a local extreme point X0, then X0 is a critical point 

of f ; however, a critical point need not be a local extreme point of f . 

Let X0 be a local extreme point of f. Then 

fxi (X0) = 0, 1 ≤ i ≤ n. 

We say that X0 is a local extreme point of f 
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( 
 

)2 

0 

∂uj 

( 
 

)2 

(
∑
 

(
∑
 (

∑
 

 

2.19 Di erentiable Vector Valued Function 

A vector-valued function G = (g1, g2, . . . , gn) is di erentiable at 

U0 = (u10, u20, . . . , um0) 

if its component functions g1, g2, . . . , gn are di erentiable at U0. 

Lemma: Suppose that G = (g1, g2, . . . , gn) is di erentiable at 

U0 = (u10, u20, . . . , um0), 
 

and de ne 
∑n    ∑ 

 

   1/2 
∂gi(U0 

M =   

i=1 j=1 

. 
∂uj 

Then, if ε > 0, there is a δ > 0 such that 

|G(U) − G(U0)| 
< M + ε if 0 < |U − U | < δ. 

|U − U0| 

 

Proof: Since g1, g2, . . . , gn are di erentiable at U0 to gi shows that 

gi(U) − gi(U0)    =    (dU0 gi)(U − U0) + Ei(U)|(U − U0| 

 

 
 

(2.71) 
 
 

where 

m 
j=1 

∂gi(U0) (uj − uj0) + Ei(U)|(U − U0|, 

lim 
U→U0 

From Schwarz's inequality, 

Ei(U) = 0, 1 ≤ i ≤ n. (2.72) 

 

 

 
where 

|gi(U) − gi(U0)| ≤ (Mi + |Ei(U)|)|U − U0|, 

∑m
    1/2 

∂gi(U0) 

 

 
Therefore, 

Mi =   
j=1 

. 
∂uj 

 
 

 
From (2.72), 

|G(U) − G(U0)| 
 

|U − U0| 

n 

i=1 

(Mi + |Ei(U)|) 

1/2 

. 

 

lim 
U→U0 

 
n 

 
 

i=1 

 
(Mi + |Ei(U)|)2 

 

1/2 

= 

 
n 

 
 

i=1 

 

1/2 

2 
i 

 

= M, 

which implies the conclusion. 

m 

∑
=

 

≤ 

M 

 

 

2 

) 

) ) 
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uppose that the real-valued function f is di erentiable at X0 in Rn. 

∑ 

∑ 

i=1 i 

 

2.20 The Chain Rule 

Theorem: S 

. 
 

Then the real-valued composite function h = f ◦ G de ned by 

h(U) = f (G(U)) (2.73) 
 

is di erentiable at U0, and 

dU0 h = fx1 (X0)dU0 g1 + fx2 (X0)dU0 g2 + · · · + fxn (X0)dU0 gn. (2.74) 

 

Proof: First we will show that U0 is an interior point of the domain of h. It is 

legitimate to ask if h is di erentiable at U0. Let X0 = (x10, x20, . . . , xn0). Note that 

xi0 = gi(U0), 1 ≤ i ≤ n, 
 

by assumption. 

Since f is di erentiable at X0, which implies that 
 
 
 

 
where 

 

n 

f (X) − f (X0) = fxi (X0)(xi − xi0) + E(X)|X − X0|, (2.75) 
i=1 

lim 
X→X0 

E(X) = 0. 

Substituting X = G(U) and X0 = G(U0) in (2.75) and recalling (2.73) yields 
 

h(U) − h(U0)    = 

n 

fxi (X0)(gi(U) − gi(U0)) 
i=1 

+E(G(U))|G(U) − G(U0)|. (2.76) 
 

Substituting gi(U) − gi(U0) = dU0 gi)(U − U0) + Ei(U)|U − U0| into (2.76) yields 

h(U) − h(U0)   =   
∑n fx (X0)(dU gi)(U − U0) 

i=1 i 0 

+ (
∑n fx (X0)Ei(U)) |U − U0| 

 

 
 

Since 

+ E(G(U))|G(U) − G(U0|. 

lim 
U→U0 

E(G(U)) =  lim 
X→X0 

E(X) = 0. 

X0 = G(U0) 
The vector-valued function G = (g1, g2, . . . , gn) is di erentiable at U0 in Rm, and 
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∂u ∂v 

 
Due to Lemma we proved in previous module, imply that 

h(U) − h(U0) − 
∑n fx (X0dU gi(U − U0) 

  i=1 i 0 = 0. 

|U − U0| 

Therefore, h is di erentiable at U0, and dU0 h is given by (2.74). 
 

Example: Let  
f (x, y, z) = 2x2 + 4xy + 3yz, 

 

 
and 

g1(u, v) = u2 + v2, g2(u, v) = u2 − 2v2, g3(u, v) = uv, 

 
h(u, v) = f (g1(u, v), g2(u, v), g3(u, v)). 

Let U0 = (1, −1) and 

X0 = (g1(U0), g2(U0), g3(U0)) = (2, −1, −1). 
 

Then 

Since 

fx(X0) = 4, fy(X0) = 5, fz(X0) = −3, 

 

g1(u, v) = u2 + v2, g2(u, v) = u2 − 2v2, g3(u, v) = uv, 

∂g1(U0) 
= 2, ∂g1(U0) 

= −2, 

∂g2(U0) 
= 2, ∂g2(U0)  = 4, 

∂u ∂v 

∂g3(U0) 
= −1, ∂g3(U0)  = 1. 

 
Therefore, 

∂u ∂v 

 

dU0 g1 = 2 du − 2 dv, dU0 g2 = 2 du + 4 dv, dU0 g3 = −du + dv. 

According to chain rule we have 

dU0 h = fx1 (X0)dU0 g1 + fx2 (X0)dU0 g2 + · · · + fxn (X0)dU0 gn. 

 
dU0 h  =   fx(X0) dU0 g1 + fy(X0) dU0 g2 + fz(X0) dU0 g3 

=  4(2 du − 2 dv) + 5(2 du + 4 dv) − 3(−du + dv) 

=  21 du + 9 dv. 
 

Since 
 

we conclude that 

 
dU0 h = hu(U0) du + hv(U0) dv 

 
hu(U0) = 21 and hv(U0) = 9. (2.77) 
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n 

m 

m 

∑   

∑   

∂ui ∂xj ∂ui 

  dui. 

U0 ∂ui 
i 

 
Alternatively: This can also be obtained by writing h explicitly in terms of 

(u, v) and di erentiating; thus, 
 

h(u, v)    =    2[g1(u, v)]2 + 4g1(u, v)g2(u, v) + 3g2(u, v)g3(u, v) 

=  2(u2 + v2)2 + 4(u2 + v2)(u2 − 2v2) + 3(u2 − 2v2)uv 

=  6u4 + 3u3v − 6uv3 − 6v4. 
 

Hence,  
hu(u, v) = 24u3 + 9u2v − 6v3 and hv(u, v) = 3u3 − 18uv2 − 24v3, 

 

so hu(1, −1) = 21 and hv(1, −1) = 9, consistent with (2.77). 

Corollary: Under the assumptions of the chain rule theorem 

∂h(U0)  
= 
∑ ∂f (X0) ∂gj(U0) 

,
 

 

Proof:Substituting 
 

d g  =
 ∂gi(U0) 

du
 

+ 
∂gi(U0) 

du
 + · · · + 

∂gi(U0) 
du , 1 ≤ i ≤ n, 

U0 i ∂u1 
1 ∂u2 

2 
∂um m 

into (2.74) and collecting multipliers of du1, du2, . . . , dum yields 

∑ ∑n 

 
 

 

∂f (X0) ∂gj(U0)  
 

  

 

However, from Theorem ??, 
 

d h = 
∑ ∂h(U0) 

du . 

 

Comparing the last two equations yields (2.78). 
 

Remark: When it is not important to emphasize the particular point X0, we write 
 

 ∂h 

∂ui 

 
n 

= 
∂f  ∂gj 

,
 

j=1  
∂xj ∂ui 

 

with the understanding that in calculating ∂h(U0)/∂ui, ∂gj/∂ui  is evaluated at U0 

and ∂f/∂xj  at X0 = G(U0). 
 

 ∂h 

∂ui 

n 

= 
∂f  ∂gj 

,
 

j=1  
∂xj ∂ui 

i ∂u j ∂x 
i=1 

dU0 h = 

1 ≤ i ≤ m, (2.80) 

1 ≤ i ≤ m, (2.79) 

1 ≤ i ≤ m. (2.78) 

j=1 

j=1 

i=1 
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n 

∑ 

n 

j=1 ∂uk ∂xj  ∂ui 

j=1  ∂xj  ∂uk ∂ui  
+ 

∂uk ∂xj 

∂g(X(U)) 
= 
∑ ∂g(X(U)) ∂xs(U) 

.
 

 
with the understanding that in calculating ∂h(U0)/∂ui, ∂gj/∂ui  is evaluated at U0 

and ∂f/∂xj  at X0 = G(U0).  By replacing the symbol G with X = X(U); then we 

write 
 

and 

h(U) = f (X(U)) 

 
∂h(U0)  

= 
∑ ∂f (X0) ∂xj(U0) 

,
 

∂ui j=1 
∂xj 

n 

∂ui 

 ∂h 
or simply 

∂ui 
= 

∂f ∂xj 
. (2.81) 

j=1  
∂xj  ∂ui 

 

2.21 Higher derivatives of composite functions 

Higher derivatives of composite functions can be computed by repeatedly applying 

the chain rule. 

For example, di erentiating (2.81) with respect to uk yields 
 

∂2h =    
∑n   ∂     

( 
 ∂f   ∂xj  

)
 

 ∑n ∂f ∂2xj 
∑n ∂xj      ∂     

( 
 ∂f   

)
 (2.82) 

 

We must be careful nding 
  ∂   

(
 ∂f 

) 

,
 

 
which really stands here for 

∂uk ∂xj 

  ∂   
( 

∂f(X(U))
) 

. (2.83)
 

 

The safest procedure is to write temporarily 
 

 

g(X) = 
∂f (X) 

; 
∂xj 

 

then (2.83) becomes 
 

 

 

 
Since 

∂uk  
s=1 

 
 

∂g 
= 

∂xs 

 

∂2f 
, 

∂uk 

 
this yields 

∂xs ∂xs ∂xj 

  ∂   
(
 ∂f 

) 

= 
∑ ∂ f ∂xs 

2 
. 

∂uk ∂xk 
s=1  

∂xs ∂xj ∂uk 

∂uk ∂ui 

= j=1  ∂ui  ∂uk ∂xj . 

n 
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∂uk ∂ui ∂xj ∂uk ∂ui ∂ui ∂xs ∂xj 

∂r2 ∂r ∂x ∂r ∂y 

∂θ ∂r 
=   − sin θ 

∂x 
+ cos θ 

∂y 
+ cos θ

∂θ
 + sin θ 

∂θ 

=    − sin θ 
∂x 

+ cos θ 
∂y 

+ cos θ 
∂x2  ∂θ 

+ 
∂y ∂x ∂θ 

∂x∂y ∂θ 
+ 

∂y2 ∂θ 

 
Substituting this into (2.82) yields 

2 n 2 n n 2 

   ∂  h      
= 
∑  ∂f ∂  xj    

+ 
∑ ∂xj  ∑    ∂  f ∂xs 

∂u
 

 

   

. (2.84) 

To compute huiuk (U0) from this formula, we evaluate the partial derivatives of x1, 

x2, . . . , xn at U0 and those of f  at X0 = X(U0).  The formula is valid if x1, x2, 

. . . , xn and their   rst partial derivatives are di erentiable at U0 and f , fxi , fx2 , 

. . . , fxn and their rst partial derivatives are di erentiable at X0. 

Example: Let (r, θ) be polar coordinates in the xy-plane; that is, 

x = r cos θ, y = r sin θ. 

Suppose that f = f (x, y) is di erentiable on a set S, and let 

h(r, θ) = f (r cos θ, r sin θ). 
 

We have  
∂h ∂f ∂x 

= 
∂r ∂x ∂r 
∂h ∂f ∂x 

 
∂f ∂y 

+ 
∂y ∂r 
∂f ∂y 

 
∂f 

= cos θ 
∂x 

 
∂f 

+ sin θ 
∂y 

∂f ∂f 

 
 

(2.85) 

∂θ 
= 

∂x ∂θ 
+ 

∂y ∂θ 
= −r sin θ 

∂x 
+ r cos θ 

∂y 
, 

where fx and fy are evaluated at (x, y) = (r cos θ, r sin θ). 

Example: Suppose that fx and fy just calculated are di erentiable on an open set 

S in R2. Di erentiating (2.85) with respect to r yields 

∂2h =   cos θ ∂  
( 

∂f 
) 

+ sin θ ∂  
( 

∂f 
)
 

=   cos θ 
( 

∂2f ∂x +  ∂2f   ∂y 
) 

+ sin θ 
( 

∂2f
 

  

∂x  + ∂2f ∂y 
) 

. 

if (x, y) ∈ S. Since 

∂x 
 

 

∂r 

∂x2 ∂r 
 
 
 

= cos θ, 

∂y ∂x ∂r 
 
 
 

∂y 
= sin θ, and 

∂r 

∂x ∂y ∂r 
 
 
 

∂2f 
= 

∂x∂y  

∂y2  ∂r 
 
 
 

∂2f 
 

 

∂y ∂x 

if (x, y) ∈ S. The equation (2.86) yields 

∂2h 
 

 

2   ∂2f 
 

 

∂2f 2   ∂2f 
 

 

∂r2 
= cos θ 

∂x2  
+ 2 sin θ cos θ

∂x∂y  
+ sin θ 

∂y2 
. 

Di erentiating (2.85) with respect to θ yields 

∂2h ∂f ∂f  ∂  
( 

∂f 
)
 

 

 

 ∂  
( 

∂f 
)
 

 

 

∂f ∂f 
( 

∂2f ∂x 
∂2f 

∂y 
)
 

( 
∂2f  ∂x ∂2f ∂y 

)
 

∂y ∂x 

s=1 j=1 j=1 
k 

+ sin θ . 

(2.86) 
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i=1 

∑ 

∑ 

∑ 

∂θ ∂r 
=  − sin θ 

∂x 
+ cos θ 

∂y 
− r sin θ cos θ 

∂x2 
− 

∂y2 

 

Since 
 
 

it follows that 

 
∂x 

∂θ 
= −r sin θ and 

 
∂y 

= r cos θ, 
∂θ 

∂2h ∂f ∂f 
( 

∂2f 
 

 

∂2f 
)
 

 

 

 

 

 

+ r(cos2 θ − sin 
∂2f 

θ) . 
∂x∂y 

 

 

Remark: For a composite function of the form 
 

h(t) = f (x1(t), x2(t), . . . , xn(t)) 
 

where t is a real variable, x1, x2, . . . , xn are di erentiable at t0, and f is di erentiable 

at X0 = X(t0). We have 
 

n 

h′(t0) = fxj (X(t0))xj
′ (t0). (2.87) 

j=1 

 

 

 

 
 

 
 

 

 
  

 

 

Proof: An equation of L is 
 

X = X(t) = tX2 + (1 − t)X1, 0 ≤ t ≤ 1. 

Our hypotheses imply that the function 
 

h(t) = f (X(t)) 
 

is continuous on [0, 1] and di erentiable on (0, 1). 

Since 
 
 

We have 

xi(t) = txi2 + (1 − t)xi1, 

n 

h′(t) = fxi (X(t))(xi2 − xi1), 0 < t < 1. 
i=1 

(2.88) fxi (X0)(xi2 − xi1) = (dX0 f )(X2 − X1) f (X2) − f (X1) = 

Then 
(x12, x22, . . . , xn2) and di erentiable on the line segment L from X1 to X2. 

2 

Theorem: Let  f  be  continuous  at  X1 = (x11, x21, . . . , xn1)  and   X2 = 

n 

for some X0 on L distinct from X1 and X2. 
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1 2 x x 

∑ 

∑ 
˜

 

∑ 

 
From the mean value theorem for functions of one variable 

 

h(1) − h(0) = h′(t0) 

for some t0 ∈ (0, 1). Since h(1) = f (X2) and h(0) = f (X1), this implies (2.88) with 

X0 = X(t0), i.e., 
 

n 

f (X2) − f (X1) = fxi (X0)(xi2 − xi1) = (dX0 f )(X2 − X1). 
i=1 

 
 
 

 
 

Proof: We will show that if X0 and X are in S, then f (X) = f (X0). 

Since S is an open region, S is polygonally connected. 

Therefore, there are points 
 

X0, X1, . . . , Xn = X 

such that the line segment Li from Xi−1 to Xi is in S, 1 ≤ i ≤ n. From mean value 
theorem 

n 

f (Xi) − f (Xi−1) = (dXi 
f )(Xi − Xi−1), 

i=1 

where X̃ is on Li  and therefore in S. 
Therefore, 

fxi (X̃ i) = fx2 (X̃ i) = · · · = fxn (X̃ i) = 0, 

which means that dX̃ 
i
f  ≡ 0.  Hence, 

f (X0) = f (X1) = · · · = f (Xn); 

that is, f (X) = f (X0) for every X in S. 

Motivation: Suppose that f is de ned in an n-ball Bρ(X0), with ρ > 0. 

If X ∈ Bρ(X0), then 

X(t) = X0 + t(X − X0) ∈ Bρ(X), 0 ≤ t ≤ 1, 
 

so the function 
 

is de ned for 0 ≤ t ≤ 1. 
We know that 

 
h(t) = f (X(t)) 

 

 
n 

h′(t) = fxi (X(t)(xi − xi0). 
i=1 

f is constant in S. 
Theorem: xn If f  , f  , . . . , f n are identically zero in an open region S of R , then 
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(
∑
 

n 

X0 

n 

X0 

i1 i2 i2,0 

X0 ∂xir ∂xi · · · ∂xi 
i1 

dX f = r r r (dx1) 1 (dx2) 2 · · · (dxn) n, (2.90) 
r !r ! · · · r 1 2 n 

∑ 

∑ 

∑ 0 

 
If f is di erentiable in Bρ(X0), and 

h′′(t)  =  
∑
 

  ∂ 
n   

∂f (X(t)) 
∂x ∂x (xi − xi0)

)

 
 
(xj − xj0) 

j=1 

n 

j 
i=1 

i
 

2 

= 
i,j=1 

∂  f (X(t)) 
(xi 

∂xj ∂xi 
— xi0 )(xj — xj0) 

 

If fx1 , fx2 , . . . , fxn are di erentiable in Bρ(X0). Continuing in this way, we see 

that 
 

 

h(r)(t) = 
  ∂rf (X(t))  

(x  − x 
    

)(x   − x ) 

· · · (xir − xir,0) 

if all partial derivatives of f of order ≤ r − 1 are di erentiable in Bρ(X0). 

2.22 rth Di erential 

Suppose that r ≥ 1 and all partial derivatives of f of order ≤ r − 1 are di erentiable 
in a neighborhood of X0. 

Then the rth di erential of f at X0, denoted by d(r) f , is de ned by 
 

d(r) f =   ∂rf(X )  
dx  dx 

 

   

· · · dx 

 

, (2.89) 

 
 

 
 

 
Notice that d(1) f = dX f . 

 

(d(0) f ) = f (X0). 

For convenience, we de ne 

X0 0 
 

Remark: Suppose that r ≥ 1 and all partial derivatives of f of order ≤ r − 1 are 
di erentiable in a neighborhood of X0, the value of 

∂rf (X0) 

∂xir ∂xir−1 · · · ∂xi1 

 

 

 
 

Remark: The di erential can be rewritten as 

(r) 
∑ r! 

 

 
   

∂rf (X0) r r r 
 

 
 

! ∂x 1 ∂x 2 · · · ∂x n
 n 2 1 r 

0 

and not on the order in which the di erentiations are performed. 

where dx1, dx2, . . . , dxn are the di erentials, that is, dxi is the function whose value 

1 r−1 i1,i2,...,ir=1 

1 r−1 r i1,i2,...,ir=1 

at a point in Rn is the ith coordinate of the point. 

n 

∂xi ∂xi · · · ∂xi 
i1,0 

i2 ir 

depends only on the number of times f is di erentiated with respect to each variable, 
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∑ 

i 

X 

r 

 
n 

n 

n 

n 

X0 r1!r2! · · · rn! 
1 2 n 1 2 

=    (−1)r(a1 dx1 + a2 dx2 + · · · + an dxn)r exp − 
ajxj0  

 
where r indicates summation over all ordered n-tuples (r1, r2, . . . , rn) of nonneg- 

ative integers such that 

r1 + r2 + · · · + rn = r 

and ∂xri is omitted from the denominators of all terms in (2.90) for which ri = 0. 

In particular, if n = 2, 

d
(r) 

f = 
∑ 

 

(
r
) 

∂rf (x0, y0) 
 

 

 
(dx)j(dy)r−j . 

0 j j=0 ∂xj  ∂yr−j 

 
 

Example: Let 
 

 
where a and b are constants. 

Then 

 

f (x, y) = 

 
1 

, 
1 + ax + by 

∂rf (x, y) 
r ajbr−j 

 
 

∂xj  ∂yr−j   
= (−1)  r!

(1 + ax + by)r+1 
,
 

so 

d
(r) 

f =
 

0 

(−1)rr! 
 

(1 + ax0 + by0)r+1 

(−1)rr! 
 

 

∑

j=0 

(
r
) 

 

 
ajbr−j(dx)j(dy)r−j 

 
r 

= 
 

if 1 + ax0 + by0 ̸= 0. Let 

(1 + ax0 + by )r+1 
(a dx + b dy) 

f (X) = exp − 

where a1, a2, . . . , an are constants. Then 

 
∂rf (X) 

    
 

   

∑

j=1 

ajxj  , 

 
∑ 

 

 
 

∂xr1 ∂xr2  · · · ∂xrn
 = (−1) a1 a2  · · · an  exp − ajxj  . 

Therefore, 

(d(r) f )(Φ)    =    (−1)r 

(
∑   r!  

ar1 ar2  · · · arn (dx  )r1 (dx  )r 
 

 

 

· · · (dx )rn 

) 

× exp − 

∑

j=1 
ajxj0  

 
∑ 

 

 

r 

rn 

n 2 1 

r2 r1 r 

j 

X 

r 

0 

2 n 

j=1 

j=1 
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k 

X0 

X̃ 

X 

r 

r! X 0 (k + 1)! X̃ 0 

h(1) = 
∑ h (0) 

+ 
h (τ ) 

, (2.93) 

 
 

 
 

Theorem: Suppose that f and its partial derivatives of order ≤ k are di erentiable 
at X0 and X in Rn and on the line segment L connecting them. 

Then 

f (X) = 
∑ 1 

(d(r) f )(X − X) +
 1 

(d(k+1)f )(X − X ) (2.91) 

for some X̃ on L distinct from X0  and X. 
 

Proof:  De ne 

h(t) = f (X0 + t(X − X0)). (2.92) 

With Φ = X − X0, our assumptions and the discussion preceding De nition of 
di erentials imply that h, h′, . . . , h(k+1) exist on [0, 1]. 

From Taylor's theorem for functions of one variable, 
 

k (r) (k+1) 

 
for some τ ∈ (0, 1). 

From (2.92), 

r! 
r=0 

(k + 1)! 

 
We have Φ = X − X0, 

h(0) = f (X0) and h(1) = f (X). (2.94) 

 
 
 

 
where 

h(r)(0)   =   (d(r) f )(X − X0), 1 ≤ r ≤ k, (2.95) 

h(k+1)(τ )   =   
(

dk+1f 
) 

(X − X0) (2.96) 

X̃ = X0 + τ (X − X0) 

is on L and distinct from X0 and X. 

Substituting (2.94), (2.95), and (2.96) into (2.93) yields (2.91). 
Let 

f (x, y) = 
 

where a and b are constants. 
Then 

1 
, 

1 + ax + by 

∂rf (x, y) 
r ajbr−j 

 
 

∂xj  ∂yr−j   
= (−1)  r!

(1 + ax + by)r+1 
,
 

so 

d(r) f = 
0 

(−1)rr! 
 

(1 + ax0 + by0)r+1 

(−1)rr! 
 

 

∑

j=0 

(
r
) 

 

 
ajbr−j(dx)j(dy)r−j 

 
r 

= 
(1 + ax0 + by )r+1 

(a dx + b dy) 

j 

2.23 Taylor's Theorem for Functions of n Variables 

0 

r=0 
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k 

— 0 

˜ 

1 + ax + by (1 + aτx + bτy)k+2 

k 
r! X0 0 

. ∂x 
— 

∂x 
< ε, 

. 
X ∈ Bδ(X0). (2.98) 

. ˜ 

 

if 1 + ax0 + by0 ̸= 0. 

Example: The Taylor series with X0 = (0, 0) and Φ = (x, y) imply that if 1 + ax + 

by > 0, then 
k k+1 

  1   
= 
∑

(−1)r(ax + by)r + (−1)k+1 
  (ax + by) 

 
 

for some τ ∈ (0, 1). (Note that τ depends on k as well as (x, y).) 

Remark: By analogy with the situation for functions of one variable, we de ne the 

kth Taylor polynomial of f about X0 by 
 

T (X) = 
∑ 1 

(d(r) f )(X − X ). 

If the di erentials exist; then we have 
 

f (X) = Tk 
  1  (k+1) 

(X) + (d f )(X − X0). 
 
 
 

Theorem: 

(k + 1)! X̃ 

 

 
 

 

 
 

 

X→X0 
= 0. (2.97) 

 

 

Proof: If ε > 0, there is a δ > 0 such that Bδ(X0) ⊂ N and all kth-order partial 
derivatives of f satisfy the inequality 

. ∂kf (X̃ ) 
 

  

∂kf (X0) 
 

 

     

Now suppose that X ∈ Bδ(X0). From Taylor series expansion, with k replaced by 

k − 1,  
f (X) = Tk−1(X) + 

1 
(d(k)f )(X X ), (2.99) 

k! X̃ 

where X is some point on the line segment from X0 to X and is therefore in Bδ(X0). 

We can rewrite (2.99) as 

 
f (X) = T (X) +

 1 [
(d(k)f )(X − X ) − (d(k)f )(X − X )

] 
. (2.100) 

k k! X̃ 
0 X0 0 

But de nition of di erential and (2.98) imply that 

.(d
(k)

f )(X − X0) − (d
(k)

f )(X − X0). < nkε|X − X0|k (2.101) 
 

X̃ 
X0 

i1 · · · ∂x ik−1 ∂x ik i1 ik−1 
∂x ik 

lim 

of f are continuous at X0. Then 

tiable in a neighborhood N of a point X0 in Rn and all kth-order partial derivatives 

r=0 

f(X) − Tk(X) 

|X − X0|k 

Suppose that f and its partial derivatives of order ≤ k − 1 are di eren- 

· · · ∂x 

r=0 
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X0 

2 

 

which implies that  
|f (X) − Tk(X)| 

<
 

|X − X0|k 

 
 
nkε 

k! 
, X ∈ Bδ(X0), 

from (2.100). This implies (2.97). 

 
2.23.1 Positive De nite 

Let r be a positive integer and X0 = (x10, x20, . . . , xn0). A function of the form 

p(X) = 
∑ 

ar1r2...rn (x1 − x10)   (x2 − x20) · · · (xn − xn0)  , (2.102) 
r1 r2 rn 

 

r 
 

where the coe cients {ar1r2...rn } are constants and the summation is over all n-tuples 

of nonnegative integers (r1, r2, . . . , rn) such that 

r1 + r2 + · · · + rn = r, 

is a homogeneous polynomial of degree r in X − X0, provided that at least one of the 

coe cients is nonzero. For example, if f satis es the conditions of rth di erential, 
then the function 

p(X) = (d(r) f )(X − X0) 

is such a polynomial if at least one of the rth-order mixed partial derivatives of f 
at X0 is nonzero. Clearly, p(X0) = 0 if p is a homogeneous polynomial of degree 

r ≥ 1 in X − X0. 

If p(X) ≥ 0 for all X, we say that p is positive semide nite; if p(X) > 0 except 

when X = X0, p is positive de  nite.  Similarly, p is negative  semide nite  if p(X) ≤ 0 

or negative de nite if p(X) < 0 for all X ̸= X0. In all these cases, p is semide nite. 
With p as in (2.102), 

p(−X + 2X0) = (−1)rp(X), 

so p cannot be semide nite if r is odd. 
 

Example: The polynomial 
 

p(x, y, z) = x2 + y2 + z2 + xy + xz + yz 

is homogeneous of degree 2 in X = (x, y, z). We can rewrite p as 

p(x, y, z) = 
1 [

(x + y)2 + (y + z)2 + (z + x)2
] 

. 

so p is nonnegative, and p(x, y, z) = 0 if and only if 
 

x + y = y + z = z + x = 0, 
 

which is equivalent to (x, y, z) = (0, 0, 0). Therefore, p is positive de nite and −p is 
negative de nite. 
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(k) 

X 

(k) 

(k) 

xy 

X0 X0 

 
Example: The polynomial 

 

p1(x, y, z) = x2 + y2 + z2 + 2xy 

p1(x, y, z) = (x + y)2 + z2, 

so p1 is nonnegative. Since p1(1, −1, 0) = 0, p1 is positive semide nite and −p1 is 
negative semide nite. 

The polynomial 

p2(x, y, z) = x2 − y2 + z2 

is not semide nite, since, for example, 
 

p2(1, 0, 0) = 1 and p2(0, 1, 0) = 1. 

 
 

Theorem: Suppose that f and its partial derivatives of order ≤ k − 1 are di eren- 
tiable in a neighborhood N of a point X0 in Rn and all kth-order partial derivatives 

of f are continuous at X0. with k ≥ 2, and 

d(r) f ≡ 0 (1 ≤ r ≤ k − 1), d(k) f ̸≡ 0. (2.103) 

Then 
 

• X0 is not a local extreme point of f unless dX0 
f is semi-de nite as a polynomial 

in X − X0. 

In particular, X0 is not a local extreme point of f if k is odd. 
 

• X0 is a local minimum point of f if dX0 
f is positive de nite, or a local maxi- 

mum point if d(k)f is negative de nite. 
0 

 

• If dX0 
f is semide nite, then X0 may be a local extreme point of f, but it need 

not be. 
 
 

Corollary: Suppose that f, fx, and fy are di erentiable in a neighborhood of a 

critical point X0 = (x0, y0) of f and fxx, fyy, and fxy are continuous at (x0, y0). 

Let 
 
 

Then 

D = fxx(x0, y0)fxy(x0, y0) − f 2 (x0, y0). 

 

• (x0, y0) is a local extreme point of f if D > 0; (x0, y0) is a local minimum 
point if fxx(x0, y0) > 0, or a local maximum point if fxx(x0, y0) < 0. 

• (x0, y0) is not a local extreme point of f if D < 0. 
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X 

X 

xy 

u + 
A 

uv + 
A2 

v + v 

A A 

C C 

) 

 

Proof: Write (x − x0, y − y0) = (u, v) and 

p(u, v) = (d(2) f )(u, v) = Au2 + 2Buv + Cv2, 
0 

where A = fxx(x0, y0), B = fxy(x0, y0), and C = fyy(x0, y0), so 

D = AC − B2. 

If D > 0, then A ̸= 0, and we can write 

( 
2 2B B2   

2

) ( 
 

B2 ) 
2

 

 
 

 

=  A 

(

u + 
B 2 D 

v + 
A A 

v2. 

This cannot vanish unless u = v = 0. Hence, d(2) f is positive de nite if A > 0 or 
0 

negative de nite if A < 0, and Theorem implies the rst part of the corollary. 
If D < 0, there are three possibilities: 

1. A ̸= 0; then p(1, 0) = A and p 
(
− B , 1

) 
= D . 

2. C  ≠ 0; then p(0, 1) = C  and p 
(

1, − B 
) 

=  D . 
 

3. A = C = 0; then B ̸= 0 and p(1, 1) = 2B and p(1, −1) = −2B. 

In each case the two given values of p di er in sign, so X0 is not a local extreme 

point of f , from Theorem part I. 
 

Example: If 

We have 

so 

 

f (x, y) = eax2+by2 
. 

fx(x, y) = 2axf (x, y), fy(x, y) = 2byf (x, y), 

fx(0, 0) = fy(0, 0) = 0, 

and (0, 0) is a critical point of f . 

To apply Corollary, we calculate 

fxx(x, y)  =   (2a + 4a2x2)f (x, y), 

fyy(x, y)  =   (2b + 4b2y2)f (x, y), 

fxy(x, y)  =   4abxyf (x, y). 
 

Therefore,  
D = fxx(0, 0)fyy(0, 0) − f 2 (0, 0) = (2a)(2b) − (0)(0) = 4ab. 

Corollary implies that (0, 0) is a local minimum point if a and b are positive. A 

local maximum if a and b are negative. Neither if one is positive and the other is 

negative. Corollary does not apply if a or b is zero. 

A p(u, v) = A C − 
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a 

∫ b 

 
 
 

Chapter  3 

Integral Calculus 
 

 

 
 
 

Attempting to formulate de nition of Riemann integral for a function de ned on an 

in nite or semi-in nite interval would introduce questions concerning convergence 

of the resulting Riemann sums, which would be in nite series. 

 
3.1 Locally Integrable Functions 

 

 

 
 

For example, 
 

is locally integrable on (−∞, ∞). 

 
f (x) = sin x 

 

 
1 

g(x) = 
x(x − 1) 

is locally integrable on (−∞, 0), (0, 1), and (1, ∞). 
The function 

h(x) = 
√

x 

is locally integrable on [0, ∞). 
If f is locally integrable on [a, b), we de ne 

 

b 

f (x) dx =  lim 
a c→b− 

c 

f (x) dx (3.1) 
a 

if the limit exists ( nite). To include the case where b = ∞, we adopt the convention 

that ∞− = ∞. 

Remarks: 

• The limit in (3.1) always exists if [a, b) is nite and f is locally integrable and 
bounded on [a, b). 

• In this case, the de nition of Riemann integral and locally integrable function 
assign the same value to  f (x) dx no matter how f (b) is de ned. However, 

the limit may also exist in cases where b = ∞ or b < ∞ and f is unbounded 
as x approaches b from the left. 

subinterval of I. 

∫ ∫ 

We say f is locally integrable on an interval I if f is integrable on every nite closed 
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a 

∫ b 

a 

∫ 

a 

∫ 

a 

∫ 

• In particular, if limc→b− 
∫ c f (x) dx = ±∞, we say that 

∫ b f (x) dx diverges to 

 
• In these cases, the de nition of locally integrable assigns a value to an integral 

that does not exist in the sense of Riemann integral, and f (x) dx is said to 
be an improper integral that converges to the limit in (3.1). 

 

Remarks: 

• We also say in this case that f is integrable on [a, b) and that   b f (x) dx exists. 
If the limit in (3.1) does not exist ( nite), we say that the improper integral 

b f (x) dx diverges, and f is nonintegrable on [a, b). 

 

±∞, and we write 

b 

 
a 

a 
 
 
 

f (x) dx = ∞ or 

a 
 

 
b 

f (x) dx = −∞, 

whichever the case may be. 
 

If f is locally integrable on (a, b], we de ne 
 

b 

f (x) dx = lim 
a c→a+ 

b 

f (x) dx 
c 

provided that the limit exists ( nite). 

To include the case where a = −∞, we adopt the convention that −∞+ = −∞. 
If f is locally integrable on (a, b), we de ne 

 

b 

f (x) dx = 
a 

α 

f (x) dx + 
a 

b 

f (x) dx, 
α 

where a < α < b, provided that both improper integrals on the right exist ( nite). 
 

Remarks: The existence and value of b f (x) dx according to the above de nition 

do not depend on the particular choice of α in (a, b). 
 

When we wish to distinguish between improper integrals and integrals in the 

sense of de nition of Riemann integral, we will call the latter proper integrals. 
 

Example: The function 
1 1 

f (x) = 2x sin 
x 

− cos 
x

 

is locally integrable and the derivative of 

F (x) = x2 sin 
1

 
x 

on [−2/π, 0). 

∫ ∫ 

∫ ∫ 

∫ ∫ ∫ 

a 
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.1 

∫ 

— 
c
 

∞ 

− 

− 

− 

. 
− 

 
Hence, 

 

 
c 

 
−2/π 

 
 
f (x) dx   =   x2 sin 

 

 
c 

x .−2/π 

 
= c2 sin 

1 
+

 4 
 

c π2 

0 

 
−2/π 

 

f (x) dx = 
 

lim 
c→0− 

(

c2

 1 4  
sin + 

c π2 

 4  
= 

π2 
. 

 

However, this is not an improper integral, even though f (0) is not de ned and 

cannot be de ned so as to make f continuous at 0. If we de ne f (0) arbitrarily 

(say f (0) = 10), then f is bounded on the closed interval [−2/π, 0] and continuous 
except at 0. Therefore, 0 

−2/π 
f (x) dx exists and equals 4/π2 as a proper integral, in 

the sense of de nition of improper integral. 
 

Example: The function 
 

is locally integrable on [0, 1). 

If p ̸= 1 and 0 < c < 1, 

f (x) = (1 − x)−p 

∫ c 
−p 

 

(1 − x)−p+1 .
c

 
 

 

(1 − c)−p+1 − 1 
 

 

Hence, 
(1 x) 0 dx = p − 1 .

0 
. p − 1 

 

 
For p = 1, 

lim 
c→1− 

c 

(1 x)−p 
0 

dx = 
(1 − p)−1,    p < 1, 

∞, p > 1. 

 

 
Hence, 

lim 
c→1− 

c 

(1 x)−1 
0 

dx = lim 
→1− 

log(1 − c) = ∞. 

1 

(1 x)−p 
0 

dx = 
(1 − p)−1,    p < 1, 

∞, p ≥ 1. 
 
 

Example: The function 
 

is locally integrable on [1, ∞). 

If p ̸= 1 and c > 1, 

 

f (x) = x−p 

 
 

 
Hence, 

c 

x−p 

1 

 
dx = 

x−p+1   c 
= 

−p + 1 1 

c−p+1 1 
. 

−p + 1 

 

 
For p = 1, 

lim 
c→∞ 

c 

x−p 

1 
dx = 

(p − 1)−1,    p > 1, 

∞, p < 1. 

lim 
c→∞ 

c 

x−1 

1 

dx = lim log c = . 
c→∞ 

= − 

∫ 

∫ ) 

∫ { 

∫ 

∫ { 

∫ 

∫ { 

∫ 
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∫ 

∫ 

∫ ∫ ∫ 

∫ 

∫ ∫ ∫ 

x x 

→0+ →0+ 

a α a 

∫ R 

0 −∞ −∞ 

a a a 

Let c1, c2, . . . , cn be constants. Then 
∫ b(c1f + c2f1 + · · · + cnfn)(x) dx converges. 

2 

− 

 
Hence, 

∞ x−p 

1 

 

dx = 
(p − 1)−1,    p > 1, 

∞, p ≤ 1. 
 

Example: If 1 < c < ∞, then 

∫ c 
1

  
log 

1 
dx = − 

∫ c 
1
 
log xdx = − 

1 
(log x) . 

= − 
1 

(log c)2. 

 

Hence, 

1  x x 1 
 
 

lim 

x 
 

∫ c 
1
 

 
 
 
log 

2 1 2 

 
1 

dx = −∞, 
c→∞   1   x x 

so 

∫ ∞ 1 
log 

1 
dx = −∞. 

The function f (x) = log x is locally integrable on (0, 1], but unbounded as 

x → 0+. Since 

 
lim 

c 

1 

log xdx = 
c
lim (x log x − x). = −1 − 

c
lim (c log c − c) = −1, 

 

De nition ?? yields 
 

1 

log xdx = 1. 
0 

The function f (x) = cos x is locally integrable on [0, ∞) and 

∫ c 

does not exist; thus, 0
∞ cos xdx diverges, but not to ±∞. 

In connection with De nition ??, it is important to recognize that the improper 

integrals α f (x) dx and b f (x) dx must converge separately for b f (x) dx to con- 

 

lim 
R→∞ 

f (x) dx, 
−R 

which is called the principal value of 
∫ ∞

 f (x) dx, does not imply that 
∫ ∞

 f (x) dx 

converges; thus, 
 

 
lim 

R→∞ 

−∞ 

R 

xdx = lim 
−R R→∞ 

−∞ 

 
0 = 0, 

but 
∫ ∞ xdx and 

∫ 0 xdx diverge and therefore so does 
∫ ∞ xdx. 

 

Theorem: Suppose that f1, f2, . . . , fn are locally integrable on [a, b). 

The integrals b f1(x) dx, b f2(x) dx, . . . , b fn(x) dx converge. 
 

∫ { 

c 

1 

1 

→0+ c c 

∫ 

lim 
c→∞ 0 

cos xdx = lim sin c 
c→∞ 

verge. For example, the existence of the symmetric limit 

a 
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∫ 

∫ 

a 

a 

∫ 

∫ b 

 
Furthermore, 

b 

(c1f1 + c2f2 + · · · + cnfn)(x) dx   =   c1 

 

 
b 

f1(x) dx 
a 

+c2 
b 

f2(x) dx 

∫ b 
 

 
 

 

 

Proof: If a < c < b, then 

c 

(c1f1 + c2f2 + · · · + cnfn)(x) dx   =   c1 

 

 
c 

f1(x) dx 
a 

+c2 
c 

f2(x) dx 
∫ c 

 
Letting c → b− yields the stated result. 

+ · · · + cn fn(x) dx. 
a 

Theorem: If f is nonnegative and locally integrable on [a, b), then 
∫ b 

f (x) dx con- 

verges if the function  

F (x) = 

 
x 

f (t) dt 
a 

is bounded on [a, b), and b f (x) dx = ∞ if it is not. 
These are the only possibilities, and 

 
 
 

in either case. 

f (t) dt =  sup 
a a≤x<b 

F (x) 

 

Proof: The function 
 

 
is nondecreasing on [a, b). 

 
F (x) = 

 
x 

f (t) dt 
a 

 

Recall: Suppose that f is monotonic on (a, b) and de ne 
 

α = inf 
a<x<b 

f (x), β = sup 
a<x<b 

f (x). 

 

If f is nondecreasing, then f (a+) = α and f (b−) = β. 

Remarks: We often write 
b 

f (x) dx < 
a 

a 
fn(x) dx. 

∫ 

a 

∫ 

∫ 

a 

∫ 

∫ 

∫ 

∫ 

+ · · · + cn 

a 

a 

∞ 
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a 

∫ 

∫
This implies that  f 

(x) dx < ∞. a 

∫ 
∞

 

a 
∫ 

a a 

a a 

a a 

(1 − x)p    
dx.

 

 
to indicate that an improper integral of a nonnegative function converges. 

Similarly, if f is nonpositive and b f (x) dx converges, we write 
 

b 

f (x) dx > −∞ 
 

because a divergent integral of this kind can only diverge to −∞. 

• These conventions do not apply to improper integrals of functions that assume 
both positive and negative values in (a, b), since they may diverge without 

diverging to ±∞. 

3.1.1 The Comparison Test 

Theorem: If f and g are locally integrable on [a, b) and 
 

0 ≤ f (x) ≤ g(x), a ≤ x < b, (3.2) 
 

then 

1. 
∫ b f (x) dx < ∞ if 

∫ b g(x) dx < ∞ 
 

2. 
∫ b g(x) dx = ∞ if 

∫ b f (x) dx = ∞. 
 

Proof: Since 
 
 

we have 

 
0 ≤ f (x) ≤ g(x), a ≤ x < b, 

∫ x ∫ x 
 

  
f (t) dt a 

∫ x 
 

 

g(t) dt, a x < b. a 

∫ x 
 

If b g(x) dx < ∞, the right side of this inequality is nite by the previous Theorem, 
so the left side is also. 

b 
a 

The proof is by contradiction. If b g(x) dx    < , then (1) implies that 

∫ b f (x) dx < ∞, contradicting the assumption that 
∫ b f (x) dx = ∞. 

Example: Determine the convergence of the improper integral 

∫ 1 2 + sin πx 
 

a 

≤ ≤ 

a 

∫ 

≤ sup 
a≤x<b 

f (t) dt sup 
a≤x≤b 

g(t) dt. 

I = 

So 

a 

0 
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∫ ∫ ∫ 

a 

∫ 

(1 − x)p    
dx.

 

 
Solution: We are going to show that the improper integral converges if p < 1. 

Since 
2 + sin πx 3 

We have 

0 <  
(1 − x)p    

≤ 
(1 − x)p 

, 0 ≤ x < 1. 

1   3 dx  

(1 − x)p  
< ∞, p < 1. 

 
 

Example: Determine the convergence of the improper integral 

∫ 1 2 + sin πx 
 

 

 

Solution: However, I diverges if p ≥ 1, since 
 
 

 
and 

1 

0 < 
(1 − x)p  

≤
 

2 + sin πx 

(1 − x)p   
, 0 ≤ x < 1, 

1 dx  

(1 − x)p  
= ∞, p ≥ 1. 

 
Remark: If f is any function (not necessarily nonnegative) locally integrable on 

[a, b). If a1 and c are in [a, b), then 
 

c 

f (x) dx = 
a 

 

a1 

f (x) dx + 
a 

 

c 

f (x) dx. 
a1 

Since 
∫ a1 f (x) dx is  a proper integral, on letting c → b− we  conclude that if 

 

either of the improper integrals 
∫ b f (x) dx and 

∫ b f (x) dx converges then so does 
a a1 

the other, and in this case 

∫ b ∫ a
1 

∫ b 

   

 

 

Remark: This means that any theorem implying convergence or divergence of 

an improper integral b f (x) dx remains valid if its hypotheses are satis ed on a 

subinterval [a1, b) of [a, b) rather than on all of [a, b). 

For example, the comparison test remains valid if we have 
 

0 ≤ f (x) ≤ g(x), a1 ≤ x < b, 

where a1 is any point in [a, b). 

a1 a a 

a 

∫ 

∫ 

0 

I = 

0 

0 

f (x) dx = f (x) dx + f (x) dx. 
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a 

∫ 

a 

∫ 

∞ 

∞ 

∫ 

a2 a2 

a 

a 

a a 

a a 

a a 

∞ 

∞ 

 
From this, you can see that if f (x) ≥ 0 on some subinterval [a1, b) of [a, b), but 

not necessarily for all x in [a, b), we can still use the convention introduced earlier 

for positive functions; that is, we can write b f (x) dx < ∞ if the improper integral 

converges or 
∫ b 

f (x) dx = ∞ if it diverges. 

Theorem: Suppose that f and g are locally integrable on [a, b), g(x) > 0 and 

f (x) ≥ 0 on some subinterval [a1, b) of [a, b), and 

f (x) 
lim 

x→b− g(x) 
= M. (3.3) 

• If 0 < M < ∞, then 
∫ b 

f (x) dx and 
∫ b 

g(x) dx converge or diverge together. 

• If M = ∞ and 
∫ b 

g(x) dx = ∞, then 
∫ b 

f (x) dx = ∞. 

• If M = 0 and 
∫ b 

g(x) dx < ∞, then 
∫ b 

f (x) dx < ∞. 
 

Proof: From (3.3), there is a point a2 in [a1, b) such that 
 

M f (x) 3M 
0 < < < 

2 g(x) 2  
, a2 ≤ x < b, 

 

and therefore  
M 

g(x) < f (x) < 
2 

 
3M 

2   
g(x), a2 ≤ x < b. (3.4) 

The rst inequality in (3.4) imply that 
 

b 

g(x) dx < if 
a2 

 

The second inequality in (3.4) imply that 
 

b 

f (x) dx < if 
a2 

 
 

b 

f (x) dx < . 
a2 

 
 

 
b 

g(x) dx < . 
a2 

Therefore, 
∫ b f (x) dx and 

∫ b g(x) dx converge or diverge together, and in the latter 

case they must diverge to ∞, since their integrands are nonnegative. If M = ∞, 
there is a point a2 in [a1, b) such that 

f (x) ≥ g(x), a2 ≤ x ≤ b, 

We have 
∫ b f (x) dx = ∞. If M = 0, there is a point a2 in [a1, b) such that 

 

so we have 
∫ b f (x) dx < ∞. 

f (x) ≤ g(x), a2 ≤ x ≤ b, 

∫ ∫ 
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∫ ∫ 

. . 

k−1 

a 

absolutely convergent. 
a 

≤ 

1 x π x 

j=1 jπ x 

>   
∑k−1        1 

∫ (j+1)π 
| sin x| dx. 

∫ 

b b 

 

3.2 Absolute integrability 

We say that f is absolutely integrable on [a, b) if f is locally integrable on [a, b) and 

|f (x)| dx < ∞.  In this case we also say that f (x) dx converges absolutely  or is 

 

Remark: If f is nonnegative and integrable on [a, b), then f is absolutely integrable 

on [a, b), since |f | = f . 

Example: Since 
sin x 1  

and 
∫

1
∞ 

x−p dx < ∞ if p > 1. 

. xp   . xp 

The comparison theorem implies that ∫ ∞ | sin x| 
dx < ∞, p > 1. 

 
The function 

1 xp 

 
f (x) = 

 

sin x 

xp 

is absolutely integrable on [1, ∞) if p > 1. 

Example: It is not absolutely integrable on [1, ∞) if p ≤ 1. 

To see this, we rst consider the case where p = 1. 

Let k be an integer greater than 3. Then 

∫ kπ  | sin x| dx   >   
∫ kπ  | sin x| dx      

=  
∑k−1 

∫ (j+1)π  | sin x| dx (3.5) 

 

 
But ∫ (j+1)π 

j=1 (j+1)π   jπ 
 

∫ π 

 
jπ 

so (3.5) implies that 

| sin x| dx = sin xdx = 2, 
0 

∫ kπ | sin x| 
 
dx > 2 ∑ 1  

 
. (3.6) 

 
However, 

1 x 
 

   1 
∫ j+2 dx 

π j + 1 
j=1 

 

so (3.6) implies that 

j + 1 
≥

 
 

j+1 

, j = 1, 2, . . . , 
x 

∫ kπ | sin x| 
 

 

2 ∑
k−1 ∫ j+2  dx

 

x π j=1 j+1 x 

2 k+1
 dx 

= = 
2 

log 
k + 1 

. 
π   2 x π 2 

1 
> 
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a 

∫ 

a 

a 

∫ b 

a 

∫ 

a 

∫ 

xp 

a 

converges; that is, an absolutely convergent integral is convergent. 
a 

xp 

 

Since limk→∞ log[(k + 1)/2] = ∞, implies that 

∫ ∞ | sin x| 
dx = ∞.

 

1 x 

Now implies that 

∫ ∞ | sin x| 
dx = ∞, p ≤ 1. (3.7) 

 

Theorem:  If f  is locally integrable on [a, b) and 
∫ b 

|f (x)| dx < ∞, then 
∫ b 

f (x) dx 
 
 

Proof: If 
 

Then 

g(x) = |f (x)| − f (x). 

 

0 ≤ g(x) ≤ 2|f (x)| 

and b g(x) dx < ∞, because of comparison theorem and the absolute integrability 
of f . Since 

f  = |f | − g, 

Due to comparison test, we can conclude that 
∫ b f (x) dx converges. 

3.3 Nonoscillatory and Oscillatory Functions 

A function f is nonoscillatory at b− (= ∞   if   b = ∞) if f is de ned on [a, b) and 
does not change sign on some subinterval [a1, b) of [a, b). 

If f changes sign on every such subinterval, f is oscillatory at b−. 

Remark: For a function that is locally integrable on [a, b) and nonoscillatory at b−, 

convergence and absolute convergence of f (x) dx amount to the same thing, so 

absolute convergence is not an interesting concept in connection with such functions. 

However, an oscillatory function may be integrable, but not absolutely inte- 

grable, on [a, b), as the next example shows. We then say that f is conditionally 

integrable on [a, b), and that b f (x) dx converges conditionally . 

 
 

3.4 Conditional convergence 

An oscillatory function may be integrable, but not absolutely integrable, on [a, b), 

as the next example shows. We then say that f is conditionally integrable on [a, b), 

and that b f (x) dx converges conditionally . 
 

Example: The integral 

I(p) = 

∫ ∞  sin x 
dx 

 1 

1 
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− 

. . 

a 

a 

a 

∫ 

1
∞ x−p−1 dx < ∞ if p > 0, the comparison theorem implies that x−p−1 cos x is 

xp+1 

This and 
∫ ∞ | sin x| 

dx = ∞, p ≤ 1, imply that I(p) converges conditionally if 

≤ 

 

is not absolutely convergent if 0 < p ≤ 1. 

We will show that it converges conditionally for these values of p. 

Integration by parts yields 

 
 

 
Since 

c sin x 

p    
dx = 

1 

 

— 
cos c 

+ cos 1 p 
cp 

 
cos x 1  ≤ 

c cos x 

p+1  
dx. (3.8) 

1 

∫ 
. 

xp+1 
. 

xp+1 

absolutely integrable [1, ∞) if p > 0. 
Therefore, we have an absolutely convergent integral, this implies that 

x−p−1 cos x is integrable [1, ∞) if p > 0. 

Letting c → ∞ in (3.8), we nd that I(p) converges, and 

I(p) = cos 1 − p 

∫ ∞ cos x 
dx if p > 0. 

 

 
1 xp 

0 < p ≤ 1. 

 

3.5 Dirichlet's Test 

Theorem: Suppose that f is continuous and its antiderivative F (x) = 
∫ x f (t) dt is 

bounded on [a, b). 

Let g′ be absolutely integrable on [a, b), and suppose that 
 

Then 
∫ b f (x)g(x) dx converges. 

lim 
x→b− 

g(x) = 0. (3.9) 

 

Proof: The continuous function fg is locally integrable on [a, b). Integration by 

parts yields 

c 

f (x)g(x) dx = F (c)g(c) 
a 

c 

F (x)g′(x) dx, a c < b. (3.10) 
a 

The comparison test implies that the integral on the right converges absolutely 

as c → b−, since b |g′(x)| dx < ∞ by assumption, and 

|F (x)g′(x)| ≤ M |g′(x)|, 

where M is an upper bound for |F | on [a, b). Moreover, (3.9) and the boundedness 
of F imply that limc→b− F (c)g(c) = 0. 

Letting c → b− in (3.10) yields 

b 

f (x)g(x) dx = 
a 

b 

F (x)g′(x) dx, 
a 

1 

∫ 

x 

∫ 

x 

∫ ∫ 

∫ ∫ 

and 

− 

− 
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a 

∫ b 

∫ 

1 

∫ 

 
where the integral on the right converges absolutely. 

 

Remark: Dirichlet's test is useful only if f is oscillatory at b−, since it can be shown 

that if f  is nonoscillatory at b− and F  is bounded on [a, b), then |f (x)g(x)| dx < 

∞ if only g is locally integrable and bounded on [a, b). 

Remark: Dirichlet's test can also be used to show that certain integrals diverge. 
 

Example: For example, 
∞ 

xq sin xdx 
1 

diverges if q > 0, but none of the other tests that we have studied so far implies 

this. It is not enough to argue that the integrand does not approach zero as x → ∞ 
(a common mistake), since this does not imply divergence. To see that the integral 
diverges, we observe that if it converged for some q > 0, then F (x) = x xq sin xdx 

would be bounded on [1, ∞). 
We could let 

f (x) = xq sin x and g(x) = x−q 

in Dirichlet's test and conclude that 

∞ 

sin xdx 
1 

also converges. This is false. 

 
3.6 Rectangles in Rn 

 

The 

S1 × S2 × · · · × Sn 

of subsets S1, S2, . . . , Sn of R is the set of points (x1, x2, . . . , xn) in Rn such that 

x1 ∈ S1, x2 ∈ S2, . . . , xn ∈ Sn. For example, the Cartesian product of the two closed 
intervals 

[a1, b1] × [a2, b2] = {(x, y) : a1 ≤ x ≤ b1, a2 ≤ y ≤ b2} 

is a rectangle in R2 with sides parallel to the x- and y-axes. 

The Cartesian product of three closed intervals 
 

[a1, b1] × [a2, b2] × [a3, b3]   =    {(x, y, z) : a1 ≤ x ≤ b1, 

a2 ≤ y ≤ b2, a3 ≤ z ≤ b3} 

is a rectangular parallelepiped in R3 with faces parallel to the coordinate axes. A 

coordinate rectangle R in Rn is the Cartesian product of n closed intervals; that is, 

R = [a1, b1] × [a2, b2] × · · · × [an, bn]. 

∫ 
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y 

 

 

 

 

 

 
 

x 

 

 

Figure 3.1: Rectangle in R2
 

 

x 
 

 

Figure 3.2: Rectangular parallelepiped in R3
 

 
The content of R is 

V (R) = (b1 − a1)(b2 − a2) · · · (bn − an). 

The numbers b1 − a1, b2 − a2, . . . , bn − an are the edge lengths of R. If they are 
equal, then R is a coordinate cube. If ar = br for some r, then V (R) = 0 and we say 
that R is degenerate; otherwise, R is nondegenerate. 

If n = 1, 2, or 3, then V (R) is, respectively, the length of an interval, the area of 

a rectangle, or the volume of a rectangular parallelepiped. Henceforth, rectangle 

or cube will always mean coordinate rectangle or coordinate cube unless it is 

stated otherwise. If 

 

 
and 

R = [a1, b1] × [a2, b2] × · · · × [an, bn] 

 
Pr : ar = ar0 < ar1 < · · · < armr = br 

is a partition of [ar, br], 1 ≤ r ≤ n, then the set of all rectangles in Rn that can be 
written as 

 

[a1,j1 −1, a1j1 ] × [a2,j2 −1, a2j2 ] × · · · × [an,jn−1, anjn ],  1 

≤ jr ≤ mr, 1 ≤ r ≤ n, 

is a partition of R. We denote this partition by 

P = P1 × P2 × · · · × Pn. (3.11) 

b
2

 

a
2

 

a
1

 b
1

 

z 

y 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


Rn 3.7.  Riemann Sum in 142 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

∑ 

 
We de ne its norm to be the maximum of the norms of P1, P2, . . . , Pn, thus, 

∥P∥ = max{∥P1∥, ∥P2∥, . . . , ∥Pn∥}. 

Put another way, ∥P∥ is the largest of the edge lengths of all the subrectangles 

in P. Geometrically, a rectangle in R2 is partitioned by drawing horizontal and ver- 

tical lines through it; in R3, by drawing planes through it parallel to the coordinate 

axes. Partitioning divides a rectangle R into nitely many subrectangles that we 

can number in arbitrary order as R1, R2, . . . , Rk. Sometimes it is convenient to 

write 
 

rather than (3.11). 

P = {R1, R2, . . . , Rk} 

 

y 

 
 

 

 

 

 

 

 

 

x 

 

 

Figure 3.3: Partitioning of a rectangle in R2
 

 
• If P = P1 × P2 × · · · × Pn and P′ = P1

′ × P2
′ × · · · × Pn

′   are partitions of the same 

rectangle, then P′ is a re nement of P if Pi
′ is a re nement of Pi, 1 ≤ i ≤ n. 

 
3.7 Riemann Sum in Rn 

Suppose that f is a real-valued function de ned on a rectangle R in Rn, P = 

{R1, R2, . . . , Rk} is a partition of R. 

Let Xj  is an arbitrary point in Rj , 1 ≤ j ≤ k. 
Then 

k 

σ = f (Xj)V (Rj) 
j=1 

is a Riemann sum of f over P. 

Since  Xj  can  be  chosen  arbitrarily  in  Rj ,  there  are  in nitely  many  Riemann 

sums for a given function f over any partition P of R. 

b
2
 

a
2
 

a
1
 b

1
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∫ 

rather than R f (X) dX. 

∫ 

 

3.8 Riemann Integral in Rn 

: Let f be a real-valued function de ned on a rectangle R in Rn. 

We say that f is Riemann integrable on R if there is a number L with the 

following property: 

For every ε > 0, there is a δ > 0 such that 
 

|σ − L| < ε. 

If σ is any Riemann sum of f over a partition P of R such that ∥P∥ < δ. 

In this case, we say that L is the Riemann integral of f over R, and write 

 
f (X) dX = L. 

R 
 
 

Remarks:  The integral 
∫
R  f (X)dX is also written as 

∫ 

f (x, y) d(x, y) (n = 2), 

∫ 

f (x, y, z) d(x, y, z) (n = 3), 

or 

f (x1, x2, . . . , xn) d(x1, x2, . . . , xn) (n arbitrary). 
R 

Here dX does not stand for the di erential of X. 

It merely identi es x1, x2, . . . , xn, the components of X, as the variables of 

integration. ∫ To  avoid  this  minor  inconsistency,  some  authors  write  simply R f 
 

As in the case where n = 1, we will say simply integrable or integral when 

we mean Riemann integrable or Riemann integral.  If n ≥ 2, we call the integral 

of above de nition a multiple integral ; for n = 2 and n = 3 we also call them double 

and triple integrals, respectively. When we wish to distinguish between multiple 
integrals and the integral we studied in Chapter (n = 1), we will call the latter an 

ordinary integral. 

Example:  Find 
∫
R f (x, y) d(x, y), where 

R = [a, b] × [c, d] 
 

and 

f (x, y) = x + y. 
 
 

Solution: Let P1 and P2 be partitions of [a, b] and [c, d]; thus, 

P1 : a = x0 < x1 < · · · < xr = b 

∫ 

R R 
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∑ ∑ 

∑
σ = 

∑ 

∑
+

 ∑ 

∑ ∑ 

r s 

s 

ij i 
2 2 2 

i i−1 j j−1 

 (yj − yj−1)  

 
and 

P2 : c = y0 < y1 < · · · < ys = d. 

A typical Riemann sum of f over P = P1 × P2 is given by 

r s 

σ = (ξij + ηij)(xi − xi−1)(yj − yj−1), (3.12) 
i=1 j=1 

 

where xi−1 ≤ ξij  ≤ xi and yj−1 ≤ ηij  ≤ yj . (3.13) 

The midpoints of [xi−1, xi] and [yj−1, yj ] are 

 

xi 

 
and (3.13) implies that 

= 
xi + xi−1 

2 
and yj 

=  
yj  + yj−1 

, (3.14) 
2 

 

|ξ  − x | ≤ 
xi − xi−1 

≤ 
∥P1∥ 

≤ 
∥P∥ 

 

(3.15) 

|η    − y  |   ≤ 
yj  − yj−1   

≤ 
∥P2∥ 

≤ 
∥P∥ 

. (3.16) 
ij j 

 

Now we rewrite (3.12) as 

2 2 2 

 

r 
i=1 

s 
j=1 (xi + yj )(xi − xi−1)(yj − yj−1) 

r 
i=1 

s 
j=1 

[
(ξij − xi) + (ηij − yj )

]
 

(3.17) 

(xi − xi−1)(yj − yj−1). 

To  nd 
∫

R f (x, y) d(x, y) from (3.17), we recall that 

r 

(xi − xi−1) = b − a, 
i=1 

s 

(yj − yj−1) = d − c (3.18) 
j=1 

 

and 
∑

(x2 − x2 
 

 

 
) = b2 − a2, 

∑
(y2 − y2 

 

 

 
) = d2 − c2. (3.19) 

Because of (3.15) and (3.16) the absolute value of the second sum in (3.17) does not 

exceed 

∥P∥ 
∑
 
∑

(xi − xi−1)(yj − yj−1)    =    ∥P∥ 

[
∑r

 

(xi − xi−1)

]

 
j=1 j=1 

∑s
 

i=1 
 

 
 

= ∥P∥(b − a)(d − c) 

j=1 

j=1 i=1 

r 
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r s 

∑ 

∑ 

∑ 

∑ 

− 

2 

∑ 

∑ 

=  [ xi(xi − xi−1)] 
s 
j=1 

=   (d − c) 
∑

i=1r xi(xi − xi−1) (from (3.18)) 

2 
d 

i=1 i i−1 

.σ − 
d − c 

(b2 − a2) − 
b − a 

(d2 − c2). ≤ ∥P∥(b − a)(d − c). 

 
(see (3.18)), so (3.17) implies that 

 

.σ − 
∑ ∑

(xi + yj )(xi − xi−1)(yj − yj−1). ≤ ∥P∥(b − a)(d − c). (3.20) 
. i=1 j=1 . 

 

It now follows that  

 
r s 
i=1 j=1 

 

xi(xi − x[i−1)(yj − yj−1)    ] 

 
 

= d−c 
∑r 

 
 

 

(x2 − x2    ) (from (3.14)) 

Similarly, 

= −c (b2 − a2) (from (3.19)). 

r s 

∑ ∑ 
yj (xi — xi−1 )(yj — yj−1 ) = 

b − a 
(d2 c2). 

2 
i=1 j=1 

Therefore, (3.20) can be written as 
 

. 2 2 . 
 

Since the right side can be made as small as we wish by choosing ∥P∥ su ciently 

small, 

∫ 

(x + y) d(x, y) = 
1 [

(d − c)(b2 − a2) + (b − a)(d2 − c2)
] 

. 
 
 

Theorem: 

 

Proof: We will show that if f is unbounded on R, P = {R1, R2, . . . , Rk} is any 

partition of R, and M > 0, then there are Riemann sums σ and σ′ of f over P such 
that 

|σ − σ′| ≥ M. (3.21) 

This implies that f cannot satisfy de nition of Riemann integral. (Why?) 

Let 
k 

σ = f (Xj)V (Rj) 
j=1 

be a Riemann sum of f over P. Let 
 

k 

σ = f (Xj)V (Rj) 
j=1 

 

be a Riemann sum of f over P. 

2 

(yj − yj−1) 
r 
i=1 

If f is unbounded on the nondegenerate rectangle R in Rn, then f is 

R 

not integrable on R. 

https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE


3.9.   Upper and Lower Integrals 146 
 

Join VU WhatsApp Group: 
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE 

 

i 

j 

j 

j 

∑ 

∑ 

j X, j = i. 

 

There must be an integer i in {1, 2, . . . , k} such that 

M 
|f (X) − f (Xi)| ≥ 

V (R ) 
(3.22) 

for some X in Ri, because if this were not so, we would have 

M 
|f (X) − f (Xj)| <  

V (R  ) 
, X ∈ Rj , 1 ≤ j ≤ k. 

 

If this is so, then 
 

|f (X)|   =    |f (Xj) + f (X) − f (Xj)| ≤ |f (Xj)| + |f (X) − f (Xj)| 
M 

≤ |f (Xj)| + 
V (R  ) 

, X ∈ Rj , 1 ≤ j ≤ k. 
 

However, this implies that 

M 
|f (X)| ≤ max |f (Xj)| + 

V (R  ) 
1 ≤ j ≤ k, X ∈ R, 

which contradicts the assumption that f is unbounded on R. 

Now suppose that X satis es (3.22). 

Consider the Riemann sum 

n 

σ′ = f (X′
j )V (Rj) 

j=1 
 

over the same partition P, where 

 
X′ = 

{ 
Xj,   j i, 

 

Since 
 

(3.22) implies (3.21). 

|σ − σ′| = |f (X) − f (Xi)|V (Ri), 

 

3.9 Upper and Lower Integrals 

If f is bounded on a rectangle R in Rn and P = {R1, R2, . . . , Rk} is a partition of 

R. 

Let  
Mj = sup 

X∈Rj 

 
f (X), mj = inf 

X∈Rj 

 
f (X). 

The upper sum of f over P is 
 

k 

S(P) = MjV (Rj). 
j=1 
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∫ 

∑ 

∫ 

   R 

 
The upper integral of f over  R, denoted by 

 

f (X) dX, 
R 

is the in mum of all upper sums. 
 

Upper and Lower Integrals: The lower sum of f over P is 
 

k 

s(P) = mjV (Rj). 
j=1 

 

The lower integral of f over R, denoted by 

 
f (X) dX, 

R 
 

 

is the supremum of all lower sums. 
 

Theorem: Let f be bounded on a rectangle R and let P be a partition of R. 
 

Then 
 

1. The upper sum S(P) of f over P is the supremum of the set of all Riemann 

sums of f over P. 

2. The lower sum s(P) of f over P is the in mum of the set of all Riemann sums 

of f over P. 

 
Remarks: If 

 

then 
 
 

m ≤ f (X) ≤ M for X in R, 

 
mV (R) ≤ s(P) ≤ S(P) ≤ MV (R); 

therefore, 
∫
R f (X) dX and 

∫
R f (X) dX exist, are unique, and satisfy the inequalities 

 
 

and mV (R) ≤ 

∫

 

mV (R) ≤ 

∫

 

f (X) dX ≤ MV (R) 

 
f (X) dX ≤ MV (R). 

 

 
Remarks: The upper and lower integrals are also written as 

∫

R 
f (x, y) d(x, y) and 

∫

R 
f (x, y) d(x, y) (n = 2), 

 

R 
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∫ 

∫ ∫ 

∑ ∑ 

∑ ∑ 

i=1 j=1 

i=1 j=1 

i=1 i i−1 j=1 

i=1 j=1 j j−1 

∫ 

 
 
 

 

 

f (x, y, z) d(x, y, z) and 
R R 

or 

f (x, y, z) d(x, y, z) (n = 3), 

 

 
and 

f (x1, x2, . . . , xn) d(x1, x2, . . . , xn) 
R 

∫

 R 

 

f (x1, x2, . . . , xn) d(x1, x2, . . . , xn) (n arbitrary). 

 
 

 

Example:  Find  R f (x, y) d(x, y) and   R f (x, y) d(x, y), with R = [a, b] × [c, d] and 
 

f (x, y) = x + y. 
 
 

Solution: Let P1 and P2 be partitions of [a, b] and [c, d]; thus, 

P1 : a = x0 < x1 < · · · < xr = b 

P2 : c = y0 < y1 < · · · < ys = d. 

The maximum and minimum values of f  on the rectangle [xi−1, xi] × [yj−1, yj ]  are 
xi + yj  and xi−1 + yj−1, respectively. 

Therefore, 
 

r s 

S(P)  = (xi + yj)(xi − xi−1)(yj − yj−1) (3.23) 
i=1 j=1 

r s 

s(P) = (xi−1 + yj−1)(xi − xi−1)(yj − yj−1). (3.24) 
i=1 j=1 

 

By substituting 

1 
xi + yj  =  

2 
[(xi + xi−1) + (yj + yj−1) + (xi − xi−1) + (yj − yj−1)] 

into (3.23). We nd that 
 

 
 
 

where 

1 
S(P) = 

2 
(Σ1 + Σ2 + Σ3 + Σ4), (3.25) 

Σ1 = 
∑r

 (x2 − x2 ) 
∑s 

(yj − yj−1) =    (b2 − a2)(d − c), 

Σ2 = 
∑r

 (xi − xi−1) 
∑s

 (y2 − y2 ) =    (b − a)(d2 − c2), 

Σ3 = 
∑r

 (xi − xi−1)2 ∑s
 (yj − yj−1)    ≤   ∥P∥(b − a)(d − c), 

Σ4 = 
∑r

 (xi − xi−1) 
∑s

 (yj − yj−1)2 ≤   ∥P∥(b − a)(d − c). 

∫ 
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∫ 

S(P) ≥ S(P′) ≥ S(P) − 2MV (R)   ∥P∥ (3.26) 

s(P) ≤ s(P′) ≤ s(P) + 2MV (R)   ∥P∥. (3.27) 

 
Substituting these four results into (3.25) shows that 

 

I < S(P) < I + ∥P∥(b − a)(d − c), 
 

where  

(d − c)(b2 − a2) + (b − a)(d2 − c2) 
2 

From this, we see that 
 
 
 
 

After substituting 

1 

 
 

(x + y) d(x, y) = I. 
R 

xi−1 + yj−1 =  
2 

[(xi + xi−1) + (yj + yj−1) − (xi − xi−1) − (yj − yj−1)] 

into (3.24), a similar argument shows that 
 

I − ∥P∥(b − a)(d − c) < s(P) < I. 
 

So 

(x + y) d(x, y) = I. 
   R 

 
 

Theorem:  Suppose that |f (X)| ≤ M  if X is in the rectangle 

R = [a1, b1] × [a2, b2] × · · · × [an, bn]. 
 

Let P = P1 × P2 × · · · × Pn  and P′ = P1
′  × P2

′  × · · · × Pn
′   be partitions of R, where 

Pj
′ is obtained by adding rj partition points to Pj, 1 ≤ j ≤ n. Then 

∑n
 

    rj  
 

 
  

 

and 
∑n

 

    rj  
 

 
 

 

Theorem: If f is bounded on a rectangle R, then 

∫

R 
f (X) dX ≤ 

∫

R 
f (X) dX. 

 

j — a j b 

j — a j b 
j=1 

j=1 

I = . 
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∫ ∫ ∫ 

∫

≥

 

∫ ∫ 

∫ ∫ 

 
Theorem: If f is integrable on a rectangle R, then 

 

f (X) dX = f (X) dX = f (X) dX. 
R R R 

 

 

 

Theorem: If f is bounded on a rectangle R and ε > 0, there is a δ > 0 such that 

∫ 

f (X) dX ≤ S(P) < 

∫ 

f (X) dX + ε 
 

and 
 

 
if ∥P∥ < δ. 

∫

 R 

 

f (X) dX s(P) > 
   R 

 
f (X) dX − ε 

 

Theorem: A bounded function f is integrable on a rectangle R if and only if 
 

f (X) dX = f (X) dX. 
R R 

 

 

 

Theorem: If f is bounded on a rectangle R, then f is integrable on R if and only 

if for every ε > 0 there is a partition P of R such that 

S(P) − s(P) < ε. 

 

Theorem: If f is bounded on a rectangle R and 
 

f (X) dX = f (X) dX = L, 
R R 

 

 

then f is integrable on R, and 

 

f (X) dX = L. 
R 

 
 

Theorem: If f is continuous on a rectangle R in Rn, then f is integrable on R. 

R R 

∫ 
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∪ 

∑ 

j=1 j=1 

i 

j=1 

 

3.10 Sets with Zero Content 

A subset E of Rn has zero content if for each ε > 0 there is a nite set of rectangles 

T1, T2, . . . , Tm such that 
 
 

 
and 

m 

E ⊂ Tj (3.28) 
j=1 

m 

V (Tj) < ε. (3.29) 
j=1 

 
 

Example: Since the empty set is contained in every rectangle, the empty set has 

zero content. 

If E consists of nitely many points X1, X2, . . . , Xm, then Xj can be enclosed 

in a rectangle Tj such that 

ε 
V (Tj) < 

m
, 1 ≤ j ≤ m. 

Then E ⊂ 
∪m     Tj and 

∑m     V (Tj) < ε hold, so E has zero content. 
 

Example: Any bounded set E with only nitely many limit points has zero content. 

To see this, we rst observe that if E has no limit points, then it must be nite, 

by the Bolzano Weierstrass theorem, and therefore must have zero content. 

Now suppose that the limit points of E are X1, X2, . . . , Xm. Let R1, R2, . . . , 

Rm be rectangles such that Xi ∈ R0 and 

ε 
V (Ri) < 

2m
, 1 ≤ i ≤ m. (3.30) 

The set of points of E that are not in ∪m   Rj has no limit points (why?) and, being 
bounded, must be nite (again by the Bolzano Weierstrass theorem). 

If  this  set  contains  p  points,  then  it  can  be  covered  by  rectangles  R1
′ ,  R2

′ ,  . . . , 
Rp

′ with 
V (R′ ) < 

 ε 
, 1 ≤ j ≤ p. (3.31) 

 
Now, 

j 
 

(
∪m

 

2p 

) 
∪ 

 
∪p 

 

 

 
From (3.30) and (3.31), 

E ⊂ Ri 
i=1 j=1 

Rj
′  

 

m p 

∑ 
V (Ri) + 

∑ 
V (Rj

′ ) < ε. 
  j=1 i=1 
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{ 

{ 

∫ 

∫ 

S 

 
Example: If f is continuous on [a, b], then the curve 

y = f (x), a ≤ x ≤ b (3.32) 

(that is, the set {(x, y) : y = f (x), a ≤ x ≤ b}), has zero content in R2. 

Lemma: The union of nitely many sets with zero content has zero content. 

Theorem: Suppose that f is bounded on a rectangle 

R = [a1, b1] × [a2, b2] × · · · × [an, bn] (3.33) 

and continuous except on a subset E of R with zero content. Then f is integrable 

on R. 

Example: The function 

f (x, y) = 
x + y,   0 ≤ x < y ≤ 1, 

5, 0 ≤ y ≤ x ≤ 1, 

is continuous on R = [0, 1] × [0, 1] except on the line segment 

y = x, 0 ≤ x ≤ 1 

Since the line segment has zero content, f is integrable on R. 

 
3.11 Integral Over Bounded Set 

Suppose that f is bounded on a bounded subset of S of Rn. Let 

f (X) = 
f (X),   X ∈ S, 

0, X ̸∈ S. 

 
(3.34) 

Let R be a rectangle containing S. Then the integral of f over S is de ned to be 

if 
∫
R fS(X) dX exists. 

∫ 

f (X) dX = 

∫

 
  

 

fS(X) dX 

Area and volume as integrals: If S is a bounded subset of Rn and the integral 

S dX (with integrand f ≡ 1) exists. 

We call S dX the content (also, area if n = 2 or volume if n = 3) of S, and 

denote it by V (S). 
 

Thus,  

V (S) = 
S 

 

dX. 

 

Theorem: Suppose that f is bounded on a bounded set S and continuous except 

on a subset E of S with zero content. 

Suppose also that ∂S has zero content. Then f is integrable on S. 

R S 

∫ 
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[ ] 

 

 

3.12 Di erentiable Surfaces 

A di erentiable surface S in Rn (n > 1) is the image of a compact subset D of Rm, 

where m < n, under a continuously di erentiable transformation G : Rm → Rn. If 
m = 1, S is also called a di erentiable curve. 

 

Example: The circle 
 

is a di erentiable curve in R2. 

{(x, y) : x 

 
+ y2 = 9} 

Since it is the image of D = [0, 2π] under the continuously di erentiable trans- 

formation G : R → R2 de ned by 

X = G(θ) = 
3 cos θ 

. 
3 sin θ 

 

 

Example: The sphere 

{(x, y, z) : x 

 
+ y2 

 
+ z2 = 4} 

is a di erentiable surface in R3. 

Since it is the image of 

D = {(θ, ϕ) : 0 ≤ θ ≤ 2π, −π/2 ≤ ϕ ≤ π/2} 

under the continuously di erentiable transformation G : R2 → R3 de ned by 
 

2 cos θ cos ϕ  

X = G(θ, ϕ) =  2 sin θ cos ϕ . 

2 sin ϕ 

Theorem: A di erentiable surface in Rn has zero content. 

Let S, D, and G be as in De nition ??. From Lemma ??, there is a constant 

M such that 

|G(X) − G(Y)| ≤ M |X − Y| if X, Y ∈ D. (3.35) 

Since D is bounded, D is contained in a cube 

C = [a1, b1] × [a2, b2] × · · · × [am, bm], 
 

where 

bi − ai = L, 1 ≤ i ≤ m. 

Suppose that we partition C into Nm smaller cubes by partitioning each of the 

intervals [ai, bi] into N  equal subintervals.  Let R1, R2, . . . , Rk  be the smaller cubes 

so produced that contain points of D, and select points X1, X2, . . . , Xk such that 

Xi ∈ D ∩ Ri, 1 ≤ i ≤ k. If Y ∈ D ∩ Ri, then (3.35) implies that 

|G(Xi) − G(Y)| ≤ M |Xi − Y|. (3.36) 

2 

2 
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˜
i i 

k 

N 
m) N . 

∫ ∫ ∫ 

( ) 

 
Since Xi and Y are both in the cube Ri with edge length L/N , 

L
√

m 

 
 

This and (3.36) imply that 

|Xi − Y| ≤ . 
N 

 

ML
√

m 
|G(Xi) − G(Y)| ≤ 

N 
, 

which in turn implies that G(Y) lies in a cube R in Rn centered at G(X ), with 

sides of length 2ML
√

m/N . Now 

∑

i=1 

V (R̃i) = k 
2ML

√
m  n 

≤ N 

( 
2ML

√
m 
)n

 
 

 

 

 

 
= (2ML 

√    
n m−n 

Since n > m, we can make the sum on the left arbitrarily small by taking N 

su ciently large. Therefore, S has zero content. 
 

Theorem: Suppose that S is a bounded set in Rn, with boundary consisting of a 

 nite number of di erentiable surfaces. 

Let f be bounded on S and continuous except on a set of zero content. Then f 

is integrable on S. 
 

Example: Let 

S = {(x, y) : x2 + y2 = 1,  x ≥ 0}. 

The set S is bounded by a semicircle and a line segment, both di erentiable curves 

in R2. 
Let 

f (x, y) = 
(1 − x2 − y2)1/2,    (x, y) ∈ S,  y ≥ 0, 

−(1 − x2 − y2)1/2,   (x, y) ∈ S,  y < 0. 

Then f is continuous on S except on the line segment 

y = 0, 0 ≤ x < 1, 
 

which has zero content. 

Hence, from the theorem we just stated implies that f is integrable on S. 
 

Theorem: If f and g are integrable on S, then so is f + g, and 

 
(f + g)(X) dX = f (X) dX + g(X) dX. 

S S S 

 
 

Theorem: If f is integrable on S and c is a constant, then cf is integrable on S, 
and 

∫ 

(cf )(X) dX = c 

∫ 

f (X) dX. 

N 
m 

{ 

S S 
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∫ ∫ 

 
 

 

Theorem: If f and g are integrable on S and f (X) ≤ g(X) for X in S, then 

∫ 

f (X) dX ≤ 

∫ 

g(X) dX. 
 

 

Theorem:  If f  is integrable on S, then so is |f |, and 

f (X) dX  ≤ 

∫ 

|f (X)| dX. 

.

∫

S 
. 

 

Theorem: If f and g are integrable on S, then so is the product fg. 
 

Theorem: Suppose that u is continuous and v is integrable and nonnegative on a 

rectangle R. 
Then 

 
 

for some X0 in R. 

∫ 

u(X)v(X) dX = u(X0) 

∫

 
  

 

v(X) dX 

 

Theorem: Suppose that S is contained in a bounded set T and f is integrable on 

S. 

Then fS is integrable on T, and 

 
fS(X) dX = f (X) dX. 

T S 

 
 

Theorem: If f is integrable on disjoint sets S1 and S2, then f is integrable on 

S1 ∪ S2, and ∫  
 
S1∪S2 

 
f (X) dX = 

∫

S1

  
f (X) dX + 

∫

S2

  
f (X) dX. (3.37) 

 

Theorem: Suppose that f is integrable on sets S1 and S2 such that S1 ∩ S2 has 

zero content. Then f is integrable on S1 ∪ S2, and 
∫

S1 ∪S2 

 

f (X) dX = 
S1 

 

f (X) dX + 
S2 

 

f (X) dX. 

 
 

Example: Let  
S1 =    {(x, y) : 0 ≤ x ≤ 1,  0 ≤ y ≤ 1 + x} 

S2 = {(x, y) : −1 ≤ x ≤ 0, 0 ≤ y ≤ 1 − x} 

R R 

S S 

S 

∫ ∫ 
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∫ 

∫ 

∫ 

 

y 

 

 

 

 

 

 

 

 

 
x 

 

 

Figure 3.4: S1 and S2 

 
Then 

 
 

has zero content. 

S1 ∩ S2 = {(0, y) : 0 ≤ y ≤ 1} 

Hence, by using corollary implies that if f is integrable on S1 and S2, then f is 

also integrable over 

S = S1 ∪ S2 = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 1 + |x|} 
 

and ∫

S1 ∪S2 

 
f (X) dX = 

S1 

 
f (X) dX + 

S2 

 
f (X) dX. 

 

3.13 Iterated Integrals 

Let us rst assume that f is continuous on R = [a, b] × [c, d]. 
Then, for each y in [c, d], f (x, y) is continuous with respect to x on [a, b], so the 

integral 

 

 
exists. 

F (y) = 
b 

f (x, y) dx 
a 

Moreover, the uniform continuity of f on R implies that F is continuous and 

therefore integrable on [c, d]. 
We say that 

 
I1 = 

d 

F (y) dy = 

∫ d (∫ b 
f (x, y) dx

) 

dy 
c c a 

is an iterated integral of f over R. 
 

Iterated integrals: We will usually write it as 
 

 

I1 = 
d b 

dy f (x, y) dx. 
c a 

y  1  x y  1  x 

S 

1 1 

∫ 

∫ ∫ 
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∫ 

∫ 

∫ d 

(x + y) dx = 

dx = + 
2 

∫ b 

∫ 

+ 

∫ 

. 

 
Another iterated integral can be de ned by writing 

 
 
 

De ning 

G(x) = f (x, y) dy, a ≤ x ≤ b, 
 

b 

I2 = G(x) dx = 

∫ b (∫ d 
f (x, y) dy

)

 
 

dx, 
a 

which we usually write as 
 
 

 
I2 = 

a c 
 
 

b d 

dx f (x, y) dy. 
a c 

 

 

Example: Let 
 

and R = [0, 1] × [1, 2]. Then 

∫ 1 
 

 
 

 
f (x, y) = x + y 

 

∫ 1 
1

 
 

  

I1 = 
2 

F (y) dy = ∫ 2 ( 
1

 + y

)

 dy = 

( 
y

 
y2 ) 

.
2 = 2. 

 

Also, 

 
 
 

 
G(x)  = 

1 
 
 

 
2 
(x + y) dy = 

1 2 

 

(

xy + y2 ) 
.

2 

 
 

2 2 .
1 

3 = x + , 
1 

∫ 1 ∫ 1 ( 
 

  
  

2 y=1 

3 
) ( 

x2 

 
 

2 

3x 
) 
.1

 
 

 

 

 

Theorem: Suppose that f is integrable on R = [a, b] × [c, d] and 

 
 
 

exists for each y in [c, d]. 

F (y) = f (x, y) dx 
a 

Then F is integrable on [c, d], and 

d 

F (y) dy = 
c 

 

 
f (x, y) d(x, y); (3.38) 

R 

that is, 
 
 

d b 

dy f (x, y) dx = 
c a 

 
 

f (x, y) d(x, y). (3.39) 
R 

2 0 0 
G(x) dx = I2 = 

2 0 0 
F (y)   = 

c 

∫ 

∫ 

∫ 

f (x, y) dx = + y 

x + 
2 .0 

= 2. 

∫ 

∫ 

∫ 
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∫ ∫ ∫ ∫ 

∫ ∫ 

. 

∫ ∫ 

{ 

c a 

+ y 
2 

.1 

c a R 

∫ ( ) 

 

Theorem: If f is integrable on [a, b] × [c, d], then 
 

b d 

dx f (x, y) dy = 
a c 

 

d b 

dy f (x, y) dx, 
c a 

provided that 
∫ d 

f (x, y) dy exists for a ≤ x ≤ b and 
∫ b 

f (x, y) dx exists for c ≤ y ≤ d. 

In particular, these hypotheses hold if f is continuous on [a, b] × [c, d]. 

Example: The function 

f (x, y) = x + y 

is continuous everywhere. 

For example, let R = [0, 1] × [1, 2]. 
Then we have 

 
(x + y) d(x, y)   = 

R 

2 1 

dy (x + y) dx 
1 0 

∫ 2 [( 
x2  

+ xy 
) 
.

1 
] 

dy 

1 2 
∫ 2 ( 

1 
) 

 

 

x=0 

( 
y

 
y2 ) .2 

 

 
 

 

Since f also satis es the hypotheses of Fubini's Theorem with x and y interchanged, 

we can calculate the double integral from the iterated integral in which the integra- 

tions are performed in the opposite order. 

Thus, 
 

 

(x + y) d(x, y)   = 
R 

1 2 

dx (x + y) dy 
0 1 

∫ 1 [( 
 

 

 
xy + y2 ) 

.
2 

 
 

] 

dx 

0 2 .
y=1       

 
1 3 

x + 
dx = 

( 
x2 

3x 
) 
.

1
 = 2. 

0 2 2 2 .0 

 

Remark: If 
∫ d dy 

∫ b f (x, y) dx exists then so does 
∫ 

f (x, y) d(x, y). However, this 

need not to be true. 
 

Example: If f is de ned on R = [0, 1] × [0, 1] by 

f (x, y) = 
2xy if y is rational, 

y if y is irrational, 
 

then  
1 

f (x, y) dx = y, 0 ≤ y ≤ 1, 
 0 

= 

2 

∫ 

= dy = + 
2 

= 2. 

∫ 

= 

∫ 

= + 

1 
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∫ ∫ 

∫ 

∫ ∫ 

 
and  

1 1 

dy f (x, y) dx = 
0 0 

 
1 1 

y dy = . 
0 2 

However, f is not integrable on R. 

 
Theorem: Let I1, I2, . . . , In be closed intervals and suppose that f is integrable 

on R = I1 × I2 × · · · × In. 

Suppose that there is an integer p in {1, 2, . . . , n − 1} such that 

Fp(xp+1, xp+2, . . . , xn) = 

∫

 
 

I1×I2×···×Ip 

 
f (x1, x2, . . . , xn) d(x1, x2, . . . , xp) 

 

exists for each (xp+1, xp+2, . . . , xn) in Ip+1 × Ip+2 × · · · × In. 

Then 
∫

Ip+1×Ip+2×···×In 

 
Fp(xp+1, xp+2, . . . , xn) d(xp+1, xp+2, . . . , xn) 

exists and equals 
∫
R f (X) dX. 

Theorem:   Let  Ij   =  [aj , bj ],  1  ≤  j   ≤  n,  and  suppose  that  f   is  integrable  on 

R = I1 × I2 × · · · × In. 
Suppose also that the integrals 

 

Fp(xp+1, . . . , xn) = f (X) d(x1, x2, . . . , xp), 1 ≤ p ≤ n − 1, 
I1×I2···×Ip 

exist for all 

(xp+1, . . . , xn) in Ip+1 × · · · × In. 

Then the iterated integral 
 

bn 

dxn 
an 

bn−1 

 
an−1 

dxn−1 · · · 

b2 

dx2 
a2 

b1 

f (X) dx1 
a1 

exists and equals 
∫
R f (X) dX. 

∫ 

∫ ∫ 
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