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Course Information
Title and Course Code: Real Analysis IT (MTH631)
Number of Credit Hours: 3 credits

Course Objective: Real Analysis II is the follow up course of Real Analysis I and in
general an advanced course related to mathematical analysis. The topics of the Real
Analysis II are linked with its rst course namely Real Analysis I, indeed, we will
extend the ideas of Real Analysis I to Euclidean space R", we will discuss sequences
and series of functions, limits and continuity of functions of several variables, partial
derivatives their applications, multiple integrals etc. Upon completion of this course
students will be able to

+ Understand the convergence of sequence of functions (LO1).

+ Understand the pointwise convergence, uniform convergence, several tests for
convergence (LO2).

+ Apply the interchange of limit and integration, derivative of sequence of func-
tions (LO3).

+ Understand the in nite series of functions, convergence, Weierstrass's test and
some other results about the convergence (1.O4).

+ Apply Dirichlet's test for uniform convergence, series of product of two func-
tions, interchange of sum and intgeration (LO5).

+ Represent and study the function which could be written as power series,term
by term integral and derivative of a power series, (LO6). item Understand the
concept of equicontinuous function, The Stone-Weierstrass Theorem (LO7).

+ Understand and nd the Fourier series, Fourier coe cients, convergence of
Fourier series (LOS8).

+ Apply the best approximation theorem and understand the Euler gamma func-
tion and the beta function and their properties (LO9)

+ Understand the functions of several variables, Heine-Borel Theorem, limits
and continuity of functions of several variables (L.O10)

+ Vector valued functions and their calculus, Bounded functions and several
results about vector valued functions (LO11)

- Di erentiablity in R”, Di erentials, Directional derivatives, Partial deriva-
tives, Maxima and minima (LO12)

+ Improper integrals, Multiple integrals, Functions of bounded variation (LO15)
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Prerequisites: Real Analysis I (MTH621)
The textbooks for this course:

[1] W. Rudin, Principles of Mathematical Analysis, Third Edition, McGraw-Hill,
1976. ISBN: 9780070542358.

[2] W. F. Trench, Introduction to Real Analysis, Pearson Education, 2013.
[3] S. Ponnusamy, Foundations of Mathematical Analysis, Birkhauser, 2012.
Reference books:

[4] A.N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Revised English
Edition Translated and Edited by R. A. Silverman, Dover Publication, Inc. New
York.

[5] R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, Third Edition,
2000, John Wiley & Sons Inc.

+ Sequences and Series of functions
- Functions of several variables
- Vector valued functions

.+ Integral Calculus
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Chapter 1

Sequences and Series of Functions

1.1 Informal way

It F, Fis, ..., Fn,... are real-valued tunctions de ned on a subset D of the real

numbers, we say that {F,} is an in nite sequence or (simply a sequence) of functions
on D. For each xo € D, we have a sequence ot real numbers and we can talk about

the convergence of that sequence ot real numbers

If the sequence of values {F,(x)} converges for each x in some subset S of D, then
{F,} de nes a limit function on S.

Example: The functions

Foge " o 1,

n n+x

de ne a sequence on D = [0, o).

0.3

0.1]

I b T

Figure 1.1: Plot of Fo(x) = —, , n=>1 forn=1,248100

X

Example: The functions

(x )
F (x) = ;o on_ 1,
n n+x =
de ne a sequence on D = [0, o).
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1.2. Pointwise Convergence 3

e ,/f”!:.- /s
i
Ol 2 4 6 & 10 T

C )
Figure 1.2: Plot of Fi(x) = %% , n =1, forn=1,24,8, 20,100

Example: The functions

Fa(x)= 1-—
de ne a sequence on D = (—oo, 1].

1.2 Pointwise Convergence

Suppose that {F,} is a sequence of functions on D and the sequence of values
{F.(x)} converges for each x in some subset S of D. Then we say that {F,}

converges pointwise on S to the limit function F, de ned by

F(x)= lim Fn(x), x€&S.
n— oo

Example: The sequence of functions de ned by

00, X<
1

7

0,
Im F,(x) = 0
n—oo . &
X =<

O X X
Al

0, 1.
Therefore, {F,} converg®s Pointwise ons = [g, 1] to the limit function £ de ned by

1, x=0,

F(x) =
() 0, O<x=<1.

Example: Consider the functions

Fn(x) = x"e™, x>0 n=>1.
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1.2. Pointwise Convergence 4

Equating the derivative
Fp(x) = nx"=1e="%(1 - x)

to zero shows that the maximum value of F,(x) on [0, o) is e-", attained at x = 1.
Therefore,

|Fa(x)| < e, x=0,

SO limyso Fa(x) = 0 for all x > 0. The limit function in this case is identically zero
on [0, o).

Example: For n > 1, let F, be de ned on (—oo, ) by

0, X< —n,
&
! 2 1
o —n(2 + nx), — S =x<—-
o, 1 7
Fn(x) = n’x T SXxs 7,
s n(2— nx), nSXx<Z
2
0, X2 5

) 0, then F.(x) = 0 if
Since F,(0) = 0 for all n, lim,-w Fa(0) = 0. If x

n = 2/|x|. Therefore,

llm FH(X)=0/ — 00 <X < X,

n— oo
so the limit function is identically zero on (— oo, ).

Example: Show that the sequence of functions

Fooe 22— . 4

>
n n+x -
de ne a sequence on D = [0, o), converges to 0.

Example: For each positive integer n, let S, be the set of numbers of the form
x = p/q, where p and g are integers with no common factors and 1 < g < n.
De ne (

F (x) = 1, x€8,
n 0, X/€ Sn
If x is irrational, then ¥ € S, for any n, so Fa(x) =0, n > 1. If x is rational, then
x € S, and Fy(x) = 1 for all su ciently large n.
Therefore,
im F (x) = F(x) = 1 '1f x.ls.ratl(?nal,
n—oco N 0 if x is irrational.
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1.3. Norm De ned Over a Set 5

1.3 Norm De ned Over a Set
Let us introduce the notation

llglls = sup |g(x)].
XES

Lemma: If g and h are de ned on S, then

IA

lglls +1lAlls
lgllsllhlls.

llg +hlls
llghlls

IA

Moreover, if either g or h is bounded on S, then

lg = hlls = lllglls = lIAllsI-

1.4 Uniform Convergence

A sequence {F,} of functions de ned on a set S converges uniformly to the limit
function F on S if

im ||F, = Flls =0
n—>oo
Thus, {F,} converges uniformly to F on S if for each £ > 0 there is an integer N
such that
|Fr — Flls<e if n>=N. (1.1)

o f———
ol-———

Figure 1.3: Uniform convergence graphically

A sequence {F,} of functions de ned on a set S converges uniformly to the limit
function F on S if

im J1F, = Flls =0,
n— oo
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1.4. Uniform Convergence 6

Thus, {F,} converges uniformly to F on S if for each £ > 0 there is an integer N
such that

|Fo — Flls<e if n=N. (1.2)
If S = [a, b] and F is the function with graph shown in then (1.2) implies that the
graph of

lies 1 the shaded band

F(x) —e<y<F(x)+g, a<x=<b, n=N

Example: The sequence {F,} de ned by
Fn(x) = x"e="%, n>=1,

converges uniformly to F = 0.
We have

|Fn — Flls = | Falls = ",

SO
|Fn — Flls <&

if n > — log e. For these values of n, the graph of
y=Ff7(X)/ OSX<OO/

lies in the strip
—e<y=<eg x=0

Theorem: Let {F,} be de ned on S. Then

1. {F,} converges pointwise to F on S if and only if there is, for each £ > 0 and
x € S, an integer N (which may depend on x as well as ¢) such that

|Fo(x) — F(x)| <& if n > N(g x).

2. {F,} converges uniformly to F on S if and only if there is for each € >0 an
integer N (which depends only on € and not on any particular x in S) such
that

|Fo(x) — F(x)| <& forall xin§ if n = N(e).

Theorem: If{F,} converges uniformly to F on S, then {F,} converges pointwise
to F on S.

The converse is false; that is, pointwise convergence does not imply uniform conver-
gence.
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1.4. Uniform Convergence 7

Counter example: For n > 1, let F, be de ned on (—oo, ) by

¥ 0, x<—§,
g —n(2+nx), —Z<x<-1
Fn(x)= n’x, “lox<?i
n n
v n(2—nx), L<x< ’%,
‘ 0, XZ’%

Thesggnence {F:} of converges pointwise to F = 0 on (-0, ), but not uniformly.

¢ C
1 -1
|| Fn —FH(—oo,oo) = Fn ; = Fn =n,
SO ||FH_F||(_°°;°°)=OO'
lim
n—oo

Counter example: For n > 1, let F, be de ned on (—o0, ) by

0, x< —h,
0%1
g —n+nx), —2<x<-}
_ 2 21 1
Fn(x) = n°x, TOSXs o,
v n(2— nx), nSXx<2,
! 2
0, X =g

However, the convergence is uniform on

SP = (_oo/p] V) [p/ OO)

for any p >0, since 5

||Fn_F||Sﬂ=O if n>—.
p

How to show that a sequence of functions is not uniformly convergent?
Suppose that a sequence of function F, is point wise convergent on the set S.
Then the convergence of F, is not uniform, if there exists an € > 0 such that to

each integer N there correspond and integer n > N and a point x, € S for which
we have

| Fo(xn) — F(xn)| = €.

Example: If F,(x) = x”, n > 1, then {F,} converges pointwise on S = [0, 1] to

F(x) = 1, x=1,
0, 0<x<1.
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1.5. Cauchy's Uniform Convergence Criterion 8

The convergence is not uniform on S. To see this, suppose that 0 < £ < 1. Then

IFalx) — F(X)| >1—¢ if (1—&)Y" <x<1.

Therefore,
1—e<||F,—F|ls<1

for all n > 1. Since ¢ can be arbitrarily small, it follows that
IFo —Flls=1  forall p>1q
Example: If F,(x) = x", n = 1, then {F,} converges pointwise on S = [0, 1] to

1, x=1,

F(x) =
(x) 0, 0<x<1

However, the convergence is uniform on [0, p] if 0 < p < 1, since then
1Fn = Flloe =p"
and lim,-« p" = 0. Another way to say the same thing: {F,} converges uniformly

on every closed subset of [0, 1).

1.5 Cauchy's Uniform Convergence Criterion

Theorem: A sequence of functions {F,} converges uniformly on a set S if and
only if for each € > 0 there is an integer N such that

[|Frn — Fmlls<e if nm=>= N. (1.3)

Proof: For necessity, suppose that {F,} converges uniformly to Fon S.
Then, if € > 0, there is an integer N such that

£
IFe—Flls < 5 if k=N,
Therefore,
|Fn — Fmlls = [[(Fa — F)+(F — Fm)lls
= ”Fn_F”S"'”F_Fm”S
£ €
< —+-—=¢ if mn=N.

2 2

For su ciency, we rst observe that (1.17) implies that

|Fo(x) — Fm(x)| <€ if nm=>=N,

for any xed x in S.
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1.5. Cauchy's Uniform Convergence Criterion 9

Therefore, Cauchy's convergence criterion for sequences of constants implies that

{Fn(x)} converges for each x in S; that is, {F,} converges pointwise to a limit
function F on S.

To see that the convergence is uniform, we write

|Fmn(x) — F(x)| = [[Fm(x) — Fa(x)] + [Fa(x) — F(x)]l
< [Fm(x) = Falx)| + [Fa(x) — F(x)]
< ||Fm — Falls + [Fa(x) — F(x)].
This and (1.17) imply that
|Fm(x) — F(x)| <€+ |Fa(x) — F(x)| 1if n,m= N. (1.4)

Since limysw Fa(x) = F(x),
|Fa(x) — FX)| <&
for some n > N, so (1.4) implies that
|Fn(x) — F(x)] <2 if m=N.
But this inequality holds for all xin S, so
|Fn — Flls <2 if m=>=N.

Since ¢ is an arbitrary positive number, this implies that {F,} converges uniformly
to F on S.

Example: Suppose that g is di erentiable on S = (— o0, ) and
lgx)] <=r<1, —o0 <x< o, (1.5)
Let Fo be bounded on S and de ne
Fn(x) = g(Fn-1(x)), n=1 (1.6)
Show that {F,} converges uniformly on S.

Solution: We rst note that if v and v are any two real numbers, then (1.5) and
the mean value theorem imply that

9(u) = gW)| < rlu—vl. (1.7)

Recalling (1.6) and applying this inequality with v = F,_1(x) and v = 0 shows that

|Fa(x)] = 1g(0) + (g(Fn-1(x)) — g(0))|
< 1g(0) + lg(Fn-1(x)) — g(0)|
< [g(O) + rlFn-1(x)I.
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1.6. Properties Preserved by Uniform Convergence 10

Therefore, since F, is bounded on S, it follows by induction that F, is bounded on
S for n > 1.

Moreover, if n > 1, then (1.6) and (1.7) with u = F,(x) and v = F,-1(x) imply
that

|Fr+1(x) — Fn(x)|

[9(Fn(x)) = g(Fn-1(x))I
rlFa(x) = Fr-i(x)|, —00 <x < oo,

IA

so
||Fn+1 - Fn”S b r”Fn - Fn—1||S~
By induction, this implies that

| Frva — Falls < r"lIFa — Folls. (1.8)

If n > m, then

||Fn_Fm||5 ||(Fn_Fn—1)+(Fn—1_Fn—2)+"'
+(Fm+1 - Fm)“S
|Fo — Fo-alls + | Fo-a — Foalls + -« -

+||Fm+1 - Fm”S.

IA

Now (1.8) implies that

|Fn — Fmlls < lFr— Folls(l+r+r+ -+« +-m-1)pm

rm

< |IFi — Folls ——

IF: = Folls 7—
rN

Therefore, if  [|F, — Fo||sﬁ <g

then ||F, — Fnlls<eifn, m = N.

1.6 Properties Preserved by Uniform Convergence

1.6.1 Continuity of the Limit Function at a Point

Theorem: If {F,} converges uniformly to F on S and each F, is continuous at a
point x, in S, then so is F. Similar statements hold for continuity from the right
and lett.

Proof: Suppose that each F, is continuous at x,. If x € S and n > 1, then

[F(x) — Fixo)| =< [F(x) = Falx)| + |Falx) — Fa(x0)| + |Fn(xo) — F(xo)|
=< |Falx) — Falxo)| + 2|IFn — Fl|s.
(1.9)
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1.6. Properties Preserved by Uniform Convergence 11

Suppose that € > 0. Since {F,} converges uniformly to F on S, we can choose n so
that ||F, — F||s < €. For this xed n, (1.9) implies that

|F(x) — F(xo)| < |Fn(x) — Fa(x0)| +2¢, x€S. (1.10)

Since F, is continuous at xo, there is a § > 0 such that

|Fa(x) — Fa(xo)| <€ if |x— x| <6.
So, from (1.10),
|F(x) — F(xo)| <3¢, if |x— xo| <.

Therefore, F is continuous at xo.

Similar arguments apply to the assertions on continuity from the right
and left.

Corollary: If {F,} converges uniformly to Fon S and each F, is continuous on S,
then so is F; that is, a uniform limit of continuous functions is continuous.

Proof: See video lectures.

Remark: If {F,} converges uniformly to F on S. Is the following

f b f b
F(x)dx = lim Fn(x) dx,

a a
is true?
Iy . Iy .
Example: " F(x)dx =limmse  Falx) dx, is not true generally.

Consider the sequence of functions de ned on S = [0, 1]

0 x=0

Fo(x)= n 0=<x<

S =

7

0, I<x<l
n

Then the sequence {F,} converges pointwise to F(x)=0 on [0,1] and it is not
uniformly convergent. We have

I I a/m ' '
Fn(x)dx = ndx + Odx=1 But F(x)dx=0
0 0 1/n 0
[ I
lim Fn(x)dx =1

m
g h—° n—oo

Fn(x) dx,

a
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1.6.2 Interchange of Limit and Integration

Theorem: Suppose that {F,} converges uniformly to F on S = [a, b]. Assume that
F and all F, are integrable on [a, b].

‘'hen ' n [ n
F(x)dx = lim Fn(x) dx. (1.11)
a e
Proof: Consider [ I,
Fn(x) dx — F(x) dx
a a '
[ b ['p [ b
Fn(x) dx — F(x)dx < | Fa(x) — F(x)| dx
a a a

< (b—a)llFa —Flls
and limy—w ||Fn — F||s =0, the conclusion follows.

Remark: Recall the theorem we have just proved; i.e.,

Theorem: Suppose that {F,} converges uniformly to F on S = [g, b]. Assume that
F and all F, are integrable on [g, b].
‘Then [ [ ,
b

F(x)dx = lim Fn(x) dx.

a n—oo

The hypotheses of Theorem are stronger than necessary.

Theorem: Suppose that {F,} converges pointwise to F and each F, is integrable
on [a, b].

1. If the convergence is uniform, then F is integrable on [g, b] and

[p [p
F(x)dx = lim Fn(x) dx.

—> 00
a n a

holds.

2. If the sequence {||F:||s} is bounded and F is integrable on [q, b], then
[ [
F(x)dx = lim Fn(x) dx.

—> 00
a n a

holds.
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Remark: Part (1) of this theorem shows that it is not necessary to assume that F
is integrable on [a, b], since this follows from the uniform convergence. Part (2) is
known as the bounded convergence theorem. Neither of the assumptions of (2) can
be omitted.

Example (Unbounded sequence of functions): For n > 1, let F, be de ned
on (—oo, ) by

0, x< —i,
2 1
n n
n
—n(2+nx), — . <x<-—,
— 2 1
Fn(x) = w A nx), ;rssx%%,g
n n
2
n

0, X =
{||Fall 1017} is unbounded while Fis integrable on [0, 1],

[ 1 [ 1
Fr(x)dx=1, n>1, but F(x)dx=0.
0 0

Example (Bounded sequence of functions but limit is not integrable): For
each positive integer n, let S, be the set of numbers of the form x = p/q, where p

and g are integers with no common factors and 1 < g < n.
De ne {

Fn (x) = 1, x€8,

0, x/€ Sn
If x is irrational, then ¥ € S, for any n, so Fa(x) =0, n > 1. If x is rational, then
x € S, and Fn(x) = 1 for all su ciently large n. Therefore,
{ e
im F (x) = F(x) = 1 '1f x'1s'rat1c.)nal,
n—co N 0 if x is irrational.

In this example it is clear that ||F,||;ss = 1 for every nite interval [a, b], F, is
integrable for all n > 1, and F is nonintegrable on every interval.

Example: The sequence {F.,} de ned by

— n H
F,(x) = x" sin o

The sequence of functions converges {F.} converges uniformly to F = 0 on [ry, ]
if 0 < ri1 <r> <1 (or, equivalently, on every compact subset of (0, 1)).

However, 1 1
F'(x)=nx"-'sin—  —(n—1)cos — ,
n xn—1 xn—1

so {F,(x)} does not converge for any x in (0, 1).
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1.6.3 Under What Conditions We May Have F' = lim,-e F,,

Theorem: Suppose that F,, is continuous on [a, b] for all n > 1 and {F,} converges
uniformly on [, b]. Suppose also that {F.(xo)} converges for some x, in [a, b].

Then {F.} converges uniformly on [g, b] to a di erentiable limit function F, and

F'(x) = lim F(x), a<x<b (1.12)
while , , )

F.(a)= lim F,(a+) and F' (b)= lim F,(b—). (1.13)
Proof: Since F,, is continuous on [a, b], due to fundamental theorem of calculus, we

can write [

X 7
Fn(x) = Fn(xo0) + Fo(t)dt, a<x<b. (1.14)
Xo
Let L= lim Fn(xo), G(x) = lim Fr',(x), (1.15)
n—oo n—oo

Since F,, is continuous and {F,,} converges uniformly to G on [q, b], G is contin-
uous on [a, b].

f
Therefore, (1.14) and using the fact we have proved :F (x)dx =
limnow & Fa(x) dx (with F and F, replaced by G and Fn) imply that {F,} con-
verges pointwise on [g, b] to the limit function
I x
F(x)=L+ G(t) dt.

Xo

I
F(x)=L+ G(t) dt. (1.16)

Xo

The convergence is actually uniform on [g, b], since subtracting (1.14) from (1.16)
yields
f X
F) = Fal)|l < IL = Falxo)l + - [G(t) — Fyt)| dt -

Xo

A

L — Fr(xo)| + [x — %ol |G = Fplliapr-

IA

Consequently,

IF = Fnllae < [L = Fn(xo)| + (b — a)llG — Fpllian),

where the right side approaches zero as n — co.
Since G is continuous on [q, b], (1.15), (1.16), De nition ??, and Theorem ??
imply (1.12) and (1.13).
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1.7. Series of Functions 15

1.7 Series of Functions

If {f;}&° is a sequence of real-valued functions de ned on a set D of real numbers,
then 72, f; is an in nite series (or simply 2 series) of functions on D.

b
The partial sums of, 72, f; are de ned by

n

Fn= fj, n = k.
j=k

If {F,}& converges pointwise to a function F on a subset S of D, we say that
;';kfj converges pointwise to the sum F on S, and write

F= fi xe&€Ss.
j=k
) 2o i
If {Fn} converges uniformly to F on S, we say that ;2 f7 converges uniformly

to F on S.

1.8 Convergence of Series of Functions

o . . Dy o . .
The in nite series of functions /2, f; on D is said to be uniformly convergent if
the sequence of partial sum {F,} de ned by

n
F, = fi n=k
j=k

converges uniformly to F(x) on D.
Example: For the functions
filx)=x, j=0,

de ne the in nite series of functions

by

X

j=0

on D = (—o0, ).

Pointwise convergence: The nth partial sum of the series is

Fax) =1+x+x2+ - +x",
or, in closed form, { -
1= x 1,
Fn(X) — 1-x

n+1, x = 1.
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1.8. Convergence of Series of Functions 16

We have seen earlier that {F,} converges pointwise to

1
F(x) =
1—x
if |x| < 1 and diverges if |x| > 1.
Hence, we write
b» 1
X =7, —1<x<l.
_ 1—x
j=0
Since the di erence
Xn+1
F(x) — Fn(x) =
(x) (x) 1 —x

can be made arbitrarily large by taking x close to 1,

|F — Fall(-1,1) = 0,

so the convergence is not uniform on (-1, 1).
We have seen earlier that {F,} converges pointwise to
1

1—x

F(x) =

if |x| < 1 and diverges if |x| > 1.
Neither is it uniform on any interval (-1, r] with —1 < r < 1, since
1

IF — Fallc,n = 5
for every n on every such interval.

Example: For the functions fj(x) = ¥/, j > 0, discuss the uniform convergence
of the in nite series of functions "~ ;_q fj(x).

Uniform convergence: The series does converge uniformly on any interval [—r, r]

with 0 < r < 1, since
rn+1

||F - Fn”[—r,r] = 1_7,,
and lim,-o " = 0. Put another way, the series converges uniformly on closed
subsets of (-1, 1).

Uniform convergence (using €): See video lectures.

. x .
Remark: A necessary condition for 24 f;(x) to converge on S is that f;(x) — 0
for each x € S.

Remark: As for series of constants, the convergence, pointwise or uniform, of a
series of functions is not changed by altering or omitting nitely many terms. This
justi es adopting the convention that we used for series of constants: when we are
interested only in whether a series of functions converges, and not in its sum, we

will omit the limits on the summation sign and write simply ~ f,.
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1.8.1 Cauchy's criterion for functional series

Recall the following Theorem knows as Cauchy's convergence criterion

Theorem: A sequence of functions {F,} converges uniformly on a set S if and
only if for each £ > 0 there is an integer N such that

[|Fr — Fmlls <& if n,m > N. (1.17)

. X . : .
Theorem: A series  f, converges uniformly on a set S if and only if for each
£ >0 there is an integer N such that

fo+fosa+ - - +fmlls<e if m=n=N. (1.18)

Proof: Apply Cauchy's convergence criterion to the partial sums of > fn, Observing
that
fn+fn+1+"'+fm=Fm_Fn—1-

Theorem: A series f, converges uniformly on a set S if and only if for each
€ >0there is an integer N such that

[fo+fosr+t - +fmlls<e if m>=n=N. (1.19)

. )y . )
Corollary: f f» converges uniformly on S, then lim,.e [[falls = 0. Setting
m =n.

Remark: The above conditions is necessary but not su cient.
>
Example: We have proved that the series j=o FAX), where
filx)=x, j=0,

is uniformly convergent on any compact subset of (-1, 1) say [—r, r], where 0 < r <
1.

Let us apply Cauchy's criterion for functional series, recall that we have

1_ Xn+1
FaX)=1+x+Xx*>+...+Xx"= ——-
1—x
Consider
1 _ Xn+1 1 Xm+1 Xm+1 _ Xn+1
|Fm - Fn| = | — | = |
1—x 1—x 1—x
2‘X”+1\
<
1- x|
z‘rn+1‘
1-|r]
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1.8. Convergence of Series of Functions 18

We have
||F F ” < M
m nll[-r,r] = 1— |f| .
Since 2|
-0 as n— oo,
1—|r|
there is an integer N(g) can be found for which
n+1
2|r"t] <& when n> N(g).
1—|r|

We have
”Fm - Fn”[—r,r] < g

I D D
hence by Cauchy's criterion the series ;2 x/, is uniformly convergent on [, r].

1.8.2 Dominated Series of Real Numbers for Series of Functions

Let {M,} be a sequence of nonnegative real numbers, and {F,(x)} a sequence of
tunctions de ned on the set S such that

[Fax)| < M, YxesS and neN.

. —ar . . .
Then the series of functions -, Fn(x) is said to be dominated on S by the series
M.
a1 Mn

) . . . D . .
Example: Consider F, = 5z, .- and the series of functions — ,2; F, is dominated
by the series ~ 1/n?because

1
|Fnl <

n?

=: M.
>
We know that ~ 1/n? < .

1.8.3 Weierstrass M-test/dominated Convergence Test

)Y
Theorem The series  f, converges uniformly on S if

Ifalls < Ma, n =k (1.20)
where M, < oo.

Proof: From Cauchy's convergence criterion for series of constants, there is for each
€ >0 an integer N such that

My+Mpr+- - +Mpn<e if m=>=n=N.

which, because of (1.20), implies that

1falls + [l fasalls + - - - + [[fmlls <& if mn=N.
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1.8. Convergence of Series of Functions 19

Ifno+fos1+ - +fmlls<e if mn=N.

. )y .
Due to Cauchy's criterion, we conclude that — f, converges uniformly on S.

Recall the following necessary condition for uniform convergence:

by
If  f, converges uniformly on S, then lim,-c ||falls = 0.
Example: Check the uniform convergence of the following series of functions

> 1
2 2-
X +n
> sin nx
. n2
Solution: We have .
1 < 1 , sinnx  _ 1_.
x2+n2 n? - n2 - n?
Taking M, = 1/n* and recalling that
X1
n2 < o0.
Due to Weierstrass M-test, we can conclude
> 1 > sinnx
= and
x2 +n? n2

converge uniformly on (—co, o).

Example: Check the uniform convergence of the series
>y = 00
fn(x) = . .

1+x

Solution: The given series converges uniformly on any set S such that

- 1.21
_1+X_§r<1, X € S. ( )
For such a set S, we have ||flls < r". >
By Weierstrass's test applies, with M, = r' < .
Since (1.21) is equivalent to
—r r
— =<x=< , XES,
1+r 1—r

this means that the series converges uniformly on any compact subset of (—1/2, ).

Example: Check the uniform convergence of the series

> > ( X ) n
Jn(x) = .
1+x
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Solution: See the solution in video lecture.

>
Recall: If  f, converges uniformly on S, then lim,»» |[falls = 0. The series
does not converge uniformly on S = (—1/2, b) with b < o or on S = [g, o) with
a > —1/2, because in these cases ||f.||s = 1 for all n.

. . X .
Absolute convergence: A series of functions — f, is said to converge absolutely

Sif — |f.| converges pointwise on S and converges absolutely uniformly on S if
\f | converges uniformly on S,

Remarks:

. The condition of absolutely convergence (pointwise or uniform) is stronger
than the usual convergence (pointwise or uniform)

. )Y
. In our proof of Weierstrass's M-test, we actually proved that — f, converges
absolutely uniformly on S.

. Show that if a series converges absolutely uniformly on S, then it converges
uniformly on S.

Theorem: 'L'he series

o
£
InQn
n=k

)y
converges uniformly on S if {f} converges uniformly to zeroon S, (fr+1 — fn)
converges absolutely uniformly on S, and

lgk+ grer+ - - - +gnlls <M, n=k (1.22)

tfor some constant v,

Proof: Let

Ghn=gk+Ggie1+ - +3Qn

. . Yo
and consider the partial sums of [, frngn:
Hn = fkgk +fk+1gk+1 + -+ fngn- (1-23)

By substituting g« = G« and gn = G, — G-y, n=>k+1,

into (1.23), we obtain
Hn = fiGk + fis1(Grer — Gi) + + - - + fo(Gn — Gp-1).

Which we rewrite as

Hn = (fk _fk+1)Gk + (fk+1 _fk+2)Gk+1 + -+ (fn—l __fn)Gn—l +fnGn,
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or
Hn = .In—l +fnGn, (1.24)

where

In-1 = (fc — fus1) Gk + (ficr1 — fi+2)Grsr + - =+ + (fo-1 — fn)Gn-1. (1.25)

That is, {/,} is the sequence of partial sums of the series

=
(f,‘ _ﬁ+1)Gj. (1.26)

Jj=k

From (1.22) and the de nition of G;,

»
7 (x) - fi+1(X)1G;(x) <=M fi(x) - fi+1(x)|, xE€S,
J=n : j=n
SO ; o,
j=n(fj -fi+1)G; <M. U5~ fiaal
o~

S S

Now suppose that € > 0. Sincez(f,- — fi+1) converges absolutely uniformly on S,
Cauchy's convergence criterion implies that there is an integer N such that the right
side of the last inequality is less than € if m > n > N . The same is then true of the
left side, so Cauchy's convergence criterion implies that (1.26) converges uniformly
on S.

We have now shown that {J,} as de ned in (1.25) converges uniformly to a limit
function J on S. Returning to (1.24), we see that

Hn _.I =.In—1 _.I +fnGn.

Hence, we have

IA

IHn =S ISn-1 = ls + IfnllsGnlls

< |Ina = Ills + Mlfnlls.

Since {J,-1 — J} and {f,} converge uniformly to zero on S, it now follows that
limp—co ||[Hn — J||s = 0. Therefore, {H,} converges uniformly on S.

= - _
Corollary: The series 52 fngn converges uniformly on S if
fori(x) =< fulx), x€S, n=k
{f.} converges uniformly to zero on S, and

lgk+ g+ " - +gnlls <M, n=>k,
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for some constant M.

Example: Consider the series

with f, = 1/n (constant), gn(x) = sin nx, and

Gh(x) =sinx+sin2x+ - - - +sinnx.
We have
1

|Gn(x)| < Tsin0/2)/

n>1 n'=2kn (k = integer).

Therefore, {||G,||s} is bounded, and the series converges uniformly on any set S on
which sin x/2 is bounded away from zero.

Example: For example, if 0 < § <, then

X 6
sin 2-' > sin 2

if x is at least § away from any multiple of 2r; hence, the series converges uniformly
on

[)O
S = [2krt + 6, 2(k + 1)t — 6].
k=—c0
Since

2 sin nx
'.T'. = oo/ M= er

This result cannot be obtained from Weierstrass's test.

Example: The series -
> -1
n + x?2
n=1
satis es the hypotheses of Corollary on (— oo, o), with
1
Fr(x) = gn=(—1)", Gan =0, and Goms1 = —1.

n+ x2’
Therefore, the series converges uniformly on (—oco, ). This result cannot be ob-
tained by Weierstrass's test, since

21
S

for all x.

Recall the following result:
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Theorem: If {F,} converges uniformly to F on S and each F, is continuous at a

point xo in S, then so is F. Similar statements hold for continuity from the right
and lett.

)y . . .
Theorem: If — _, fnrconverges uniformly to F on S and each f,is continuous at

a point xo in S, then so is F. Similar statements hold for continuity from the right
and left.

Proof: See Lecture.

. > .
Recall the following: Theorem: If =~ _, fhconverges uniformly to F on S and
each f, is continuous at a point xo in S, then so is F. Similar statements hold for
continuity from the right and left.

Example: Recall, we have proved that the series

w C Jn

X
1+x

F(x) =
n=0
converges uniformly on every compact subset of (—1/2, »).
Since the terms of the series are continuous on every such subset, implies that
F is also.

In fact, we can state a stronger result: Fis continuous on (—1/2, ), since
every point in (—1/2, o) lies in a compact subinterval of (—1/2, «).

Example: Show that the function

» .
G(X) — smnnx
n=1

is continuous except perhaps at xi = 2kt (k = integer).

We have seen that the series > oy % is uniformly convergent by applying Dirich-

let's Test for Uniform Convergence except at xx = 2krt (k = integer).

Example: The function
1

Hix) =" (-17—

n=1

is continuous for all x.

Theorem: Suppose that {F,} is a sequence of Riemann integrable functions de ned
on an interval [q, b]. If {F,} converges uniformly on [a, b] to F, then F is Riemann
integrable on [q, b], and

[ [*
lim  F(x)dx=  F(x)dx.

n—oo
a a
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For each t € [, b] |
t
Fn(x)dx,

converges uniformly on [a, b] to
[t
F (x)dx.

Proof: We need to show that the function F is integrable on [g, b].
Observe that the following statements holds:

. F, is bounded, because each F, is integrable on [a, b].

. F is bounded, because

[F()| < [Fa(x) = F(X)| + [Fa(x)| < &n + |Fa(x)],
where &8, = supyeqp) |Fa(X) — F(x)].

. Since F, converges uniformly to F, for every £ > 0, there exists an N such

that €

|Fa(x) — F(x)| < 3 forall x € [a,b],n > N.

(b —a)

Also, F,is integrable, there exists a partition P of [g, b] such that

£
S(P, Fn) = s(P, Fn) < -

For each x € [a,b] with n =N

|Falx) — F(x)| < forall x € [a,b],n >N,

3(b —a)

implies that
€ €

3 — a) < F(x) < Fn(x) + 3(b— a)

Therefore, € €
s(P, Fn) — 3 <s(P,F) < S(P,F) <S(P, Fn) + 3

Fn(x) —

Hence F is integrable. Finally, for n > N and for each t € [q, b], we have

ft ft ft

Fax)dx —  F(x)dx =< | Fa(x) — F(x)|dx
’ ’ elb — a
- , forall x _[a, b],n>N.
< €
3(b —a)
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1.8. Convergence of Series of Functions 25

Remark: The limit of a uniformly convergent series of integrable functions is inte-
grable, and so term-by-term integration is permissible for such a series.

Theorem: Suppose that > =k [ n converges uniformly to F on S = [q, b]. Assume
that F and f,, n > k, are integrable on [ag, b]. Then
f b o f b
F(x)dx=" fa(x)dx.

a n=k @

>
We say in this case that — ,—, f» can be integrated term by term over [a, b].

Example: Consider the {F,} de ned by

Fn(X)=1+/ y X € [a,b] C R

. : )y .
Then Weieretrass's M-test shows that = F, converges uniformly on [aq, b]
Consequently, term-by-term integration is permissible in this series.

Example: Consider the following

The series converges uniformly, and the limit function is integrable on any closed
subinterval [a, b] of (=1, 1) .

Hence,
X dx e X
= x"dx.
a 1—x n=0 @
Consequently, © i1 el
2y -a
log(1 —a) —log(l = b) = i1 —
n=0
Remark: We have seen that
<0
P bn+1 _ an+1
log(1 —a) — log(1 — b) = 1
n=
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1.8. Convergence of Series of Functions 26

Letting a = 0 and b = x yields

log(l —x)=—

Example: Evaluate the
» /1
x(e* — 1)e-™dx.
n=1 0

Solution: The sequence of partial sum is

p
Fn = x(e* — 1)e-*dx.
k=1

Observe that F,(0) =0 and for x>0

eX(1_- e™)

Fn(x) = x(e* —1) P

Fn(x) = x(1 — e~™).

Example: Evaluate the

» /1

x(e* — 1)e"™dx.

n=1 o
Solution: For the function xe-™, we have seen that it attains its maximum at
x=1/n, we have

IIFa(x) — xII = sup |Falx) — x|
x=0

IF (x) - x|l = sup [xe-"| =
" x=0 en

So, as n — oo, we have ||F,(x) — x|| — 0.

Example: Evaluate the
» 1
x(e¥ — 1)e-™dx.
n=1 g

Solution: The series of functions

>
x(ex — 1)e- ™ dx,
n=1
Join VU WhatsApp Group:

https://chat.whatsapp.com/JURZWf{AElue6qixpzkfduE



https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE

1.8. Convergence of Series of Functions 27

converges uniformly to F(x) = x.

Applying the theorem of interchange of sum and integral sign, we can conclude
that
» /1 > *
x(e* — 1)e-™dx = x(eX — 1)e-™dx =  xdx.
n=1 0 0 n=1 0

Example: Consider x

Fn(X)=m XER.

|Fn(X)|=J XZSZ Xl =2\:y'
Fa(x) is uniformly convergent to F(x) = 0 on R. We have
1 — nx?
Fnlx) = (1 + nx2)2

When x = 0, we have lim,_o F,,(x) = 0 and for x 0 liMmn—co Fn(x) = 1.

Remark: What we have observed in this example is:

+ We have a sequence of di erentiable functions {F,} de ned on S.

+ F, converges uniformly to F on S.

- F is di erentiable on S.

. There exists x € S with F'(xY= limn_e F,(x), because F,(0) — ¥= F'(0).

Thus, even if the limit of a uniformly convergent sequence (respec-
tively series) of di erentiable functions on S is di erentiable on §, it may
happen that the derivative of the limit is not the limit of the sequence
(respectively sequence of partial sums) of derivatives of the di erentiable
functions.

Theorem: Suppose that f, is a sequence of functions such that:

+ f,» is continuously di erentiable on [g, b] for each n > k, i.e., f, € C[a, b].
z

ot Jn(x0) converges for some xo in [a, b].
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1.8. Convergence of Series of Functions 28

by

« [, converges uniformly on [a, b].
Then ~ ¢, f,» converges uniformly on [g, b] to a di erentiable function F, such
that -
F'(x) = © falx), a<x<b,
(oo} n:k (o o]
Z ’ Z 7
while F'(a+) =  fo(a+) and F'(b-) = Tn(b-).
=k =k

n n

Proof: Since f,, is uniformly convergent to g on any closed interval contained in

[g, b], say in an interval with endpoints x, and x, x € [q, b]. Thus, for all x € [g, b],
we have | |
X X

g(t)dt= lim £ (t)dt
n—oo
Xo Xo

Recall the fundamental theorem of calculus, we have

[x
g(t)dt =n|ir2 (fn(x) — fn(xo)).

Xo
Recall the lim,- fn(x0) exists (given hypothesis), we can obtain

[x
g(t)dt+1lim fa(xo) = lim f,(x), on [a,b].

n—oo
Xo

The above convergence is uniform. By setting F(x) = limp-« fs(x), we have

[x
g(t)dt + Ewan(XO) = F(x), on g, b].

Xo

Now, g, being the limit of a uniformly convergent sequence of continuous functions
on [a, b], is continuous on [a, b].
X
Recall the second fundamental theorem of calculus with G(x) = = g(t)dt is

Xo

di erentiable and G'(x) = g(x) on [a, b].
Therefore, we have

F'(x) = g(x), F'(x) = ,Llnwf’;(x)’ on [a,b].

) —T . :
Remark: The series ~ %2, f,» can be di erentiated term by term on [a, b].

How to apply this result?
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. oo .
+ We rst verify that [ _, f(xo) converges for some xo in [g, b].

. . )y . .
+ Then di erentiate ~ g2, f» term by term. If the resulting series converges
uniformly. Then term by term di erentiation was legitimate.

Example: The series
»

1
(—1)"~ cos X (1.27)
n n
n=1
converges at xo = 0. Di erentiating term by term yields the series
z 1 X
—1)"*1—=in = 1.28
(—1) SN ( )
n=1

of continuous functions. This series converges uniformly on (—o, o0), by Weier-
strass's test. Consequently, the series (1.27) converges uniformly on every nite
interval to the di erentiable function

_ X 1 cos™

F(x) = (—1)" 5, €05,y —o0 <x< oo,
n=1
= 1 X

F'(x) = (—1)"+1_2 sin , —o00<x< 00,
et n n

Example: Consider the series
2 xn x2 X
E(x) = Orn!=1+x+ﬁ+§+"'- (1.29)

n=

The series converges uniformly on every interval [—r, r] by Weierstrass's test, because

Ix|" rt -
- o < x| <r,

rn

ﬁ[ < o0

for all r, by the ratio test.
Di erentiating the right side of (1.30) term by term yields the series

z Xn—l z x"

(n—11 ~ _nl

n=1 n=0

which is the same as (1.30).

Example: Consider the series

X X
E(x) = O_n!= 1+x+ "o T3 - - (1.30)
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Therefore, the di erentiated series is also uniformly convergent on [—r, r] for every
r, so the term by term di erentiation is legitimate and

E'(x) = E(x), —o0o<x< oo,
This is not surprising if you recognize that £(x) = e*.

Remark: Failure to verify that the given series converges at some point can lead
to erroneous conclusions.

Example: For example, di erentiating

X
cos = (1_31)
n
n=1
term by term.
We have -
> x
~  sin.
n
n=1
Since 1 . x X r
- TsinT- < <, Ixl=<r
n n n2 n2

and > 1/n* < oo, which converges uniformly on [—r, r] for every r,

We cannot conclude from this that (1.31) converges uniformly on [—r, r]. In fact,
it diverges for every x.

1.9 Power Series

An in nite series of the form

= n
an(x — Xo) , (1.32)
n=0
where xo and ao, a1, ..., are constants, is called a power series in x — xo. If xo = 0
then power series becomes
= n
anX
n=0

Theorem: The radius of convergence of ~ as(x — xo)" is given by

1 . an+1
= =|lim ——
R n—oo* gp, *

if the limit exists in the extended real number system.
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D DI .
Theorem: For the power series  ,_an(x — x0)”, de ne R in the extended real
numbers by

& = limsup |a,/". (1.33)
Theorem: A power series
i n
f(x) = anlx — xo)
n=0

with positive radius of convergence R is continuous and di erentiable in its interval
of convergence, and its derivative can be obtained by di erentiating term by term;
that is,

) ve)

f(xX)= " nasx—x) ", (1.34)
n=1
which can also be written as b
n=0
f(x)= (n + 1)an+1(x — xo0) " (1.35)

This series also has radius of convergence R.

Proof: Since

limsup((n + 1)|a,))¥” = limsup(n + 1)V"[g,|¥"
n—oo (n—>oo ) ( )
= lim (n+1)Y"  limsup |a.|¥"
n—oco n—
[ ( DN
_ lim exp log(n +1)
n—oco n
( ) o
1
lim sup |ax |1/" =% = —,

the radius of convergence of the power series obtained by term by term di erentiation
is R. Therefore, the power series in

= n
fF(x)= (n+1)analx — xo),
n=0

converges uniformly in every interval [xo — r, xo + r] such that 0 <r <R.
The term by term di erentiation is valid for the power series and the series

pii n
f(x)= (n+1)analx — xo),
n=0

converges uniformly for all x in (xo — R, xo + R).
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Theorem: A power series

pi n
f(x) = anlx = xo)
n=0

with positive radius of convergence R has derivatives of all orders in its interval of
convergence, which can be obtained by repeated term by term di erentiation. That

is,
o

FRO)= pn-1) - (n-k+1)anx-x) ", (1.36)
n=k
The radius of convergence of each of these series is R.

Proof: .
(L)‘ ” k
(x) = n(n—l)---(n—k+1)an(x—xo)-.
n=k

The proof is by induction. The assertion is true for k = 1, by the Theorem we
proved in previous module.

Suppose that it is true for some k > 1. By shifting the index of summation, we
can write

X )
%) = (n+kn+rk-1)- - (n+Damdk-x) ,  |x-xl <R.
n=0
De ning
bo=(n+k)(n+k—1)- - (n+1)an (1.37)
We rewrite this as
(Z): oo n
fx)= bn(X — x0) , X — xo| <R.
n=0

By Theorem of term by term di erentiation of power series, we can di erentiate
this series term by term to obtain

(k+1)

(o0}

(x) = nbn(x —g(o} -, |x — ol <R.
n=1

f

Substituting from (1.37) for b, for |x — xo| < R yields
él) ” 1
}(‘k (x) = (n+k)n+k—=1) - - (n+1)nanlx —nxo) -
n=1
Shifting the summation index yields

hi

f(k+1)(x) = nn-=1)---(n-kanx - xo)"—k—1, X - Xo| <R,
n=k+1
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which is (1.42) with k replaced by k + 1. This completes the induction.

Example: We have proved that

<0
1 _B X", x| <1
1—x )

Repeated di erentiation yields

W k
= nin-1)---(n—-k+1)x"
(1 — X)k+1 ek
= (n+k)(n+k—1)---(n+1)x’j x| <1,
n=0
—1 z (n + k)
(1 — x)k+t P |x| < 1.

Example: Show that the series

I° - x2n+1 X n x2n
SO = ~ = )(m e 2 = B (=1) (2n)!
n=0 n=0

converges for all x.

Di erentiating yields
2)0 xn
(x) = —-1)" = C(x)
S'(x) n=0( 1) 2n)!
and
coa= xer LI C
X = -1)" (1) 5 = —5S(x).

n=1( ) (2n — 1)1 n=0( ) (2n +1)!

These results should not surprise you if you recall that

S(x) =sinx and C(x) = cos x.

Iheorem: It -
f(x) = an(x —x0) " Ix—xo| <R,
n=0
then
_ f"(x0)
n — n! .
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Proor: We have

o

FR(x) = ‘ nin—-1): - - (n—-k+1)an(x — xo) e
n=k

Setting x = xo in the above equation yields

f®(x0) = kla.
Theorem: If . .
> >
_Oa,,(x — Xo)" = _Ob,,(x — Xo)" (1.38)

for all x in some interval (xo — r, xo + r), then

an=b, n=0. (1.39)

)y by
Proof: Let f(x) = 2gpan(x-x0)" and g(x) = ;2gbn(x - x0)".
From previous result, we have

™M (x0) g™ (xo)
= and b, = .

n! n!

(1.40)

dn

From (1.38), f =g in (xo — r, xo + r). Therefore,

f"(x0) = g"(x0), n=0.
This and (1.40) imply (1.39).

Theorem (Recall the following): For the power series, de ne R in the extended

real numbers by .

_R = lim sup @, [V, (1.41)

n—co

In particular, R = 0if lim supp—e |@s| 7" = 00, and R = o if lim supp_eo |an|*" =
0.
Then the power series converges

1. only for x = xo if R = 0;

2. for all x if R = 00, and absolutely uniformly in every bounded set;

3. for x in (xo — R, xo + R) if 0 < R < o0, and absolutely uniformly in every
closed subset ot this interval.
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Remark: The series diverges if |[x — xo| > R. No general statement can be made
concerning convergence at the endpoints x = xo + R and x = xo — R : the series
may converge absolutely or conditionally at both, converge conditionally at one and
diverge at the other, or diverge at both.

=
Theorem (Recall the following): Suppose that ~ _, f, converges uniformly to F
on S = [a, b]. Assume that Fand f, n > k, are integrable on [q, b].

Then ' '
! b v |y
F(x)dx = fn(x) dx.

a n=k a

Theorem: If x; and x, are in the interval of convergence of

> n
flx) = an(x — xo) ,
n=0
then |
X2 3 _Qn_ n+1 n+l
f(x)dx = n+1 (X2 — xo) — (X1 — xo) ;
X1 n=0

that is, a power series may be integrated term by term between any two points in
its interval of convergence.

Proof: See Lecture.

Some questions related to Power Series.

- We discussed, what are the properties of its sum.

+ What properties guarantee that a given function f can be represented as the
sum of a convergent power series in x — xo?

Recall the following:

Theorem: A power series

= n
f(x) = anlx = xo)
n=0
with positive radius of convergence R has derivatives of all orders in its interval of
convergence, which can be obtained by repeated term by term di erentiation; thus,

k

O = nn-1)-- - (n-k+1)anx -x) 7. (1.42)

n=k

Join VU WhatsApp Group:
https://chat.whatsapp.com/JURZW{fAElue6qixpzkfduE



https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE

1.10. The Taylor's Series 36

The radius of convergence of each of these series is R. If

<0

Z
f(x) = anlx — x0) ) Ix—xo| <R,
n=0
then
(M (x
a, = [(xo)
n!

1.10 The Tavylor's Series

The only power series in x — xo that can possibly converge to fin such a neighbor-
hood 18
> f"(xo)

(X = xo) " (1.43)

n=0
This is called the Taylor series of f about xo (also, the Maclaurin series of f, if
xo =0). The mth partial sum of (1.43) is the Taylor polynomial

 f(xo)

Tm(x) = I

n
(x — x0) ,
n=0

Remark: The Taylor series of an in nitely di erentiable function f may converge
to a sum di erent from f.

Example: Consider the function

{
f(x) =

e, ¥= 0
0, x=0.

the function fis in nitely times di erentiable on (—oo, c0) and f(0) = 0 for
n > 0. So its Maclaurin series is identically zero.

Taylor's theorem: If f is in nitely di erentiable on (g, b) and x and x, are in
(a, b) then, for every integer n > 0,

(n+1)
f(x) = Talx) = f(n+(1j?)(x —X) (1.44)

where ¢, is between x and xo.
Therefore,
S22 X
Fog = L0

n=0

for an x in (g, b) if and only if

lim

F(r+(c,) 1 _ g
n—oo (n + 1)' ’

(x = xo)
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Remark: It is not always easy to check this condition, because the sequence {c,}
is usually not precisely known, or even uniquely de ned; however, the next theorem
is su ciently general to be useful.

Theorem: Suppose that f is in nitely di erentiable on an interval / and
rn
lim 7||f(n)||/ =0. (1.45)

n—o nl

Then, if xo € I°, the Taylor series

o

Xo)
nl

(x — x0)"
n=0

converges uniformly to f on

Ir=1N0[xo—r xo+r].

Proof: We know that

F D (cn) n-
FO) = Tal) = “(ryr X %07

rn+1 (n+1) ” < rn+1 Hf(n+1)
If - Talls, < WU; Ir = (n +1)! s,

so (1.45) implies the conclusion.

Example:

holds tor all r.
Since

Apply the previous theorem, with / = (— o0, ), xo = 0, and r arbitrary. We have
the the well known series expansion of sin x, that is,

D x2n+1
a n
sinx=_ (=1) (2n+ 1)V

n=0

—00 < X < 00,

and the convergence is uniform on bounded sets.
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Example: A similar argument shows that

Z " X2n
COoSX = (—1) (2n)’
n=0

—00 < X < 00,

with uniform convergence on bounded sets.

Example: If f(x) = e, then fX(x) = ¥ and |f X, =e", k> 0,if I = [-r,r].
Since
. rn
lim _e"=0.

n—oo nl
we conclude that
o I
Z X
ex = ™ — 0 < X< OO
n! ’ 7
n=0

with uniform convergence on bounded sets.

Example: If f(x) = (1 + x)9, then

() ()
(n) (n)
f (|X)= 9 (1+x)", so f ('O) - 1 . (1.46)
n! n n! n
‘I'he Maclaurin series

w ()
) o
n=0

is called the binomial series. We saw in Analysis I that this series equals (1 + x)?
for all x if g is a nonnegative integer.

Example: We will now show that if g is an arbitrary real number, then

w ()
T X =f0=(1+x)°% 0<x<1 (1.47)
n=0 n
Since /O
lim ¢ q=|im‘_-=,
n—oo: n+1 n - n-oo-n+1-

the radius of convergence of the series in (1.47) is 1.
From (1.46),
£ 10,41 )

q
< 1,29 - > 0,
" max(1,29 1, n

Example: Therefore, if 0<r<1,
()

r . .
i (n) . . _
limsup 715 o < [max(1, 2001 lim - - " =0,

n—oo
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where the last equality follows from the absolute convergence of the series in (1.47)
on (—1,1).

Theorem: If
>
f(X) = an(x - Xo)n, |X — X0| < R, (148)
n=0
>
gx) = balx —x0) " Ix—xl <Ry (1.49)
n=0
and a and 8 are constants, then
> n
Olf(X) + 6g(X) = (aan + 6bn)(X - XO) ’ |X - X0| < R/
n=0

where R > min{Ry, R2}.
Proof: See the video lectures.

Recall the following theorem:
. DD DY

y to AB

LIe vaulily prouuct vl n=0 Un allu n=0 VUn CULLVELEES dbsuluLle

Theorem: If f and g are given by power series

=z n
flx) = an(x — x0) , |x = Xol <Ry,
n=0
b n
g(x) = bn(x — Xx0) , X — Xxo| <Ry,
n=0
then
%>
fx)g(x) = Clx —x0) " Ix—xo| <R, (1.50)
n=0
n n
Call= arbp-r= an-rbr
r=0 r=0

and R = min{Rl, Rz}.

Proof: Suppose that R < R,.
Since the series

i n
flx) = an(x — Xo) , |Xx— Xo| <Ry,
n=0
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piid n
g(x) = ba(x — Xo) , X — X0l <Ry,
n=0

converge absolutely to f(x) and g(x).

If |[x — xo| <Ry, their Cauchy product converges to f(x)g(x) if |x — xo| <R,
by product of series.
The nth term of this product is

)
b2 (j”
arx — xo0) bn-r(x — x0)"-" = arbn-r (x — x0)" = ca(x — Xo)".
r=0 r=0
Example: If
1 %
f(x) = = x", x| <1,
1-x n=0
%
g(x) = b.x", |x| <R,
n=0
g(x)
= Snx", x| <min{1, R},
1—-x n=0
where
Sn = ()bo+(1)b1+ - - +(1)b,

bo+bi+ - +bp

Example: We have already discussed

w O
(1+x)P = P x", x| <1
n=0 n
A]SO ©o ( )
L+x)7= X Ix| < 1.
n
n=0
Since < (
> “ p+gq
n=0 n
while the Cauchy product is 2 meo CnX", wWith
n () ( )
CRI= . i
r=0 r ner
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Product of power series implies that
Cn =
This yields the identity

) o (O C )
_ Pq

valid for all p and g. The quotient
_ hix)

f(x) = (1.51)
g(x)
of two power series
= n
h(x) = Calx —X0) , X — X0l <Ry
n=0
alx) = bn(x—xo)’j [x — xo| < R,,
n=0
can be represented as a power series
i
flx) = an(x — xo)" (1.52)
n=0

with a positive radius of convergence, provided that

bo = g(Xo)/= 0.

This is surely plausible. Since g(x0)/= 0 and g is continuous near xo, the denomina-
tor of (1.51) di ers from zero on an interval about xo. Therefore, f has derivatives
of all orders on this interval, because g and h do.

Since

f(x)g(x) = h(x),

The result about the product of Power series implies that

z
abp-r=c,, n=0.
r=0

Solving these equations successively yields

Co

a = —,

0

bo
1 ( - )

an = Cn — bn-rar , h=>1.
0

r=0
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Remark: It is not worthwhile to memorize these formulas. Rather, it is usually
better to view the procedure as follows: Multiply the series f (with unknown co-
e cients) and g according to the procedure of Theorem ??, equate the resulting
coe cients with those of h, and solve the resulting equations successively for ao, a1,

Example: Suppose that we wish to nd the coe cients in the Maclaurin series

tanx=ao+ax+ax>+ -« -

We rst observe that since tan x is an odd function, its derivatives of even order
vanish at xo = 0, so g2m = 0, m > 0. Therefore,

tanx = gix+azx3 +asx° + - - .

Since .
sin x

tanx =

7

cos X
it follows from series of sin x and cos x that

aX+ a3 +asx® + - -+ =

SO (
3 5 Xz X4 ) X3 X5
aiX+as3x +asx + - - - 1- 3 =x— —4 ——
e ’ ’ ) 2 24 6 120 !
or
( Ql) s 2§+ﬂ>)g x3  x°
G1X+ 03— 2 X —+ 05_ +o =X — ?_I_lwlll

2 24

Comparing coe cients of like powers of x on the two sides of this equation must be
equal; hence,

a1

ar = 1, as — =5 = _l(ir 05_03+al =

7+t 120
1 (1)
a1 = 1, as=—-%+3%1) = % as=tdo+ll —3(1) = %
Therefore,
X3 2 5
tanx x+3 15 + .

Example: To nd the reciprocal of the power series

gx)=1+e"=2+ 2 X ,
n!

n=1
Join VU WhatsApp Group:

https://chat.whatsapp.com/JURZWf{AElue6qixpzkfduE



https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE

1.10. The Taylor's Series

43

we let h=11in (1.51). If

Z (o]
! anx”,
g(x)
=0
then
( )
x> X3
1 = (ao+awx+ax*+ax+-- ) 2+X+7+ gt
( )
do
= 2a,+(a,+2a)x+ — +a,+2a, x°
do a,
+ — 4+ —4+a 203X+,
6 279793
From Corollary,
200 = 1,
do + 201 = 0,
do
2 +a1+2a, = 0O,
%+a*21+az+203 = 0.
Solving these equations successively yields
1
do = E'
do 1
al = —— =—-7,
2 4
( ) ( )
1 "ao +g 11 (l 0 )
= — — 1 = — — =0,
1Gy o 2 %M 1 " 2
a = — — +— +a = — — +0 = ,
3 2 6 2 2 2 12 8 48
S0
1 1 x 3
= — —+ —+
1+ex 2 4 A48
Example: To nd the reciprocal of
g(x) = e =
we again let h=11in (1.51). If
2. L
(ex)_ = anX,
A=0
then
R
1= anX o= cnx”,
n=0 n=0 n=0
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where
¥ a

oo (N = r)!.

We have, co = a9 =1 and ¢, =0 if n = 1; hence,
n-1
a
a = > n 1 (1.54)

7
n —

(n—r)!

r=0

>
Solving these equations successively for ao, ai, ... yields

1
a, = —1[!41.32)=—1,

1 1 _1
a = - _2!(1)+—1[— 1) = 5

1 1 (1):| 1
L T AT

1 (1) 1( 1):| 1
e TR T S

From this, we see that
(—1)*

for 0 < k < 4 and are led to conjecture that this holds for all k. To prove this by
induction, we assume that it is so for 0 < k < n — 1 and compute from (1.54):
_ ;n—l 1 (=1)~
ah = r=0 (n-r)! r!
> ()

= -h -1 "y

(=1)”
n!

Thus, we have shown that

()= = (1™,
n!

n=0

Since this is precisely the series that results if x is replaced by —xin (1.53), we have
veri ed a fundamental property of the exponential function: that

(ex)_l = e,

This also follows from Example ??.

1.11 The Abel's Theorem

Theorem: Let f be de ned by a power series with nite radius of convergence R.
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A
Ihm f(X) =
x—(xo+R)-
N
m  f(x) =
x—(xo—R)+
Proof: Let
= = )
gly)=  bny", b, =s (nite).
n=0 n=0
We will show that
lim g(y) =s.
y—1-
We have
>
ay) =1 —-y)  swy”,
n=0
where
Shn=bo+b1+ - +b,
Since -
1 >
1_y = y" and therefore 1=(1-—y)
y n=0
we can multiply through by s and write
2 n
s=(1-y) sy, lyl<l
n=0
Subtracting this from (1.56) yields
i
gly) —s=(1-y) (sn — s)y",
n=0

If e > 0, choose N so that

|s,—s|l<e if n=N+1.

Then, if0<y <1,

N
>
lgly) —s| < (1-y) |sn — sly” + (1 —y)
n;IO
>
< (1-y) & Isn — sly” + (1 — y)eyM?
< (1-vy) |s, —s| +¢,
n=0
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because of the second equality in (1.57).

Therefore,
lgly) — sl < 2¢
if
>
(1—)’) |$n_$|<8.
n=0

To obtain rst part of the theorem from this, let b, = a,R" and g(y) = f(xo + Ry);
to obtain second part, let b, = (—1)"a,R" and g(y) = f(xo — Ry).

Example: The series

fo)=—r -

‘I'his shows that the converse ot Abel's theorem 1s talse.
Integrating the series term by term yields

oo n+1
)y X

log(1+x)= (—1)"px1, Ixl<1,
n=0

where the power series converges at x = 1. The Abel's theorem implies that
> (=1

log2 =
n+1

n=0

Example: If g > 0, the binomial series
% ()
Xn
n=0 n
converges absolutely for x = +1. This is obvious if q is a nonnegative integer, and
it follows from Raabe's test fc()r othey pogitjve values of g, since

q n-g
,Gnva _ L= , h=>gq,
a, n+1 n n+1
and ( . ) ( :
imn -1 = lm ‘n—g
n -1
neo 1 An = g n+1
Therefore, Abel's theorem imply that " _’;’_ 1(—q —1)=-q-1
= () o @)
q (1) =0, g O
n=0 n =29 and n-
n=0 >
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1.12 Pointwise and Uniform Bounded Function

A sequence of functions {F,} on the set S is said to be pointwise bounded on S if
the sequence of functions is bounded for every x € S, that is, if there exists a nite
valued function ¢(x) de ned on S such that

|Fr(x)| < p(x), x€Sn=1,23,...

that

Remark: If {F,} is pointwise bounded on S and S; is countable subset of S, it is
always possible to nd a subsequence {F, } such that subsequence is convergent.

However, even if {F,} is uniformly bounded sequence of continuous functions on a
compact set S, there need not exist a subsequence which converges pointwise on S.

Example: Consider the sequence of functions

Fn(x) = sin nx, x € [0, 2m).

Suppose there exists a sequence {n} such that {sinnx} converges, for every
x € [0, 2r]. Then we must have

lim (sin nkx — sin nk+1x) = 0, x ¢ [0, 2r].
k—oo
Hence
lim (sin nex —sin nks1x)? = 0, x ¢ [0, 2n].
k—oo

By Lebesgue's theorem concerning integration of bounded convergent sequences,

we have
JZn

lim lim (sin nex — sin Nk+1x)? = 0.

k—oco k—oo

0

But we have
lim (sin nkx _ sin nk1x)? = 27t

k—o0o

which is a contradiction.

Example: Consider the sequence of functions

2

X
Fn(x) = X2+ (1= nx)?’ S =[0,1].
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Then |F,| < 1, so that {F,(x)} is uniformly bounded on [0, 1]. Also

lim £.(x) =0, x € [0, 1].

n—oo

But 1

Fn(;) =1,

so no subsequence can converge uniformly on [0, 1].

1.13 Equicontinuous Functions on a Set

A family of functions F de ned on the set S is equicontinuous if for all f € F and
tor each € >0 there 1s a 6 > 0 such that

If(x1) - fx2) < e if xi,x2 €[a,b, |x1— x| <. (1.58)

Remark: It is clear that every member of F is uniformly continuous.

Theorem: If {F,} is a pointwise bounded sequence of functions on a countable

set S, then {Ff,} has a subsequence {F,, } such that subsequence converges for all
xesS.

Proof: Let {x}, i = 1,2, 3, ... be the points of S arranged in a sequence.
Since {F.(x))} is bounded, there exists a subsequence, which we shall denote by

{Fi«}, such that {F;«(x;)} converges as k — oo.
Consider the sequences Sy, S5, ..., de ned by

Sl . F]_,l F]_,z F1,3 F1,4

52 . Fz,l Fz,z F2,3 F2,4
53 . F3[1 F3[2 F3[3 F3/4

Consider the sequences S, S,, ..., de ned by
51 . F]_,]_ F]_,Z F1,3 F1,4

52 . F2,1 lez F2,3 F2,4
53 . F3,1 F3,2 F3,3 F3,4

The sequence has the following properties

. S, is a subsequence of S,-1, for n=2,3,4,...
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+ Due to the boundedness of {F,(x»)}, we can say that F,«(x,) converges, as

+ The order in which the functions appear is the same in each sequence, i.e., if
one function precedes another in Si, they are in the same relation in every
Sn, until one or the other is deleted. Hence, when going from one row in the
above array to the next below, functions may move to the left but never to
the right.

We consider the sequence
E : F1,1 Fz,z F3,3

By (3) property £ is a subsequence of S,, for n = 1,2,3,  The order in which the
functions appear is the same in each sequence, i.e., if one function precedes another
in Sy, they are in the same relation in every S,, until one or the other is deleted.
Hence, when going from one row in the above array to the next below, functions
may move to the left but never to the right. The (2) property of the sequence

ensures that {F, »(x;) } converges as n — o for every x € S.

Theorem: If K is a compact subset and if {F,} is a sequence of continuous functions
de ned on K and {F,} converges uniformly then {F,} is equicontinuous on K.

Proof: Since the sequence of functions {F,} is uniformly convergent, for every
€ >0, there is an integer N such that

|Fn - Fnllk <& n>N.

We know that continuous functions on compact sets are uniformly continuous, there
is a § > 0 such that

|Fi(x) - Fily)l <&, Ix-yl<61<i<N.

Theorem: If K is a compact subset and if {F,} is a sequence of continuous functions
de ned on K and {F,} converges uniformly then {F,} is equicontinuous on K .

For n >N and |x — y| < 8, we have

[Fn(x) = Fa(y)l < [Fn(x) = Fn O]+ [Fn(X) - Fn(y)

+|Fn(y) = Fa(y)l
< 3e.

Theorem: If {F,} is a sequence of continuous functions de ned on a compact set
S and if {F,} is a pointwise bounded and equicontinuous on S, then
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Proof: Since {F,} is equicontinuous then by de nition for every £ > 0, we have
[Fa(x) — Faly)| <& Ix —yl <.

From Analysis I, we know that S is compact then there are nitely many points
p1, P2, ...pr in S such that to every x € S corresponds at least one p; such that
Ix — p1] < 6.

Since {F,} is pointwise bounded, there exists M; < oo such that

|Fn(pi)l < Mi,n € N.

If we take
M = max{My, ..., M/},

then |F,(x)| < M + € for every x € S. This proves the rst part of the theorem.

Theorem: If {F,} is a sequence of continuous functions de ned on a compact set
S and if {F,} is a pointwise bounded and equicontinuous on S, then

S B i

Proof: Let £ be a countable dense subset of S. Then from previous theorem we
have a subsequence {F,,(x)} such that the subsequence {F, (x)} converges for every

x € E.

Fix the notation F,, (x) = g;, we shall prove that {g;} converges uniformly on S.

Let € > 0, and choose & as before. Let V (x, §) be the set of all y € S such that
Ix — y| < 6.

Since £ is dense in S, and S is compact, there are nitely many points xj, ..., Xm
in E such that

S C V(x1,6)U...UV(Xm,06) ().

Since {gi(x)} converges for every x € E, there is an integer N such that
lgi(xs) — gj(xs)| <&  whenever ij>N,1<s<m.
If x € S, from (*) shows that x € V (x, 6) for some s, so that
l9:(x) - gi(xs)| <&

for every i.
If i> Nand j > N, it follows that

lgi(x) = g7 (x)| < lgi(x) = gi(xs)| +[gi(xs) = g;(xs)| + lg;(xs) = g;(x)]

gi(x) - g;(x)| < 3e.
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1.14 The Stone-Weierstrass Theorem

Theorem: If fis continuous function on [g, b], there exists a sequence of polyno-
mials P, such that
Pn(x) = f(x),

uniformly on [g, b].

Proof: Without any loss of generality, we may assume that [a, b] = [0, 1].
We may also assume that f(0) = f(1) = 0. As we can consider

g(x) = f(x) = £(0) — c[f(1) — f(0)], x € [0, 1].

If g can be obtained as the limit of uniformly convergent sequence of polynomials,

it is clear that the same is true for f, since f — g is a polynomial.
Furthermore, we de ne f(x) to be zero for x outside [0, 1]. Then f is uniformly

continuous on the whole line.
We take
Qn(x) = cn(1 — x?)", n=1,2,..,
where ¢, is chosen so that
[1
Qn(x)dx =1, n=1,2,...
-1
Consider the function
(1—=x3)"—1+nx%
which is zero at x = 0 and whose derivative is positive in (0, 1).
Since

[1 [1
(1—x¥)"dx = 2 (1 — x*)"dx
-1 0

v
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It follows from i
Qn(x)dx =1, n=12,...

thatc, < 1.
For any 6 > 0, we have

Qn(x) < \/5(1 — &), §<|x| <1

So that Q, — 0 uniformly in § < |x| < 1.
Now set
[1

Pn(x) = f(x + t)Q.(t)dt, x € [0, 1].
-1
By change of variable and assumption on f implies that
1-x fl

Pn(x) = fix+t)Qa(t)dt = f(t)Q.(t — x)dt,
-X 0

and the last integral is clearly a polynomial in x.
Thus {P,} is a sequence of polynomials.
Given € > 0, we chose 6 > 0 such that |y — x| < & implies
€

F) -l < 5.

Let M = sup|f(x)|, we see that for x € [a, b], we have

/1
|Pa(x) — f(X)| = | [fix+1t) — f(x)]Qa(t)dt]
-1
f1
< Fx +1t) - f(x)|Qn(t)dt
-1
Fs /6
< M Qn(t)dt+2§ Qn(t)dt
-1 -6
f1

+2M  Qa(t)dt
6

L
< 4M " n(1- 52)"+§
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1.15 Fourier Series

One of the fundamental methods of solving many problems in engineering elds
is to represent the behavior of a system by a combination of simple behaviors.
Mathematically, this is related to representing a function f(x) in the form of a
functional series
pik
f(x) = ckd(x).
k=1
Here the functions ¢(x) are suitable elementary functions, also called the base
set of functions, and the ¢, are called the coe cients of the expansion.
For the Taylor series

f(x) =

the set {1, x, ..., x". ...} is a base set of functions

Fourier Series: A Fourier series expansion of a function is a representation of
the function as a linear combination of sines and cosines, that is, the base set of the
representation is

{1, cos nx, sin nx}pZ4.

1.15.1 Periodic Functions

A function f : Q C R — R is said to be periodic if there exists a nonzero real
number w such that

Fx) = flx+ w), x € Q.
The simplest examples of periodic functions from R into R include the well known
sine and cosine functions, since for each k € Z\{0}.

~ N AL A A

Figure 1.4: Periodic functions

Remark: If w; and w, are such that

fix+wi) =f(x),  flx+w2)=f(x).

Then so is w: + ws.

flix+ (w1 = wy))
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There is a smallest positive value w of a periodic function f called the primitive
period (or the basic period or the fundamental period) of f(x).
The reciprocal of the primitive period is called the frequency of the periodic function.

Lemma: . | R . , .

flex) is w/c. If flx) and g(x) are periodic with the same period w, then h(x) =
af(x) + bg(x) is also a periodic function with period w. Here w is not necessarily a
primitive period.

Proof: Let ¢(x) = f(cx), then

d(x) = f(ex) = f(ex + w) = f(e(x + w/c)) = p(x+ w/e), xER.

This shows that w/c is a period.
For the second part, we consider

h(x + w) = af(x + w) + bg(x + w) = af(x) + bg(x) = h(x).

Example: sin(cx) and cos(cx) are periodic functions with period 2r/c.

The tunction

(an cos nx + b, sin nx),

is a periodic function with period 2.
Although, individual functions, cosx, cos2x, cos3x,..., have periods
2n, 1, 21/3, ..., respectively.
Lemma: If f(x) is a periodic function with period w, then
f ctw f w
fx)dx = f(x)dx,

c 0

whenever f is integrable on [0, w].
Proof: Geometrically, it is obvious

Y

y Ay s
A A s

C+ W F.-'_J.,

Figure 1.5: Geometric proof
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Consider
q+w fO fw z}‘+w
f(x)dx = f(x)dx+ f(x)dx+ f(x)dx
c c 0 w
[€ [w [€
= —  f(x)dx+ f(x)dx+ f(s)ds
0 0 0
fw
= f(x)dx.

0

showing that the integral of a periodic function with period w taken over an arbitrary
interval of length w always has the same value.

1.15.2 reriodic Extension

Suppose that f is a function de ned on [g, a + w]. Then the periodic extension of f

.

where n is an integer.

(' ]

o f(m) = f(-m)

| | | |
[ [ [ [ . : : 1
| | | o f1s contimious on |—m, T
[ [ [ [ ) ’
| | | |

—?rf\'{/ T \/ 3 \_/ 5T 7

Figure 1.6: Periodic extension example 1
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i A

Figure 1.7: Periodic extension example 2

1.15.3 Trigonometric Polynomials

Any linear combination of the trigonometric functions sin kx, cos kx, given by

( )

Sn(x) = L ax cos kx + besinkx

XER,

where a, and by are real numbers, is known as trigonometric polynomials.

Recall the Stone and Weierstrass theorem stating that the trigonometric polynomials
are dense in C[g, b] for any closed interval [q, b], provided that b — a < 2m.

w ¢ )
+ ak cos kx + bxsinkx X ER,

k=1

sn(x) = gzg

}"l;he sequence {s,}, converges on a set £, then we may de ne a function f : £ — R
y

_ao, ¢ )
f(x) = lim sn(x) - + ak coS kX + bk ¢iny kx

n—oo 2 , X € E.
k=1

The series on the right is called a trigonometric series. The constants ao, ax, bk
(k € N) are called coe cients of the trigonometric series.

We have taken the constant term in series as a¢/2 rather than ao so that we can
make a¢/2 t in a general formula later.

We observe that if the series on the right converges for all real [0, 2], then the
sum f must satisfy

f(x) = f(x+2m), x€R

Vector Space: A vector space is a nonempty set V of objects, called vectors, on
which are de ned two operations, called addition and multiplication by scalars (real
numbers), subject to the ten axioms (or rules). The axioms must hold for all vectors
u,v, and w in V and for all scalars c and d.

1. The sum of u and v, denoted by u +v, is in V.
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u+vs=v+u.

(u+VvV)+rw=u+(V+w)

. There is a zero vector 0 in V such that u+ 0 = u.

For each u in V, there is a vector —u in V such that u+(—u) = 0.

6. The scalar multiple of u by ¢, denoted by cu, is in V.

10.

c(u+vVv)=cu+cv.
(c+d)u=-cu+du.
c(du) = (cd)u.

lu=u.

Remark: Using only these axioms, one can show that the zero vector in Axiom 4 is

unique, and the vector —u, called the negative of u, in Axiom 5 is unique for each
uin V.

The Inner Product: Let u, v, and w be vectors in vector space V, and let ¢ be
a scalar. Then an inner product is a function <.,. > V X V — F such that

1.

2.

3.

4.

<V,u>=<u,Vv>
<(V+U),w>=<V,W>+<UW>
<cuvVv>=<ucv>=c<V,u>

<u,u>=> 0, and < u,u>=0 if and only if u = 0.

1.16 The space E

Let us de ne the space E be the set of all real valued piecewise de ned periodic
function f on the interval [—m, ] .

Theorem: The space E is a linear space, that is, a vector space. Moreover, E an
inner product space with respect to the inner product

[n
<fg>=" Flgxdx

=Tt

The trigonometric functions: The set of functions

o= {VLZ, cos(nx), sin(nx) : n € N}
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is an in nite orthonormal system in E with respect to the inner product de ned

[n
<f,g>= % f(x)g(x)dx.

=Jt

Let © = {¢ps, ¢, ..., Pn, ...} be an orthonormal basis of an in nite dimensional
inner product space X, and let f € X. Then the in nite series

< f, Pk > Pu(x) := - ckpr(x),

k=1

[ee]

is called the Fourier series of f (relative to ®), and the coe cients ¢« =< f, ¢ >
are called the kth Fourier coe cient of f.

We introduce [
1 Tt
IFf =<ff>=7  Iftal’dx.

=T

Suppose that we are given a trigonometric series of the form

_ao, 5 ¢ )
flx)= 2+ akcoskx+bk5inkx, x € E
k=1

Clearly, since each term of the series has period 2n, if it converges to a function
f(x), then f(x) must be a periodic function with period 2r.

Thus, only 2rt-periodic functions are expected to have trigonometric series of the
above form.

Problem: Suppose that f is a 2rr-periodic function. Under what conditions does
the function have a representation of the form

)

, COSNX + b, sin nx .

=2+ 5
2

n=1

When it does, what should be a,, b,?
Assume for the moment that the series

_a0, 5 )
flx) = , + 9 cosnx+bosinnx , (%)
n=1

converges uniformly on R. This is the case if

J_Ql f( )
2t 9l + Iy
n=1

converges, so that the series (*) is dominated by the convergent series in R.
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T ofx)dx = nm 5 +,} (an cos nx + b, sin nx)
=1
ao{l I'ndx + 2 {gﬂf ™ cos nxdx
= 2 o, } =1 T
by~ " sinnx)
+ -
T T
= do
Recall:
f n f
1 17
cosnxcos kxdx = &px = sin nx sin kxdx
n b7 —
I x
cos nxsin kxdx =0
-n
and

2 cos a cos B = cos(a + 8) + cos(a — 8)

2 sin a sin 8 = cos(a — B8) — cos(a + 6B)

2sina cos 8 = sin(a + 8) + sin(a — 6).

_a, ¢ )

flx) = R - a,,cosnx+b,7 sinnx (%)
n=1

Multiply by cos kx and the series forf(x) cos kx can be integrated term by term for
each xed k, we can determine ax and b,.

n T
1 f(x)cos kxdx = @l cos kxdx +
T 2n g
w1,
an cos kx cos nxdx
- -n
n=1 f . )
+b, sin nx cos kxdx .

=Tt

I
ar=_ f(x) cos kxdx.
T g
Multiply by sin kx and the series forf(x) sin kx can be integrated term by term
for each xed k, we can determine by and b,.

.f n T
1 flx)sinkxdx = %1 sin kxdx +
b/ — A | G
»( In
an sin kx cos nxdx

[ n )

+b, sin nx sin kxdx .

s
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[
1 T
b= f(x) sin kxdx.
T

-n

de ned by

s

are called the Fourier coe cients of f. The correspondinjg trigonometric series
; (

-+ ax cos kx + by Sin kx ,

is called the Fourier series of f. We express this association)by writing
Fo 288

2~+ G, cos kx + by Sin kx

k=1
to indicate that the Fourier series on the right may or may not converge to f at
some point t € [—m, rt].

Theorem: If the trigonometric series of the form
) ( )
— + ay cos kx + by sinkx (%)

More precisely, if the trigonometric series (¥) converges uniformly to f on [—7, 7],
then the ax and by are given by
1 [ [ n

" 1
ik = 7; f(x) CosS kXdX, k > 0, bk = 7; _nf(x) sin kxdxl (> 1

=T
Remark: We have no idea what happens if the series
® )
a, |
5 k cos kx + by sinkx , ()
£ k=1
doesn't converge uniformly on [—r, n].

However, since
|ak cos kx + by sin kx| < |ax| + |bkl,

Weierstrass M-test shows that the trigonometric series (*) converges absolutely and
uniformly on every closed interval [a, b] whenever

(lakl + [bxl)
k=1

is convergent.
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1.16.1 Fourier Series of Even and Odd Functions

Even and odd functions possess certain simple but useful properties:

. The product of two even (or odd) functions is an even function.

- The sum of two even (or odd) functions is an even (or odd) function.

+ The product of an even and an odd function is an odd function.

+ For a Riemann integrable function f de ned on [—¢, ¢] (¢ > 0), it is evident
that [ [

C C

f(x)dx =2 " f(x)dx, if fis even
=6 0

I
f(x)dx =0, if fis odd
=C
Fourier series of even function: Suppose that f(x) is a periodic function of

period 27t. Let us further assume that fis even on (—rm, ), i.e., f(x) = f(—x) for
all x € (—m, ).

Then the product function f(x) sin kx is odd, which means that b« = 0 for all k > 1,
and hence we have the Fourier cosine series
[ x
do il
f(x) ==—"*+  akcoskx,a, = — f(x) cos kxdx.
-
k=1
Fourier series of odd function: Suppose that f (x) is a periodic function of
period 2rt. Let us further assume that £ is odd on (-7, n), i.e., f (x) = —f (-x) for

all x € (—n, n).

Then the product function f(x) cos kx is odd, which means that ax = 0 for all k > 0,
and hence we have the Fourier cosine series
juj I n
fX)= vusinkx, b=~ f(x) sin kxdx.
b, n

k=1= -n

Example: Consider f(x) = |x| on [—n, r].
Then fis even and continuous on [—m, 7).

2(1 = (=1))

n?n

We have
Ix| = 4 > cos(2k + 1)x
T2 T, (2k+1)2
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ll_g_éozcos(Zk+1)x
X'=9 Tn (2k + 1)2

Remark: Note that the Fourier series here converges uniformly to |x| on [—n, 7]

but not on the whole interval (—o, o), and so outside the interval (— o, o), f (x)
is determined by the periodicity condition f(x) = f(x + 2m).

we can make use of this series to nd the values of some numerical series. For instant
x =0 gives

2 |

T _ - =
8 ~ (2k + 1)2-
k=1

Some natural questions arise:

. For what values of x does the Fourier series of f converge? Does it converge

for all x in [—m, m]? If it converges on [—m, ] but not to f, what will be its
sum?

+ If the Fourier series of f converges at x, does it converge to f?

+ If the Fourier series of f converges to f on [—nr, 1], does it converge uniformly
to f on [—m, m]?

Is the continuity of f is su cient to guarantee convergence of the Fourier series

of fon [—m, n]?
In 1876, Paul du Bois-Reymond constructed a continuous function f : [, 1] —
R whose Fourier series failed to converge to f at each point in a dense subset of

[-nm, n).
Indeed, the following are true statements

. There exists a continuous function whose Fourier series diverges at a point.

. There exists a continuous function whose Fourier series converges everywhere
on [—m, ], but not uniformly.

. There exists a continuous function whose Fourier series diverges for points in
some set S and converges on (—m, i) \ S.
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The space E: Let us de ne the space E be the set of all real valued piecewise
de ned periodic function f on the interval [—r, r].

De ne
{ _
E= feg : lim foe v i) = flxt) exists x € [—m, )
h—0+ h }
. flx+h)-f(x=) .
lim exists x € (-m, i]
h—0- h

Theorem: Let f € E. Then for each x € (-, nt), the Fourier series of f(x)
converges to the value
f(x=) + f(x+)
5 .
At the end points x = £+, the series converges to
f(n-) + f(=n+)
2

Remark: If f € E is continuous at x, then f (x—) = f (x+) = f (x), and so at such
points
f(x-) ;f(X+) = ().

Thus, the Fourier series of f converges to f(x) at the point x where it is continuous.

At the point of discontinuity x, the Fourier series of f assumes the mean of the
one-sided limits of f.

Corollary: If f : [-m, 1] — R is continuous, and if f(—n) = f(n), f'(x) exists and

is piecewise continuous on [—m, r1], then the Fourier series of f converges to f(x) at
every point x € [—m, m].

Theorem: Suppose that f : [-n, 1] — R is piecewise continuous on [—7, 7] and

piecewise monotone,that is, there exists a partition P = xo, x1, ..., X, of [-r, 1] such
that the restriction flix, , x.,k =1, 2..., n, is either increasing or decreasing.

Let f (x) be de ned for other values of x by the periodicity condition f (x) = f(x +
2r1). Then the Fourier series of fon [—, ] converges to

+ f(x) if fis continuous at x € (—m, n).
+ (f(x+) + f(x—))/2 if fis discontinuous at x.

« (f(m—) + f((—m)—))/2 if f is discontinuous at x = *r.
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y ~ T
| (fa=) + 7))
_ 2 -‘/

/ / e

.L\/:i:l:?.!'—:l = duljtl]_f[i]/\\-l-"' Cﬂt;_—._ﬁ# -

"'-.___ ——

—r Ols =

i

Figure 1.8: At discontinuous points

= —nm. Find the Fourier sine series

Example:If f(x) = x on [—m, ) and f(r)

of f.
—3m —r / s/ 5 &

Figure 1.9: Example

« fis odjzl function, hence gn = 0.
A i n—1
b =1 " xsinnxdx=2 " xsinnxdx = 21" ",
n no-n n 0 n

k-
x=2 z (=1 sinkx.
k1 K
Remarks: Note that the Fourier series does not necessarily agree with f(x) = x

at every point in [, n].
The Fourier series vanishes at both endpoints x = +m, whereas the function

does not vanish at either endpoint.
However, the Dirichlet's theorem states that series converges to f(x) at every

interior point of (—r, ).
For example at x = /2 the symbol = could be replaced by = and so

(
i 0, Q+l+

=2 1-"+
2 2 3 4 5
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b (_1)k—1

sin kx.

X =
k=1
Remarks: Finally, we remark that at the endpoints x = +r, the series converges
to
fla)+f((zm)-) _n+ (=m) _
2 2

we could also consider fas follows: f(x) = x on (—mr, ) and f(—n) = f(rr) = 0.

0.

Figure 1.10: Example

Example: If f (x) = e on [, ) and f (x + 2r1) = f (x) for x € R. Determine
the Fourier series of the function f.

Some facts about complex numbers.

Example: If f (x) = e on [—r, ) and f (x + 2r1) = f (x) for x € R. Determine
the Fourier series of the function f.

J J J

enx = cosnxdx+i  sinnxdx.

According to this, the Fourier coe cients are easy to derive quickly by writing

]

1T
. = =inxgX
an — ib, = n_ne e*dx
1 e(l—in)x
T mi-in T
_ 1 (e(l—in)n _ e—(l—in)n)
T 1—in
_ (-1 — e
(1 — in)
2(_1)"sinhrm 2(1)"*nsinh it
an=— G n * b=
(1 + n?) (1 + n?)
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We have
o n
« .~ Sinhm 2sinhm > (-1)
eX = + cos nx
n olT n:1(1+n2)

+ 2sinh (_1)"'n
—  n=1——sinnx.
(1+n2?)

Remark: In particular, at the point of continuity x = 0, it follows that

_sinhmt = 2sinhm = (—1)”
1=""% *"n L (1 +n?)
n=

Which can be written as
(o] n
mesem—1 > _(=1)
2 - (1+n2)"
1

n=

Remark: According to Dirichlet's theorem, at the endpoint x = 7, we have

- H . oo
et+e™ __Slnh7T+2?s‘4nhn 1

1+ n2?)’

m
2 s ey (

1

ncothm=1+2 ———————.
(1+n?)
1

n=

Which reduces to

mcothm —1 z 1
2 o (1+02)
1.17 Fourier Series for Arbitrary Periodic Function

Suppose that f is a 2L-periodic and Riemann integrable function. The function
f(at) has period 2L/a.

In particular, f((L/n)t) is 2rn-periodic, and so the Fourier series expansion has the
following in terms of the variable t:

L _a ¥ ( )
f(rtt)= ) +,,=1 ancosnt+ bpsinnt | t € [-nnl
where
Tnoy 1l krt
a, = f( t)cosntdt = f(x)cos( x)dx.
JT - TT L -/ L
w ( )
L — Qo .
f(et)=—+ ancosnt+b,sinnt | t € [-nn,
7T 2 —
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where 1fn . 1fL

krt
an= f( t)cosntdt= f(x)cos(~ x)dx,
T -n T L L

and similarly, I,

b, = 1 f(x)sm( x)dx
L -
We remark that the interval of integratlon in the last two formulas for the Fourier
coe cients can be replaced with an arbitrary interval [c, ¢ + 2L], of length 2L.
Changing the variable t, by setting t = (r7/L)x.

Theorem: Let f be a periodic function with period 2L. Then the Fourier expansion
of f is given by

sub 7 nn )
f(X) = 2~ + Gn COS( L X) + b, Sin(nL_nX) , X < [_I-/ L]/
n=1
where 1 I
-~ (x) cos( x)dX
an=y 4 L
and [
L

bn=l f(x)sm( x)dx
L

Remark: The interval of integration in the last formulas for the Fourier coe cients
can be replaced with the interval [c, ¢ + 2L], where ¢ is any real number; we usually

let c = - L. Notice that

nr nm
cos(— (x+ 2L)) = cos(—x)
L L

nm nr
sin(—(x + 2L)) = sin(—x).
L L

Corollary: The Fourier series of an even function f with period 2L is a Fourier
cosine series

e kn
f(X)iEz + Gn cos( Lx), X € [c,c+2L],
n=1
where /
1 c+2L
an=">- f(x) cos( x)dx

and the Fourier series of an odd function f with perlod 2L is a Fourier sine series

nr
flx) = bn sin( | x), x € [c,c+2L],
n=1 L
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where [
1 c+2L

nr
b,=" f(x)sin(™ x)dx
L . L
where c is any real number.

Example: Consider the function

{
Flx) = 0, —2=<x<0,

1, 0<x<2
Here, we have L = 2, and the function is even. We have

[ L
an = 1 f(x) cos( k_nx)dx,
L L

-L

and [
1t . kn
b, =" f(x)sin(~ x)dx.
L _, L
we obtain 1
ao = i’ a,=0
1+( 1)1
n= " n>1
nm

Example: Consider the function f(x) = | sinx|. The function is de ned for all x
and the function has period r.
Clearly, f represents a continuous, piecewise smooth, even function of period r,

and therefore it is everywhere equal to its Fourier series, consisting of cosine terms

only.
We have c =0, and L = /2, then we have

2 I
ax = f(x) cos(2kx)dx
m 0
= 2 sin x cos(2kx)dx
1 Ol ]
= sin(1 + 2k)x — sin(2k — 1)x dx
T
1 I Rl ]
= _ sin(1 + 2k)x — sin(2k — 1)x dx
e )
1 cos(1+2k)x , cos(2k - 1)x ”
oon 2k +1 2%k — 1 0
— . T ( Zk+T — Zk_T )
B L) G T
4
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Thus, the Fourier series expansion of | sinx| is

. 2 4% cosakx
|sinx| = = — A X € [-m, nl.
noom,_ 4k -1

1.18 Best Approximation Theorem

Theorem: Let ® = ¢y, .. ¢, be an orthonormal set of functions in the inner
product space E, and let ¢, be the Fourier coe cients of f relative to ¢x:
I'n

Ck = % f(X)P(x)dx =< f, px > .

E To(x) is an arbitrary Fourier polynomial relative to ¢y, that is, Th(x) =
1 dipi(x) for some constants dj, ..., dn, then we have
“ n “2
S i O T A
Ng=1 1
2 =
with equality if and only if [ 1=|gf< |fo% each k = 1,...,n. Moreover,
- =T
>, In

Proof: Setting S, = |_; ) 2dx

cpr(x). Then we have

ks

If = Tall> = ) - Talx)| dx
_f,rn n
1 » 1’ )
= F(x)|“dx + . | Ta(x) | “dx
, 1T
—Tndk f (x)dr(x)dx
I » »
=~ |f)lPdx+ |dk|2— 2 crdi
n_ k=1 k=1
In D
- 1 ckd,
N LR
A , T
= fF(x)“dx + ek —dil " — 2
- k=1 k=1

o)
= |lf -S>+  la = dil>
k=1
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Therefore,
If = Tl 2= IIf = Sall 2

with equality if and only if ¢« = dx for each k=1,...,n.

If = Tall® = 1If = Sall %

Note that f and ¢« are xed, while the di are allowed to vary.
In particular, setting di = ¢, shows that the minimum value of ||f — T,||? >

If — Sall? is given by

1 " ”
. - 2 2 2 2
min [If — Tall? = FOATdx - lad” = lIfIIF = ladl’,
n T
k=1 k=1

-
which has to be nonnegative. This gives
1 7

lal> <~ |F(x)|%dx for all n.
k=1 o
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Chapter 2

Functions of Several Variables

2.1 Euclidean Spaces
The vector sum of
X =(x,x2,...,x) and Y = (yy, V2, ..., Vn)

is
X+Y=(1+y,X2a+VYa...,Xn+ Yn).

If a is a real number, the scalar multiple of X by a is

aX = (axi, axa, ..., axn).

In R4, let ( )
X=(1,-2,6,5 and Y= 3,-5,4, 12 .
Then
( )
X+Y= 4,-7,10 2
and

6X = (6, —12, 36, 30).

Theorem: If X, Y, and Z are in R"and a and b are real numbers, then

+ X+Y =Y +X (vector addition is commutative).

+ (X+Y)+Z =X+ (Y +Z) (vector addition is associative).

(2.1)

(2.2)

+ There is a unique vector 0, called the zero vector, such that X +0 = X for all

X in R".

+ For each X in R"there is a unique vector —X such that X + (—X) = 0.

+ a(bX) = (ab)X.

+ (a+b)X = aX + bX.
c a(X+Y)=aX+aY.
11X =X
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Remark: Clearly, 0 = (0,0,...,0) and, if X = (x4, x,, ..., x»), then
—X = (—X1, —=X2, ..., —Xn).
We write X + (—Y) as X — Y. The point 0 is called the origin.

Length, distance: The length of the vector X = (x3, X2, ..., X») is

2 2 212
IX| =(x1+x2+ - - +x,)

The distance between points X and Y is | X — Y].

In particular, |X| is the distance between X and the origin. If |X| = 1, then X is a
unit vector.

Example: The lengths of the vectors

( )
X=(1,-2,6,5 and Y= 3,-541%

are \/

1X| = (12+(—2)+62+5%)% = "66

v

and 201
2 2 2 1212

Y[ =(3 +(=5) +4 +(,)) = 5
The distance between X and Y is

2 2 2 1212 \/7]49
IX-Y|=(1-3) +(—2+5) +(6—4) +(5—-2)) = 5

The inner product X - Y of X = (xy, x2, ..., xo) and Y = (yy, y2, ..., yn) is

X Y =xiy1 +xay2 + * *+ + + Xpyn.

2.2 Schwarz's Inequality

Lemma: If X and Y are any two vectors in R", then

X - Y] < [X]]Y], (2.3)

with equality if and only if one of the vectors is a scalar multiple of the other.

Proof: Suppose that Y= 0 and t is any real number. Then

3

0 < ‘ (x,-—ty,-)2

x Yn )Y
= -2 Tyt LYt (2.4)

= X2 - 2(X - Y)t+ 2|Y|2
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The last expression is a second-degree polynomial p in t. From the quadratic formula,
the zeros of p are

Hence,

(X -Y) < [X|°Y]°. (2.5)
because if not, then p would have two distinct real zeros and therefore be negative
between them, contradicting the inequality (2.4).

Proof:

(X - Y? < [X]’[Y]3 (2.6)
Taking square roots in (2.6) yields (2.3) if Y 0. If X = tY, then | X - Y| =
IX|1Y]| = |t||Y|? (verify), so equality holds in (2.3).

Conversely, if equality holds in (2.3), then p has the real zero t, = (X - Y)/|Y|?,
and
)

(xi — toyi)> =0
i=1

from (2.4); therefore, X = tyY.

Theorem: It X and Y are in R", then

IX+Y| < |X]| +]Y], (2.7)

with equality if and only if one of the vectors is a nonnegative multiple of the other.

Proof: By de nition,
X+Y [P = 7 (o p)?

Z i=1 n 5
n
i X+ 2 T aXyit oY

X2 +2(X - Y) + [Y]? (2.8)
IX|%2+2]X]| Y| +[Y|?> (bySchwarz's inequality)
= (IX]+ 1Y)

IA

Hence,
IX+Y|* < (IX]+[Y])™
Taking square roots yields (2.7).
From the third line of (2.8), equality holds in (2.7) if and only if X - Y = |X]|Y],

which is true if and only if one of the vectors X and Y is a nonnegative scalar
multiple of the other.
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Corollary: If X, Y, and Z are in R”, then

X-Z| < |X-Y[+|Y-Z|.

Proof: Write
X-Z=(X-Y)+(Y - Z),

and apply triangle inequality with X and Y replaced by X - Y and Y — Z.
Corollary: If X and Y are in R”, then

X -Y[ > [IX] - Y]]

Proof: Since
X=Y+(X-Y),

Triangle inequality implies that
X[ < Y +[X-Y]|

which is equivalent to |X| — |Y| < |X - Y].
Interchanging X and Y yields

Y| - IX| < |Y - X]|.
Since |X — Y| = [Y — X|, the last two inequalities imply the stated conclusion.
Theorem: If X, Y, and Z are members of R" and a is a scalar, then
+ |oX] = |a] [X].

+ |X| = 0, with equality if and only if X = 0.
+ | X = Y| = 0, with equality if and only if X =Y.

X Y=Y X
X (Y+Z)=X -Y+X - Z

c (X)) Y=X-(cY)=c(X - Y).
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2.2.1 Line Segment in R”

The equation of a line through a point X, = (xo, yo, 20) in R? can be written
parametrically as

X =Xo+uit, y=yo+uzt, z=2zo+uU3sl, —oo<t< oo,

where ui1, uy, and us are not all zero. We write this in vector form as

X=Xo+tU —oo<t< oo, (2.9)

with U = (uy, uy, us), and we say that the line is through X, in the direction of U.
There are many ways to represent a given line parametrically.
For example,
X=Xp+sV, —o0<s<oo, (2.10)

represents the same line as (2.9) if and only if V = aU for some nonzero real number
a.

Then the line is traversed in the same direction as s and t vary from —oo to oo if
a > 0, or in opposite directions if a < 0. To write the parametric equation of a line
through two points X, and X; in R3,

We take U = X; — X, in (2.9), which yields
X=Xo+t(X1—Xo)=tX1+(1—t)Xo, — 0 <t< 00,

The line segment from X, to X; consists of those points for which 0 < t < 1.
Suppose that X, and U are in R” and U= o.

Then the line through X in the direction of U is the set of all points in R" of the
form

X=Xp+tU, —oo<t<oo,

A set of points of the form

X =Xo+1tU, t1 <t<1,

is called a line segment. The line segment from X, to X; is the set of points of the
form

X=Xo+t(X; - Xo) =Xy +(1 — )X, O0<t=<1.

2.3 Neighbourhoods and Open Sets in R”
If € > 0, the e-neighborhood of a point X, in R” is the set

Ne(Xo) = {XIX - Xo| <}
Ne(Xo) in R2
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We are going to de ne neighborhood, interior point, interior of a set, open set,
closed set,limit point, boundary point, boundary of a set, closure of a set, isolated
point, exterior point, and exterior of a set.

Example: Let S be the set of points in R? in the square bounded by the lines

x = £1,y = +1, except for the origin and the points on the vertical lines x = +1
thus,

S={(xy):(xyY=(0,0), —1<x<1, —1<y <1}
Every point of S not on the lines y = +1 is an interior point.
y

A
(-1, 1) (1, 1)

(-1,-1) 1, -1)

Figure 2.1: The set S

SP={(xy):(xy) (0,0), —1<xy<1}

S is a deleted neighborhood of (0, 0) and is neither open nor closed.
The closure of S is

S={(xy):—1<xy=<1}

and every point of S is a limit point of S.
The origin and the perimeter of S form dS, the boundary of S. The exterior of

S consists of all points (x, y) such that |[x| > 1 or |y| > 1. The origin is an isolated
point of S-.

Example: If X, is a point in R" and r is a positive number, the open n-ball of
radius r about Xo is the set

B/(Xo) = {X : |X — Xo| <r}.
Thus, e-neighborhoods are open n-balls. If X; is in $,(Xo) and
IX —Xi|<e=r—|X—Xol,

then X is in S{(Xo). Thus, S(Xo) contains an e-neighborhood of each of its points,
and is therefore open.

~
OO
—
(D
M)
—
-
-
(D
wn
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We can show that the closure of B/(Xo) is the closed n-ball of radius r about X,
de ned by

S{Xo) = {X : | X — Xo| < r}.

Remark: Open and closed n-balls are generalizations to R” of open and closed
intervals.

Lemma: If X; and X, are in S(Xo) for some r > 0, then so is every point on the
line segment from X; to X..

Proof: The line segment is given by
X=tXo+(1-1t)X;, O<t<l1.
Suppose that r > 0. If
IX: —Xol <r, |Xo—Xo| <,
and 0 <t < 1, then

|X—Xo| |th+(1—t)X1—th—(1—t)Xo|

[tHX, — Xo) + (1 — ) X1 — Xo)|
tr+(1—-t)r=r.

A

2.4 Convergence of a Sequence in R"

A sequence of points {X,} in R” converges to the limit X if
Jim X, - X| =0,

Ln this case we write
lim X, =X.

r—oo

Theorem: Let

X = ()?]_, )?2, .o ,;n) and Xr = (Xlr, X2r, ey an)/ r Z 1'

Then lim,-» X, = X if and only if

Iimxir-=x;, 1<i<n;
r—oo -

that is, a sequence {X,} of points in R” converges to a limit X if and only if the
sequences of components of {X,} converge to the respective components of X.

IQ1 Use Bolzano-Weierstrass theorem to show that if is an infinite sequence of nonempty compact sets
and then is nonempty
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Theorem (Cauchy's Convergence Criterion): A sequence {X,} in R" con-
verges if and only if for each £ > 0 there is an integer K such that

IX,-X:|<e if rrs=>K.

Diameter of a Set: If S is a nonempty subset of R”, then

diS)=sup{|X-Y|: XY € s}

is the diameter of S.

If d(S) < o0, S is bounded; if d(S) = o, S is unbounded.

2.5 Principle of nested sets

Theorem: If S;, S, ... are closed nonempty subsets of R"such that
528 D252 -
and
lim d(S;) =0,
r—oo

then the intersection

79
/I = Sr
r=1

contains exactly one point.

Proof: Let {X,} be a sequence such that X, € S, (r > 1).

Because of $ 0S5 D - - 2S5 D - -, X, € 5ifr >k so

IX,-Xs| <d(Sk) if r,s=k

(2.11)

(2.12)

From lim,~. d(S;) = 0 and Cauchy's convergence theorem, X, converges to a
limit X. Since X is a limit point of every Sy and every Sk is closed, X is in every
Sk (A set is closed if and only if it contains all its limit points). Therefore,

X e l,s0 V/=D. Moreover,i is the only point in /, since if Y € /, then

X -Y| <dS), k=1,

and (2.12) implies that Y =X.
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2.6 Heine-Borel T'heorem

We are going to state and prove the Heine-Borel theorem for R”.

This theorem concerns compact sets. As in R, a compact set in R” is a closed and
bounded set.

Recall that a collection H of open sets is an open covering of a set S if
Sc U{H:H € HL

Theorem: If H is an open covering of a compact subset S, then S can be covered
by nitely many sets from H.

Proof: The proof is by contradiction. We rst consider the case where n = 2, so
that you can visualize the method.

Suppose that there is a covering H for S from which it is impossible to select a
nite subcovering.

Since S is bounded, S is contained in a closed square

T={(xy)lar <x<ai1+l,a, <x=<ax+L}

with sides of length L
T® T®
s @ s @
S @ S ®
T®@ T®

Figure 2.2: Heine-Borel Theorem for n =2

Bisecting the sides of T leads to four closed squares, 7%, 72 7G) and T®),
with sides of length /2. Let

Sh=snNnT1h 1<iji<a4.

Each S, being the intersection of closed sets, is closed, and
&
sS= s,
i=1

Join VU WhatsApp Group:
https://chat.whatsapp.com/JURZW{AElue6qixpzkfduE



https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE

2.6. Heine-Borel Theorem 80

Moreover, H covers each S, but at least one S cannot be covered by any nite

subcollection of H, since if all the S’ could be, then so could S. Let S1 be a set
with this property, chosen from s, s(2)) 53 and S,

We are now back to the situation we started from: a compact set S; covered by H,
but not by any nite subcollection of H. However, S; is contained in a square T,
with sides of length L/2 instead of L. Bisecting the sides of T; and repeating the
argument, we obtain a subset S, of S; that has the same properties as S, except that
it is contained in a square with sides of length L/4. Continuing in this way produces
a sequence of nonempty closed sets So (= S), S1, Sa, ..., such that S D Sk and
d(Sk) < L/2%V2 (k = 0).

. N
From Principle of Nested Sets Theorem, there is a point X in  ¢.; Sk.

Since X € S, there is an open set H in H that contains X, and this H must also
contain some e-neighborhood of X. Since every X in S satis es the inequality

IX — X| < 2-k12
it follows that Sx C H for k su ciently large.

This contradicts our assumption on H, which led us to believe that no Sk could be
covered by a nite number of sets from H.

Consequently, this assumption must be false: H must have a nite subcollection
that covers S. This completes the proof for n = 2.

The idea of the proof is the same for n > 2. The counterpart of the square T is
the hypercube with sides of length L:

T={(xL,x2,...,x0) ;@i = xi<aj+L,i=1,2,...,n}

Halving the intervals of variation of the n coordinates xi, x, ..., x, divides T into
2" closed hypercubes with sides of length L/2:

TW = {(X1,X2,. e Xn) i bi <X < bi+L/2,1<i< n},
where b; = a; or b; = a; + L/2. If no nite subcollection of H covers S, then at least
one of these smaller hypercubes must contain a subset of S that is not covered by

any nite subcollection of S. Now the proof proceeds as for n = 2.

Remark: The Bolzano Weierstrass theorem is valid in R”; its proof is the same as
in R.
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2.7 Connected Sets in R”

A subset S of R” is connected if it is impossible to represent S as the union of two
disjoint nonempty sets such that neither contains a limit point of the other.

If S cannot be expressed as S = A U B, where

A=0 B=0 AnB=0 and ANB=10. (2.13)

If S can be expressed in this way, then S is disconnected.

Example: The empty set and singleton sets are connected, because they cannot be
represented as the union of two disjoint nonempty sets.

Example: The space R"is connected.

IfRP'=AUBwWithANnB=C0and AN B =, thenA C Aand B C B.

That is, A and B are both closed and therefore are both open.

Since the only nonempty subset of R” that is both open and closed is R” itself,
one of A and B is R"and the other is empty.

2.7.1 Polygonal Path
If X3, X,,..., Xk are points in R”

Let L; is the line segment from X; to X1, 1 < i < k — 1, we say that Ly, L,,
..., Li-1 form a polygonal path from X; to Xu.

We say that X; and Xy are connected by the polygonal path.

2.8 DPolygonally Connected Set

A set S is polygonally connected if every pair of points in S can be connected by a
polygonal path lying entirely in S.

Theorem: An open set Sin R"is connected if and only if it is polygonally
connected.

Proof: For su ciency, we will show that if S is disconnected, then S is not poly-
gonally connected.

Let S = AU B, where A and B satisfy

A=0 B=0 AnB=0 and ANB=10.
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Suppose that X; € A and X, € B, and assume that there is a polygonal path
in S connecting X; to X,. Then some line segment L in this path must contain a
point Y; in A and a point Y; in B.

The line segment

X=tY,+(1-t)Yy, 0<t<1

is part of L and therefore in S. Now de ne
p=sup{t:tVa+(1—-t)Y1 €A 0<t=<rt1 <1}

Let X, = pY2 + (1 — p)Y1. Then X, € AN B.

However, since X, € AUBand AN B = AN B = @, this is impossible.

Therefore, the assumption that there is a polygonal path in S from X; to X; must
be false.

For necessity, suppose that S is a connected open set and X, € S. Let A be the set
consisting of X, and the points in S can be connected to X, by polygonal paths in
S. Let B be set of points in S that cannot be connected to X, by polygonal paths.

If Yo € S, then S contains an e-neighborhood N((Yo) of Yo, since S is open. Any
point Y; in N¢(Yo can be connected to Y, by the line segment

X=tY1+(1—t)Yo, 0o<t<1,

which lies in N.(Y,) and therefore in S. This implies that Y, can be connected
to Xo by a polygonal path in S if and only if every member of N,(Y,) can also.
Thus, N.(Yo) C A if Yo € A, and N(Y,) € B if Yy € B. Therefore, A and B are
open. Since A N B = @, this implies that AN B = A N B = &. Since A is nonempty
(Xo € A), it now follows that B = &, since if B/= &, S would be disconnected.
Therefore, A = S, which completes the proof of necessity.

Remark: Any polygonally connected set, open or not, is connected. The converse
is false. A set (not open) may be connected but not polygonally connected.

Regions in R": A region S in R" is the union of an open connected set with some,

all, or none of its boundary; thus, S° is connected, and every point of S is a limit
point of S°.

Example: Intervals are the only regions in R. The n-ball B{X,) is a region in R”,
as is its closure S,(Xo). ThesetS ={(x, y) : x>+ > <1 or x*+)* > 4}isnot
a region in R?, since it is not connected.

The set S; obtained by adding the line segment

L,: X=t(0,2)+(1—-1)0,1), O<t<1,

Join VU WhatsApp Group:
https://chat.whatsapp.com/JURZW{fAElue6qixpzkfduE



https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE

2.8. Polygonally Connected Set

83

Figure 2.3: Disconnected set which is not a region

— et

Figure 2.4: A connected set which is not a region
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to S is connected but is not a region, since points on the line segment are not limit
points of S). The set S, obtained by adding to S; the points in the rst quadrant
bounded by the circles x* + y* = 1 and x* + y* = 4 and the line segments L; and

L: X=t(2,00+(1—1)(L0), O<t<l,

is a region.

Figure 2.5: A region

2.9 Sequences in R”

A sequence {X,} of points in R” converges to a limit X if and only if for every £ > 0
there is an integer K such that

X,-X|<e if r>K.

The R" de nitions of divergence, boundedness, subsequence, and sums, di erences,
and constant multiples of sequences are analogous to those we discussed in Analysis
I

Since R” is not ordered for n > 1, monotonicity, limits inferior and superior of
sequences in R”, and divergence to + oo are unde ned for n > 1.

Products and quotients of members of R” are also unde ned if n > 1.
Several theorems from Analysis I remain valid for sequences in R", with proofs

unchanged, provided that | | is interpreted as distance in R".

1. uniqueness of the limit.

2. Boundedness of a convergent sequence.
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3. Concerning limits of sums, di erences, and constant multiples of convergent
sequences.

4. Every subsequence of a convergent sequence converges to the limit of the
sequence.

2.10 Domain of Function of n Variable

We denote the domain of a function f by Dy and the value of f at a point X =
(x1, X2, ..., xn) by f(X) or f(x1, X, ..., Xn).

If a function is de ned by a formula such as

f(X) (1 - x < X2 — e — x2>1/2 (2.14)

2 n

1, 0 .
1-X ==

g(X) (2.15)

without speci cation of its domain, it is to be understood that its domain is the
largest subset of R” for which the formula de nes a unique real number.

2.11 Limit at a Point of a Function of n Variables

A function f(X) approaches the limit L as X approaches X, and write

lim F(X) =1,
X—-Xo

if X, is a limit point of Dr and, for every € > 0, there is a § > 0 such that

FX)-Li<e

for all X in Dy such that
0<|X—Xo| <6.

Example: If g(x, y) = 1 — x* — 2)?, then
lim  glxy)=1-—x (2)_ 2y é (2.16)
(%, y)—(xo, y0)

for every (xo, yo).
To see this, we write

la(x, y) — glxo — yo|

(1= = 2) = (1= = 2)

IA

x> = x2| + 2]y* — y?|
0 0

= | (x+ x0)(x — xo)| (2.17)
+2|(y + yo)(y — yo)|
X — Xo|(|x + xo| + 2|y + yo)]),

IA
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since
Ix = x| < [X=Xo| and |y -yl < X - Xol.

If | X — Xo| <1, then |x| < |xo] +1 and |y| < |yo| + 1.
This and (2.17) imply that
lg(x, y) — g(xo - yo)| < KIX-Xo| if [X-Xo|l <1,
where
K = (2]x0] + 1)+ 2(2|yo| +1).

Therefore, if £ >0 and

IX — Xo| <6 = min{1, e/K},

then
“g(xy) — (1 — x0— 2y <e.

Example: The function

sin VI X2 2y2
hix,y) = ————=

1-x2—2y?
is de ned only on the interior of the region bounded by the ellipse

x> +2y* = 1.

It is not de ned at any point of the ellipse itself or on any deleted neighborhood of

y Y

><><D =3
X

X+ 2y2 =1 X+ 2y2=1

dh

(@) (b)
Figure 2.6: Domain of the function

such a point. Nevertheless,

lim hix,y) =1 (2.18)
(%, y)—(xo,y0)
if
X2 +2y* =1. (2.19)
0 0
To see this, let y

ulx,y) = 1 —x2—2y2
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Then in Ul y)
sinu(x, y
h(x,y)= ————.
u(x, y)
Recall that .
lim 37 _ 1.
r—0 r

Therefore, if € >0, there is a 6; > 0 such that

sinu

U —1 <e if 0<|u| <61
From previous example, we have

2 2
lim (1—x -2y )=0.
(%, y)—(xo,y0)

If (2.19) holds, so there is a § > 0 such that

0<u’x,y)=(1—x>—2y")< 6%

(2.20)

(2.21)

if X = (x, y) is in the interior of the ellipse and |X — X,| < 6; that is, if X is in the

shaded region.
Therefore, J
O<u= 1-—x2—-22<6;

(2.22)

if X is in the interior of the ellipse and |X — X,| < 6; that is, if X is in the shaded

region. This, (2.20), and (2.21) imply that
lhix,y) — 1] <«
for such X, which is the required result.
Theorem: If limx-x, f(X) exists, then it is unique.
Proof: See lecture.
Example: The function

xy

X2+ y?

flx,y) =

is de ned everywhere in R? except at (0,0). Does limy)-(o,0) f(X ¥) exist?

If we try to answer this question by letting (x, y) approach (0, 0) along the line

y = x, we see the functional values
X2
flx, x) = Ix2 = >

and conclude that the limit is 1/2.
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However, if we let (x, y) approach (0, 0) along the line y = —x, we see the
functional values
foo—x)=— =1
’ o222
and conclude that the limit equals —1/2.
In fact, they are both incorrect. What we have shown is that
1 1
limf(x,x)=—- and limf(x, _x)= __.
2 2

x—0 x—0
Since limy-o f(x, x) and limyo f(x, —x) must both equal lim()-(0,0) f(X, ¥)-
Theorem: Suppose that f and g are de ned on a set D, X is a limit point of D,

and
lim f(X) =1, lim g(X) = L.
X—>Xo

X—-Xo
Then

lim (F+g)(X) = Li+Ly, (2.23)

X—-Xo

JmF-9X) = Ll (2.24)
lim (fg)(X) = Lil,, (2.25)
X—>)_(o

’f<;z>= >

lim x) = -% (2.26)

X-Xo ( L>

2.12 In nite Limits and Limits at X — oo
We say that f(X) approaches co as X approaches Xo
lim =
X—)Xof (X) = co

if Xo is a limit point of Dyand, M, there is a § > 0 such that

f(X) >M whenever 0<|X —-X,| <6 and X € Dy.

We say that
l _
o JX) = —o0
if
li _ _
g, (X)) = oo
Example: If
f(X) = (l—le—x2 > —XZ,),‘l/Z,
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then
lim —
g, f(X) = 00
if |Xo| = 1, because 1
fX) = ———
X — Xof
SO 1
fX)>m if 0<|X—Xo| <= R
Example: If
X, y)= ———,
Fooy) x+2y+1
then lim(y)-(1,-1)f (%, y) does not exist (why not?).
But
lim =
(xy)—(1,-1) Floy)l = oo
To see this, we observe that
Ix+2y+1] = |(x—1)+2(y+ 1)

< 5/X-Xo| (bySchwarz'sinequality),

where X, = (1, —1). So

1 1
= > — -
IF(x, vl x+2y+1 > Vax-X 4
Therefore, .
Fooy)>M if 0<|X-Xo|< /\T%
Example: The function ( )
sin , Y .
X 2z

flx,y,2) = X2 y2 T2
assumes arbitrarily large values in every neighborhood of (0, 0, 0).
For example, if X« = (x4 y« z«), where

1

XK = =Zr = ,
k=YK « 3tk+3'm

then ( )

F(X,) = k+i TT.
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However, this does not imply that limx-e f(X) = 0. Since, for example, every
neighborhood of (0, 0, 0) also contains points

( 1 1 1)
Xk = 7 ;v .
3kmr  3km 3km

For which f&) =0.
2.12.1 Limit at In nity
If Dfis unbounded, we say that

lim F£f(X)=L (nite)
X |00

if for every € > 0, there is a number R such that

f(X)-L| <& whenever [X|>R and X € Dy

Example: If ( 1 )
fix,y,z)=cos — —  ,
X2 +2y? + 72
then
lim £(X) = 1. (2.27)
|X|—>00

To see this, we recall that the continuity of cosu at v = 0 implies that for each
€ >0 there is a § > 0 such that

|cosu—1| <e if |u|l <é.

Since
1 1

=< .
x2+2y2+ 227 [X]?

V=
It follows that if |X| >1/ 6, then
1

[— R
X2 +2y? + 22 6

Therefore,
F(X)-1 <e

Example: Consider the function de ned only on the domain

D={(x,y):0<y <ax} O<a<],
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b
y 1
f(X/ y) = ‘
X—=y
We will show that
|)y|m flx, y) =0. (2.28)

It is important to keep in mind that we need only consider (x, y) in D, since fis
not de ned elsewhere.

In D,
x—y=x(1-a) (2.29)
and
IXP =x?2+y < x{1+a}.
So
X Z ,\LJ_I_‘
1+a2
This and (2.29) imply that
1-a
X—y= X|, XebD.
e
So \/] +az 1
X, < T ,
Foonl=—_, x| X€D
This and (2.29) imply that
1 a
x—y>+_— _|X|, Xeb.
1+a?
So \/:I Faz 1
X, < T ,
Foonl=—— x| X€D
Therefore,
flx y)l <e
- V
if X € D and teg?1
X]| > -
l1-a ¢
Remarks: In the same manner we can de ne limx-e f (X) = co and
limx|-e f (X) = —co. We will have the following notion limx-x,f (X) exists
means that limx-x,f (X) = L, where L is nite; to leave open the possibility that

L ==o00,

We will say that limx-x,f (X) exists in the extended reals. A similar convention
applies to limits as |X| — oo.
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2.13 Continuity

If X, is in Dy and is a limit point of Dy, then we say that f is continuous at X, if

JmF(X) = £(Xo)-

Theorem: Suppose that X, is in Dy and is a limit point of Dy. Then f is continuous
at X, if and only if for each € > 0 there is a § > 0 such that

FIX) - f(Xo)l <«

whenever
IX - Xo| <6 and X € Dy.

Example: The function

fix,y)=1—-x* =2y

is continuous on RZ.
Solution: See lecture.
Example: Consider the function

sin | 1=x2=2y2 2 2
Y A —
h(X/ y) = 1-x2-2y2 7 X + zy < 1’
1, X2+ 2y =1,

then it follows from the example we have discussed that h is continuous on the

ellipse
X2 +2y* = 1.

Example: Can we rede ne the function

Xy
fxy) = m,
to make it continuous at (0, 0).
The limit
lim  f(x, y)
(% y)—(0,0)

does not exist.

Consequently, it is impossible to de ne the function at origin to make it contin-
uous.

Theorem: If fand g are continuous on a set S in R”, then so are f+g, f — g, and
fg. Also, f/g is continuous at each X, in S such that g(Xo)=0.
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2.14. Vector Valued Functions 93
2.14 Vector Valued Functions :_Z_Z___L_ég_t_ﬁgé ______ :
Suppose that g1, g7, ..., g. are real-valued functions de ned on a subset T of R™.

We de ne the vector-valued function G on T by

G(U) = (g:(U), g2(U), ..., gn(U)), UeT

Then g1, g2, ..., g» are the component functions of G = (g1, g», ..., gn). We say
that
UII_)nzJo GU)=L=(LyLs...,Ln)
if
UII—TIO g(U)=L, 1<i<n,
and that G is continuous at Uy if g1, g, ..., g, are each continuous at Us.

Theorem: For a vector-valued function G,

lim G(U)=L
U-Uo

if and only if for each € > 0 there is a § > 0 such that

|G(U)—L| <e whenever 0<|U—-Uy| <6 and U € De.

Similarly, G is continuous at U if and only if for each € > 0 there is a § > 0 such
that

|G(U) — G(Uy)| <e whenever |[U-Uy| <6 and U € De.

2.14.1 Composite Function

Let f be a real-valued function de ned on a subset of R”, and let the vector-valued
function G = (g1, g2, ..., gs) be de ned on a domain Dg in R™.
Let the set

T={U:U € Ds and G(U) € Dy},

be nonempty.
Composite function: De ne the real-valued composite function

h=foG

on T by
h(U) =f(G(U)), UeT

T={U:U € Ds and G(U) € Dy},
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R(G) = range of G

|
|
| n
om I R
|
[

Dg
D

Figure 2.7: Composite of vector valued functions

Theorem: Suppose that Uy is in T and is a limit point of 7, G is continuous at
U, and f is continuous at X, = G(Uy). Then h = f o G is continuous at U,.

Proof: Suppose that € > 0. Since f is continuous at X, = G(U,), there is an
€1 > 0 such that

F(X) - f(G(Uo)) <€ (2.30)
if
X — G(Ug)| <&e1 and X € Dy. (2.31)
Since G is continuous at Uy, there is a § > 0 such that

|IG(U) — G(Uy)| <& if [U-Uy <6 and U € Dg.

By taking X = G(U) in (2.30) and (2.31), we see that

|h(U) - h(Uo)| = [F(G(U) - f(G(Uo))| <&

if
[U-Ugl <6 and UE€eT.
Example: If v
fls)= s
and

gxy)=1-x22y,°
then D; = [0, ], D, = R?, and
T={(xy):x+2y <1}

We have proved that g is continuous on R?.
We can obtain the same conclusion by observing that the functions pi(x, y) = x
and p:(x, y) = y are continuous on R2.
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Theorem: Suppose that Up is in T and is a limit point of 7, G is continuous at

Uy, and f is continuous at X, = G(Uo). ) ) )
Then h = f o G is continuous at U,. Since f is continuous on Dy, the function

v
hix,y) =f(glxy) = 1—x2— 2y

1s continuous on T.
Example: If J

Q(X/y)= 1_X2_2y2
and

{
sins
fey= Y
7 s = 0/

then Dy = (—o0, o) and
Dy =T ={(x,y) : x> +2y* < 1}.

We have proved that g is continuous on 7. Since fis continuous on Dy, the
composite function h = f o g de ned by

Y
sin 1=x2=2y2 2 2
Y A
h(X/ y) = 1-x2-2)2 7 X + zy < 1’
1, x> +2y* =1,

is continuous on
Dy =T ={(x,y) : x> +2y* < 1}.

2.15 Bounded Functions

The de nitions of bounded above, bounded below, and bounded on a set S are the
same for functions of n variables as for functions of one variable, as are the de nitions
of supremum and in mum of a function on a set S.

Theorem: If f is continuous on a compact set S in R”, then f is bounded on S.
Theorem: Let f be continuous on a compact set S in R” and
a=inf £(X), 8=supf(X)
XeSs Xes

‘'hen
fX:) =a and f(X.) =8

for some X; and X, in S.

Proof: See lecture.
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Theorem: Let f be continuous on a region S in R”".
Suppose that A and B are in S and

f(A) < u < f(B).

Then f(C) = u for some C in S.

Proof: If there is no such C, then S = R U T, where
R = {X:X € S and f(X) < u}
T = {X:X €S and f(X) > u}.
If X, € R, the continuity of f implies that there is a § > 0 such that
fX)<u if |X-Xo| <6

and X € S. B B o
This means that Xo/€ T. Therefore, RNT = @. Similarly, RNT = &. Therefore,

S is disconnected, which contradicts the assumption that S is a region. Hence, we
conclude that f(C) = u for some C in S.

Theorem: A function f is uniformly continuous on a subset S of its domain in R”
if for every € > 0 there is a 6 > 0 such that

FX)-fX) <e

whenever
X -X|<6

and X, X € S.

Remark: We emphasize that § must depend only on € and S, and not on the
particular points X and X'.

Theorem: If f is continuous on a compact set S in R”, then f is uniformly contin-
uous on S.

Proof: See lecture.

2.16 Directional Derivative

Let @ be a unit vector and X a point in R".
The directional derivative of f at X in the direction of @ is de ned by

ofiX) _ . AX +tD) — AX)
oD t—0 t
if the limit exists.
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That is, df(X)/0® is the ordinary derivative of the function
h(t) = f(X + tdD)
at t =0, if h'(0) exists.
Example: Let ® = (¢, ¢, ¢3) and
f(x, v, z) = 3xyz + 2x*> + z%.
Then

h(t) = f(x+te,y+tds z+tds),
= 3(x+ th1)(y + t2)(z + ths) + 2(x + t1)?
+(z + t¢3)2.

h(t) = 3(x + te1)(y + th2)(z + ths) + 2(x + th1)* + (z + t¢ps)?

Then we have

h'(t) = 3¢ily +tdha)(z + ts) + 3da(x + th1)(z + tehs)
+3s(x + ta)(y + th) + 4pi(x + tha)
+2¢s(z + ts).

Therefore,

of (X
]; = h'(0) = Byz +4X)® 1 3x7¢p, + (3xy + 22)¢s.

2.16.1 Partial Derivative

Consider the unit vectors

E.=(1,0,...,0, E,=(0,1,0,...,0),..., E,=(0,...,0,1).

Since X and X + tE; di er only in the ith coordinate, of(X)/0E, is called the

partial derivative of f with respect to x; at X.
It is also denoted by df(X)/dx; or f,,(X); thus,

of(X) =

f (X):Iimf(xl+t/X2/"'/Xn)_f(xllXZI"'IXn)’
ox1 x t—0 t
. X1, oo, Xi—1, Xi v 6, Xiv1, . . ., Xn) — [iX1, X2, ..., X
];, (X) — I|m f( 1 =1, Xi i+1 ; n) f( 1 2 n)_
t—0

if 2 <i<n,and

of (X) :fn (X) = lim fxy, ..., Xn-1, Xn + t) — (X, . . ., Xn-1, Xn)

7

an t—0 t
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if the limits exist. If we write X = (x, y), then we denote the partial derivatives
accordingly; thus,

df(le) = fx(X,y)=I|mf(X+h'y)_f(X’y)
ox h—0 h

df(le) — f(X,y)=||m f(X/y+h)_f(X/y)
oy y h—0 h

It can be seen from these de nitions that to compute f,,(X) we simply di erentiate

f with respect to x; according to the rules for ordinary di erentiation, while treating
the other variables as constants.

Example: Let
f(x, v, z) = 3xyz + 2x* + 22
Taking @ = E; (that is, setting ¢, = 1 and ¢- = ¢s = 0), we nd that
Of(X) _ Of(X)
ox oE,

which is the result obtained by regarding y and z as constants in and taking the
ordinary derivative with respect to x. Similarly,

= 3yz + 4x,

ofX) _ of(X) _,
oy oE;

or) = IX) = 3xy + 2z
oz O0Es

Theorem: If f.,(X) and gy, (X) exist, then

o(f +g)(X)
— = fa(X) +0q(X),
Xi
ls} X
(fgj((.) = [ (X)g(X) + f(X)gx,(X),

and, if g(X)y=0,

I(F/a)(X) _ g(X)f,(X) - F(X)gx, (X)
ox; [9(X)]2 '

If £ (X) exists at every point of a set D, then it de nes a function f,, on D.
If this function has a partial derivative with respect to x; on a subset of D, we
denote the partial derivative b%f )

o0 Of o%f
ox; oxi | oxpax T
Similarly, ( )
o o _ o
ka dedXi OXkandX,' —fx,-xjxk-
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The function obtained by dierentiating f successively with respect to
Xiy, Xiy, - - -, Xi, 1S denoted by
of

Xm‘rdXirfl o dX,‘1

=fx,-1 o Xip—q Xip,
it is an rth-order partial derivative of f. The function
flx, y) =3x%y° + xy
has partial derivatives everywhere. Its rst-order partial derivatives are

fX(X/y)=6Xy3+y/ fy(X;y)=9X2y2+X-

Its second-order partial derivatives are

flx, y) = 6y flx y) 18x%y,
foxy) = 18xy*+1, fix(x,y) = 18xy> + 1.

There are eight third-order partial derivatives. Some examples are
foylx, y) = 18y%  fux(x, y) = 18y%  fix(x, y) = 18y
Compute fXX(OI 0)9 fyy(ol 0), ny(O/ 0)7 and fyX(O/ O) if

{
(X2y+xy?) sin(x=y) _

= X2+y2 ’ (XI y)/_ (01 0)1
=y, (% ¥) = (0, 0).

If (x,yY'= (0,0), the ordinary rules for di erentiation, applied separately to x
and y, yield

2 2 i - 2 2 _
Fby) = By et
2x(x2y+xy?) sin(x—y) (2.32)
(2+y?)2 , (% yy: (0, 0),
and
_ (x?+2xy) sin(x-y)-(x?y+xy?) cos(x-y)
X, =
pley) Xy (2.33)

2 2 2 i
_ iyt () (0,0).

These formulas do not apply if (x, y) = (0, 0), so we nd £(0, 0) and £,(0, 0) from
their de nitions as di erence quotients:

£(0,0) = lim XO=H00_; 0-0_,
x x—0 X x—=0 X
F10,0) = limf0W=f00_ 0-0_,
’ y—0 y y=0 Y

Setting y = 0 in (2.32) and (2.33) yields

fdx,0)=0, f(x,0)=sinx, x=0,
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SO
fix(0, 0) = lim LXLOL=LL0.00 _ ;. 0=0 _,
x—0 X x—0 X
fix(0,0) = lim [A%OL=£0.00 _; sinx =0 _
x—0 X x—0 X

Setting x =0 1in (2.32) and (2.33) yields

fX(O;Y)= _Siny/ fy(ofy)=0; y/= 0,

SO
fv(0,0) = lim 0.9 = £{0,0) _ . ~—siny—0 _ 1
y—0 y y—0 y
0,y) — /0,0 .. 0-=0
Fp(00) = limMN=S00 _; 0=0_,
y—0 y y—0 y

2.16.2 Equality of Mixed Partial Derivatives

Theorem: Suppose that f, f, f, and f, exist on a neighborhood N of (xo, yo),
and f,, is continuous at (xo, yo).
Then fy«(xo, yo) exists, and

fux(xo, Yo) = fuy(Xo, Yo). (2.34)

Proof: Suppose that € >0. Choose 6 >0 so that the open square
Ss ={(x ¥) : Ix = x|l <6, ly — yol < 6}
isin N.

foy(;(; y) - fry(Xo, yo)| < € if (x,y) € Ss. (2.35)

This is possible because of the continuity of f,, at (xo, yo). The function

A(h, k) = f(xo + h, yo + k) = f(xo + h, yo) — flxo, Yo + k) + f(xo, yo) (2.36)

isdened if -6 < h, k < 6.

Moreover,
A(h, k) = ¢p(xo + h) — @(xo), (2.37)
where
@(x) = f(x, yo + k) — f(x, yo).
Since

@'(x) = filx, yo + k) — fulx, yo),  Ix = x| <6,
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(2.37) and the mean value theorem imply that

A(h, k) = [fx(% vo + k) — f(x, yo)] h. (2.38)

where x is between xo and xo + h.
The mean value theorem, applied to fi(X, y) (where x"is regarded as constant),
also implies that

Fdx, yo + k) — fulx, yo) = fiylx, y)k,

where Yy is between y, and y, + k.
From this and (2.38),
A(h, k) = fxy(x, y)hk.

Now (2.35) implies that
AhK) ¢ (x,y) = If xy)-F (x,y)l<e
0 0.,

. hk Xy Xy xy 0 O

if 0<|hl, |k <6.

Since (2.36) implies that

lim Alh, k) = im It h yo+k) — fxo + h, yo)
k—0 hk k—0 hk
— lim flxo, Yo + k) — f(xo, o)
k—0 hk
_ fdxo+ h, yo) = filXo, Vo)
h

It follows from (2.39) that

fulxo + h, yo) — f/(xo, Vo)
' h

— fxyXo,y0) <& if 0<|h| <é.

Taking the limit as h — 0 yields

\_fyx(XO, yO) _fxy(XO, yO)‘ <&

Since € is an arbitrary positive number, this proves (2.34).

2.16.3 Generalization of Equality of Mixed Partial Derivative

Theorem: Suppose that fand all its partial derivatives of order < r are continuous
on an open subset S of R".
Then

Farxigiy(X) = Fxgyn, (X), X ES. (2.39)

If each of the variables xi, x,, ..., x, appears the same number of times in

{Xill XiZI ey Xir} and {lel Xj2/ ey Xjr }'
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If this number is ry, we denote the common value of the two sides of (2.39) by

o'f(X) . (2.40)
1 2 n
It being understood that
0<n<r 1<k=<n, (2.41)
n+n+---+rp=r, (2.42)

and, if rc = 0, we omit the symbol dx) from the denominator of (2.40).

Remark: A function of several variables may have rst-order partial derivatives at
a point X, but fail to be continuous at Xj.

Example: Consider the function

{
b, (ky) (00,
o= (2.43)
0, (x, y) = (0, 0).
Then
£,(0,0) = lim f(h.0) - f(0,0) _ . 0=0_/
" fon 0.0 %00
£(0,0) = lim*© 0 _ o
y k—0 k k>0 k

but f is not continuous at (0, 0).

Remark: If di erentiability of a function of several variables is to be a stronger
property than continuity, as it is for functions of one variable, the de nition of
di erentiability must require more than the existence of rst partial derivatives.

A function f is di erentiable at xo if and only if

im fx) = fixo) = m(x = xo)

X—>Xo X — Xo

=0

for some constant m, in which case m = f'(xo).

2.17 Di erentiability of Functions of Several Variables
A function f is di erentiable at
Xo = (x10, X20, - - -, Xno)

if Xo € D} and there are constants m;, my, ..., m, such that

>,
im FX) = f(Xo) = 1= milxi = x0) _ o (2.44)
XX, X — Xl
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Example: Show that the following function f(x, y) = x* + 2xy, is di erentiable at
any point (xo, yo).

f(X/ y)_f(XO; yO) = X2+2Xy_X%_2X0y0

= x> — x* + 2(xy — XoYo)

(x — X0)(x + X0) + 2(xy — xoy)

+2(Xoy — XoYo)

(x + xo0 + 2y)(x — x0) + 2x0(y — yo)

2(xo0 + Yo)(x — Xo) + 2x0(y — Vo)

+ (x — Xo)(x — X0 + 2y — 2y0)

mi(x — xo) + ma2(y — yo) + (X — xo)(X — X0 + 2y — 2yo0),
where

m1 = 2(xo + Yo) = fx(xo, yo) and m: = 2xo = f,(xo, yo). (2.45)
Therefore,

If(x, ¥) = f(xo, ¥o) = m1(x = xo0) = ma(y = yo)|
X — Xl
_ 1x = xoll(x = xo) + 2(y — yo)|
X — Xl
< E|X - Xol,

by Schwarz's inequality. This implies that

i f(x, y) — f(xo, Yo) — mi(x — Xo) — ma(y — yo) _
m =

0,
X—-Xo | X - Xo |

so f is di erentiable at (xq, yo).

Theorem: If f is di erentiable at X, = (x10, X20, . - ., Xno), then fi, (Xo), fx, (Xo),
..., [,(Xo) exist and the constants my, un,, ..., m, in
fX) = f(Xo) = " mixi — xio)

lim =1 =0,
X-Xo |X _ X0|
are given by
mi=f,(Xo), 1=<i<n; (2.46)
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. >
that is, fX)—FfXo)— " fx (Xo)(xi — xio)
lim S =0.
X->Xo |X - X0|

Proof: Let i be a given integer in {1,2,...,n}. LetX = X, + tE;, so that
Xi =pgagr t Xi = Xjo if /=i, and |X — Xil = |t].
fIX) = fXo)— " milx; — xio)
lim =1 =0.
X-Xo X — X
and the di erentiability of f at X, imply that

i f(Xo + tE;) — f(Xo) — mit
m
t—0 t

=0.

Hence,

. fiXo + tE) — f(Xo)
lim =
t—0 t

This proves (2.46), since the limit on the left is £,,(Xo), by de nition.

,'-

2.17.1 Linear Function
A linear function is a function of the form

L(X) = max1 + Mmaxa + * + + + MnXy, (2.47)

where mi;, m,, ..., m, are constants. From de nition of di erentiability, f is

di erentiable at X, if and only if there is a linear function L such that f (X)— f (Xo)
can be approximated so well near X, by

L(X) — L(Xo) = L(X — X)

that
f(X) - f(Xo) = L(X - Xo) + E(X)(IX - Xol), (2.48)
where
lim E(X)=o0. (2.49)
X—-Xo

Theorem: If fis di erentiable at Xo, then f is continuous at Xo.

Proof: From L(X) = mix: + myxa + - - - + mpx,, and Schwarz's inequality,
IL(X - Xo)| < MIX - Xol,
where
M = (mi+m3+ - - - + m3)Y2
This and £(X) - f(Xo) = L(X - Xo) + E(X) (/X - Xol|), imply that
F(X) - F(Xo) < (M + |[EX)])IX - Xol.

which, with (2.49), implies that f is continuous at Xo.
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2.17.2 Di erential

The linear function

L(X) = fi1 (Xo)x1 + fio (Xo)x2 + - =+ + fix, (Xo) X

This function is called the di erential of f at Xo. We will denote it by dx,f

and its value by (dx, f)(X).
Thus,

(dxof)(X) = fiy (Xo)xa + fiy (Xo)x2 + + + + + fr, (Xo)Xn. (2.50)
In terms of the di erential, di erentiability can be rewritten as

lim [(X) — f(Xo) — (dx, )X = Xo) _
X—-Xo |X - XO|

For convenience in writing dx,f, and to conform with standard notation, we intro-
duce the function dx;, de ned by

de(X) = Xi,

that is, dx; is the function whose value at a point in R" is the ith coordinate of the
point.
It is the di erential of the function gi(X) = x;. From (2.50),

dxof = fu, (Xo) dx1 + f, Xo dxz + « + + + fi,,(Xo) dxn. (2.51)

If we write X = (x,y,...,), then we write

dxof = f{Xo) dx + f(Xo)dy + - - -,

where dx, dy, ... are the functions de ned by

dx(X)=x, dy(X)=y,...

When it is not necessary to emphasize the speci ¢ point X, (2.51) can be written
more simply as
df = fxa dx1+ fx, dxa + - -+ + fi, dXp.

When dealing with a speci c function at an arbitrary point of its domain, we may
use the hybrid notation

df = fu(X) dx1 + fio (X) dxa + - -+ + f,(X) dxn.

Example: The function
f(x, y) = x>+ 2xy

is di erentiable at every X in R".
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‘I'he di1 erential ot the functions 1s

df = (2x + 2y) dx + 2xdy.
To nd dx,f with X, = (1, 2), we set xo = 1 and y, = 2; thus,
dx.f = 6dx+2dy
(dx,IX —Xo) = 6(x— 1)+2(y — 2).
Since f(1, 2) = 5, the di erentiability of fat (1, 2) implies that

) flx,y) =5—6(x—1)—2(y —2)
lim

(o1 =(1,2) J -o.
(x =12+ (y—2)

Example: The di erential of a function f = f(x) of one variable is given by
dxf = f'(xo0) dx,
where dx is the identity function; that is,
dx(t) =t.

For example, if
f(x) =3x%+ 5x3,

then
df = (6x + 15x2) dx.

If xo = —1, then
dxof =9dx, (dxof)(x — x0) =9(x+ 1),

and, since f(—1) = —2,

lim fx)+2—9(x+1) “0o
x—-1 x+1

Remark: Unfortunately, the notation for the di erential is so complicated that it
obscures the simplicity of the concegt. The peculiar symbols df, dx, dy, etc., were

introduced in the early stages of the

evelopment of calculus to represent very small

(in nitesimal) increments in the variables. However, in modern usage they are not
quantities at all, but linear functions. This meaning of the symbol dx di ers from its
meaning in j f(x) dx, where it serves merely to identify the variable of integration;

indeed, some authors omit it in the latter context and write simply J : f.
Lemma: If f is di erentiable at Xo, then

F(X) - f(Xo) = (dx )X - Xo) + E(X)[X - Xol,
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where E is de ned in a neighborhood of X, and

JmE(X) = E(Xo) =0

Theorem: If f and g are di erentiable at Xo, then so are f +g and fg. The same
is true of f/g if g(Xo)= 0. The di erentials are given by

dx,(f +g) = dx.f+dx,g,
dx,(fg) = f(Xo)dx,g + g(Xo)dx,f,

and ()
b £~ 9Xo)dxf — f(Xo)dx,g
Xo g [9(X0)]2

2.17.3 A su cient Condition for Di erentiability

Theorem: If f.,, fo, ..., fx, €xist on a neighborhood of X, and are continuous
at X, then f is di erentiable at Xo. = r---------------—-----—-----—-----—

Proof: Let X, = (X1, X20, - .., Xno) and suppose that € > 0. Our assumptions
imply that there is a § > 0 such that f,,, f,, ..., fx, are de ned in the n-ball

Ss(Xo) ={X : |X — Xo| < &}

and
iy (X) - f;(Xo) <& if [X-Xol<6 1< =<n (2.52)

Let X = (x1, X ..., X,) be in S5(Xo). De ne
X = (X1, ..., X, Xj+1,0, - - - , Xn0), 1<j<n-1,

and X, = X. Thus, for 1 < < n, X, di ers from X;-; in the jth component only,
and the line segment from X;.1 to X, is in Ss(Xo). Now write

z
F(X) - f(Xo) = f(Xn) - f(Xo) = F(X5) - (X)), (2.53)
j=1
and consider the auxiliary functions
gi(t) = f(t, x20, ..., Xno),
gj(t) = f(Xl,---,Xj—l, t;Xj+1,0/---,Xn0), 2 Sj <n-1, (254)
gn(t) = flxi, ..., Xn-2, 1),

where, in each case, all variables except t are temporarily regarded as constants.
Since

F(X)) - F(Xs-1) = g5(x7) = g7 (x50),
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the mean value theorem implies that

FX5) = F(X)1) = g(5) % = X0),
where t; is between x; and x;o. From (2.54),
g/ (5) = f (X)),
where X is on the line segment from X,-1 to X;. Therefore,

FX)) - F(Xja1) = i, (X)) (6 — X50),

and (2.53) implies that
¥ -
f(X) - f(Xo) = F (X)) (X5 — xjo)
j=1
> >

= Sl -0+ Uy (X)) = fiy (o)l - x70).

j= j=

From this and (2.52),

» >
S (Xo) (X7 — xj0) <& Ix; — Xj0| < nelX - Xol,
. je1

S(X) - f(Xo) -

Jj=1

which implies that f is di erentiable at Xo.

2.17.4 Continuously Di erentiable Function

We say that f is continuously di erentiable on a subset S of R" if S is contained in
an open set on which £, f.,, ..., fx, are continuous.
The above theorem implies that such a function is di erentiable at each X, inS.

Example: If
X2 + y2
flx,y) = ,
X—=y
then
2x X%+ y?
XX/ = -
fx y) x—y  x—y)2
2y x>+ y?
X, y) = + .

Since f, and f, are continuous on

S={(xy) :¥=y}
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f is continuously di erentiable on S.

Remark: If f., fo, ..., f« exist on a neighborhood of X, and are continuous

at Xy, then f is di erentiable at X,. These conditions are not necessary for di er-
entiability; that is, a tunction may be di erentiable at a point X, even if its rst

partial derivatives are not continuous at Xo.

Example: let (
(x _y)Psin 1, x
fix,y) = =y
0/ X =Y.
Then
1 1
Sl y) =20x-y)sin 7" = cos T =y,
and
fx, x) = lim flx+ h,x) = fX, X) _ |jp H*sin(1/h) — 0 _ 0]
h—0 h h—0 h g
so fyx exists for all (x, y), but is not continuous on the line y = x.
Example: Let {
(x _y)’sin_ T, xFy,
flx y) = Xy
0, X =Vy.
The same is true of f,, since
1 1
fy(X/y)=—2(X—V)Slnx_y+cosx_y, N=y,
and
£ x) = lim flex+k) = f(xX) _ iy K sin(=1/k) —0 _ 0.
k—0 k k—0 k
Now,
flx, y) — f(0, 0) — f(0, O)x — £,(0, O)y
T X2+ y?
{ L sin 1, o x oy,
= x2+y2 Xy
0, X=Y,
and Schwarz's inequality implies that
. (K_y)z sin 1 < 2(X2+y2) szi)[z -
ﬂéby& X—y. \/7 -2 ’ X/ V
X2 +y?

Therefore,

jim  fev) = 0, 0) 7 £(0, O)x — £(0, Oly

=0,
(xy)—(0,0) x2 +y?

so fis di erentiable at (0, 0), but f, and f, are not continuous at (0, 0).
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2.17.5 Geometric Interpretation of Di erentiability

If a function f of one variable is di erentiable at xo, then the curve y = f(x) has a
tangent line

y = T(x) = f(xo) + f'(x0)(x — Xo0).
The tangent line approximates it so well near xo that

lim flx) — T(x)

X—Xo X — Xo

= 0.

Moreover, the tangent line is the limit of the secant line through the points
(x1, f (x0)) and (xo, f (x0)) as x1 approaches xo. Di erentiability of a function of n
variables has an analogous geometric interpretation. We will illustrate it for n = 2.
If f is de ned in a region D in R?, then the set of points (x, y, z) such that

z=f(xy), (xy) €D, (2.55)
is a surface in R® Geometric interpretation of di erentiability:

z
A

Figure 2.8: Domain of the function
If fis di erentiable at X, = (xo, yo), then the plane

z = T(x y) = f(Xo) + fu{Xo)(x = xo) + f,(Xo)(y — Vo) (2.56)

intersects the surface z = f(x, y) at (xo, yo, f(Xo, yo)) and approximates the surface
so well near (xo, yo) that

flxy) —T(x vy)

=0.

oy oo ye) 2

X,y )Xo, Yo _
(x—x)2 " (y = yo)

Moreover, (2.56) is the only plane in R® with these properties.

We say that this plane is tangent to the surface z = f(x, y) at the point
(xo0, Yo, f (o, ¥o0))-
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X

Figure 2.9: Geometric interpretation of di erentiability

Show that the tangent plane to the surface z = f(x, y) is the limit of the
secant planes.

Let Xi = (x, y) (i=1,2, 3). The equation of the secant plane through the
points (x;, y;, f(x, y)) (i = 1, 2, 3) on the surface z = f(x, y) is of the form

z = f(Xo) + A(x — xo) + Bly — yo), (2.57)
where A and B satisfy the system

f(X41) = f(Xo)+ A(x1 — xo) + B(y1 — yo),
f(X3) = f(Xo) + A(x2 — xo0) + B(y2 — yo).

Solving for A and B yields

A = (f (X1) = AXy2 = vo) = (F(X5) = F(Xo))y1 — Vo)
= (2.58)
(x1 — xo)(y2 — yo) — (x2 — xo0)(y1 — yo)
(LX) = fAXo))(x1 — x0) = (f(X1) — f(Xo))(x2 — Xo)
B = (2.59)
(x1 — xo)(y2 — ¥o) — (x2 — xo0)(y1 — yo)

if
(X1 = xo)(y2 = yo) = (X2 — xo)(yr — yo¥= 0, (2.60)
which is equivalent to the requirement that Xo, X1, and X, do not lie on a line. If

we write
X, =Xo+tU and X, = Xo +tV,

where U = (u;, u;) and V = (v4, v;) are xed nonzero vectors, then (2.58), (2.59),
and (2.60) take the more convenient forms

F(Xo+tU)-f(Xo) Vo — F(Xo+tV)-f(Xo)
2 uz

A = L t , (2.61)
uiva — Uxva
f(Xo+tV)-£(Xo) |, = _ f(Xo+tU)-f(Xo)
1 Vi
B = L t , (2.62)
uiva; — Uxva
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and
uva — uavy/= 0.

If f is di erentiable at X,, then

f(X) — f(Xo) = fdXo)(x — x0) + f(Xo)y — vo) + (X)X — Xol, (2.63)
where
lim g(X) = 0. (2.64)
X—->Xo

Substituting rst X = X, + tU and then X = X, + tV in (2.63) and dividing by t
yields

(Xo + tU) — f(Xo) _ o (X )u_+f (X )u +E (1)|U] (2.65)
t —Jx 0o 1 y 0o 2 1
and
f(Xo + tV) — f(Xo) - f (X)v +f (X )v +E (t)|V], (2.66)
+ =Jx 0 1 y 0 2 2
where
Ei(t) = e(Xo + tU)|t|/t and Ex(t) = e(Xo + £tV)|t|/t,
SO
limE(t)=0, i=1,2, (2.67)
t—0

because of (2.64). Substituting (2.65) and (2.66) into (2.61) and (2.62) yields

A = fi(Xo) + A(t), B = f(Xo) + Ax(t), (2.68)
where ULEL(t) - w, [ VIE(t
Al(t) _ V2 1 uz 2(t)
Uiva — Uzva
and
A (1) = ui|VIE,(t) - VllUlElm’
Uiva — Uzva
SO
limAi(t)=0, i=1,2, (2.69)
t—0

because of (2.67).
From (2.57) and (2.68), the equation of the secant plane is

z = f(Xo) + [f(Xo) + A1(t)](x — Xo) + [f,(Xo) + Aa(t)](y — yo).

Therefore, because of (2.69), the secant plane approaches the tangent plane (2.56)
as t approaches zero.
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2.18 Maxima and Minima
We say that X is a local extreme point of f if there is a § > 0 such that

f(X) = f(Xo)

does not change sign in Ss(Xo) N Dy.
More speci cally, Xo is a local maximum point if

f(X) = f(Xo)

or a local minimum point if
f(X) = f(Xo)
for all X in Ss(Xo) N Dy.
Theorem: Suppose that f is de ned in a neighborhood of X, in R” and f, (XG),

f(Xo), ..., fxn(Xo) exist.
Let X, be a local extreme point of f. Then

[«i(Xo0)=0, 1<i<n. (2.70)

Proof: Let E; =(1,0,...,0),E, =(0,1,0,...,0),..., E,=(0,0,...,1), and
gi(t) = f(Xo+tE;), 1<i<n.
Then g; is di erentiable at t = 0, with
g/ (0) = f4(Xo).

Since X, is a local extreme point of f, to = 0 is a local extreme point of g;.

Remark: The converse of theorem is false, since (2.70) f,(Xo) =0, 1<i<n.
may hold at a point X, that is not a local extreme point of f.
For example, let X, = (0, 0) and

flx y) =x3+y3.

We say that a point X, where (2.70) holds is a critical point of f . Thus, if f is
de ned in a neighborhood of a local extreme point Xo, then X, is a critical point
of f; however, a critical point need not be a local extreme point of f.
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2.19 Dierentiable Vector Valued Function

A vector-valued function G = (g4, g2, ..., g») is di erentiable at
Uo = (Ulo, Uzo, ..., Umo)

if its component functions g1, g,, ..., g» are di erentiable at U,.

Lemma: Suppose that G = (g1, g5, ..., g») is di erentiable at

Uo = (u1o, 2o, . . ., Umo),

1/2

and de ne '
Z % CogUs

M=" )2
i=1j=1 ou;

Then, if € >0, there is a 6 > 0 such that
IG(U)_G(UO)|<M+& if 0<|U—U0|<5.

U - Uyl

Proof: Since g1, g, ..., g» are di erentiable at U, to g; shows that

9:/(U) - g:/(Uo) (du,eg:) (U - Uo) + E;(U)|(U - Uy

¥ )
= 71 %%5,°(uy - up) + EAU)|(U - Uo),

Jj=1 duj;

where
lim f(U)=0, 1<i<n.

U-Uo

From Schwarz's inequality,
1g/(U) - gi(Uo)| < (M; + |E;(U)|)|U - Uo|,

where
! 1/2
. 5 )( 8g4Us)
I j=1 2 du_,'
Therefore,
Cn ) 12
|G(U) — G(Uo)| - : (M; + |EAU)))?
|U _ Uo| = 1 i i
From (2.72),
Ca Y1z (G, Dap
im M+ B = M =M,
U=Uo 4 =1

which implies the conclusion.
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2.20 The Chain Rule

Theorem: S uppose that the real-valued function f is di erentiable at X, in R".
The vector-valued function G = (g1, g2, ..., gn) 1s di erentiable at U, in R™, and
Xo = G(Uy).

Then the real-valued composite function h = f o G de ned by
h(U) = f(G(U)) (2.73)
is di erentiable at U, and

duoh = fia (Xo)du,g1 + fio (Xo)du,g2 + -+ + + fr, (Xo)du,gn. (2.74)

Proof: First we will show that Uj is an interior point of the domain of h. It is
legitimate to ask if h is di erentiable at U,. Let X, = (10, X20, . . ., Xn0). Note that

xio=9gi(Up), 1=<i=<n,

by assumption.
Since f is di erentiable at X,, which implies that

x
f(X) - f(Xo) = S (Xo)(xi — xio) + E(X)IX - Xol, (2.75)
=1
where
lim E(X) = 0.
X—-Xo
Substituting X = G(U) and X, = G(Uy) in (2.75) and recalling (2.73) yields
>
h(U) — h(Uo) = £ (Xo)(g(U) — gi(Uo))
=1
+E(G(U))|G(U) - G(Uo)!. (2.76)

Substituting g;(U) - g:(Uo) = du,g:)(U - Uo) + E;(U)|U - Uy| into (2.76) yields
h(U) — h(Uo) = ”_lfx (Xo)(du g)(U — Uo)

i

\g|

+( 1 AX0)E(U)) [U — Uy

+ E(G(U))|G(U) - G(Uo|.

Since

im E(G(U)) = lim EX)=o0.
U-Uo X—->Xo
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Due to Lemma we proved in prev'fus module, imply that
h(U) — h(Uo) = " fx (Xodu gi(U — Uo)
[e]

i=1 i

U — Uyl
Therefore, h is di erentiable at Uy, and dy,h is given by (2.74).

=0.

Example: Let
f(x, y, z) = 2x*> + 4xy + 3yz,

gi(u,v) =u* +v?,  ga(u,v)=u*—2v’, gs(u,v) =uy,

and
h(U, V) =f(g1(u/ V)/ g2(u/ V)/ g3(U, V))

Let Up = (1, —1) and
Xo = (91(Uo), g2(Uo), g3(Uo)) = (2, —1, —1).

Then
(Xo) =4, f(Xo)=5[fiAXo)=—3,
Since
gi(u,v) =u* +v?  ga(u,v)=u*—2v3,  gs(u,v)=uy,
dg+.(U
% = g o _ o
092(Uo) _ 2 9 szo _—
OI(J v
995(Uo) _ _q selUo _ g
u dv
Therefore,

du,g1 =2du—2dv, du,g2=2du+4dv, du,g: = —du+dv.

According to chain rule we have

du,h = fi (Xo)du,g1 + fx, (Xo)du,g2 + + + + + fx,(Xo)du,gn.

duoh = fdXo)du,g1 + fy(Xo) du, g2 + f:(Xo) du, g3
= 4(2du —2dv)+5(2du+4dv) — 3(—du+dv)
= 21du+9dv.

Since
du,h = hu(Uo) du + h,(Uyo) dv

we conclude that
ho(Uo) =21 and h,(Uo) = 9.
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Alternatively: This can also be obtained by writing h explicitly in terms of
(u,v) and di erentiating; thus,

h(u,v) = 2[gi(u, v)I* + 4g1(u, v)g2(u, v) + 3g2(u, v)gs(u, v)
= 2(u? +v?)? + 4(u? + v¥)(u? — 2v?) + 3(u? — 2v3¥)uv
= 6u*+ 3u’v — 6uv? — 6VA
Hence,
hu(u,v) = 24> +9u’v — 6 and hy(u,v) = 3u® — 18uv’ — 24V,
so hy(1, —1) = 21 and h,(1, —1) = 9, consistent with (2.77).
Corollary: Under the assumptions of the chain rule theorem

0h(Ug) _ Z 3£(Xo) 09;(Uo)

ou; o ox; ou; 1<i<m. (2.78)
Proof:Substituting
dg{(U
dv.g = 22tUd +diU0du+"'+Mdu’ l=i=n,
udi oux ! ou, 2 Oum m
into (2.74) and collecting multipliers of dui, du,, ..., dunyields
o p e 2 E 5f(Xo)0¢;(Uy) , J
Uo™l = . i dXI dUi Ui
i=1 j=1
However, from Theorem ??,
7 5h
o= 2,

i=1

Comparing the last two equations yields (2.78).

Remark: When it is not important to emphasize the particular point Xo, we write

du; -

oh 3 of og,
ox;ou; L1=i=m, (2.79)

with the understanding that in calculating dh(Uo)/du;, dg,;/du; is evaluated at U,
and 0f/0x; at Xo = G(Uo).

oh 3% of o

ou;, — ox; 0u; 1<i<m, (2.80)
Jj=1
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with the understanding that in calculating dh(Uo)/du;, dg;/0u; is evaluated at Ug
and df/dx; at Xo = G(Uy). By replacing the symbol G with X = X(U); then we
write

h(U) = f(X(U))

and
0h(Uo) _ ¥ 9£(Xo) 0x;(Uo)
ou; j=1 0x; ou; '
h 3 Of Ox;
orsimply — = of (2.81)

uj j=1 de du,—

2.21 Higher derivatives of composite functions

Higher derivatives of composite functions can be computed by repeatedly applying
the chain rule.
For example, di erentiating (2.81) with respect to ux yields

5 ()
32h _ n 9 of BXL-
durdus; j=1 0ux 0dx; dus ( )
Tin1 o oot T T po1 diiod.  OF - (2.82)
We must be careful nding ¢ )
0 of
dur Ox;

which really stands here for

o) (df(X(U)))
Oux 0x; ’

(2.83)

The safest procedure is to write temporarily
of (X)
ox 9

7

g(X) =

then (2.83) becomes

0g(X(U)) _ % 9g(X(U)) ox,(U)

Ouy 1 OXs our -
Since
og o*f
Oxs O0Xs de,
this yields
d o ‘o) % as ox
Jux Oxk 1 dxsdxjm.
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Substituting this into (2.82) yields
2 n 2 n n 2
o h > 9f ax,-+z<.-a_)qZ o f  Oxs

Oukdui ~ _, 0x; 0ukdu; — ;_; Ou; __, OXs0x;

ou - (2.84)

S

To compute h,y, (Uo) from this formula, we evaluate the partial derivatives of xi,
X2, ..., x» at Up and those of f at X, = X(Uy,). The formula is valid if x1, x»,

.., xn and their rst partial derivatives are di erentiable at U, and f, £, f,
..., fx, and their rst partial derivatives are di erentiable at Xo.

Example: Let (r, 9) be polar coordinates in the xy-plane; that is,
x=rcosd, y=rsin0.

Suppose that f = f(x, y) is di erentiable on a set S, and let
h(r,8) = f(rcos G, rsin9).

We have
oh of @ of o o (o)
- = ll + ll = cos 0l + sin ﬂl (2.85)
or Ox dr Oyor ox oy
oh of Ox of dy of of
59 - ag?+aa9=—rsmﬂa+rcosﬂw,

where f, and f, are evaluated at (x, y) = (rcos 3, rsin 9).

Example: Suppose that f, and f, just calculated are di erentiable on an open set
S in R2. Di erentiating (2(.85; with respect to r yields

‘;ZTZ’ = cosﬁ;_r( zgf +sir;19")gdjf C
= cosU iP)E('F df?z +ysinl9 o’f (286)
ox2 or dy Ox Or Ox dy 37; + S%%ﬁ .
if (x, y) € S. Since
0 o 2
dl:cosﬁ’ l=sin19, and f = df
or or 0xdy Oy ox
if (x, y) € S. The equation (2.86) yields
0’h 2 O o’ f 2 0%
g2 = COS ﬁdxz + 25sin ﬁcosﬁdxdy + sin ﬁdyz'
Di erentiating (2.85) with respect to ¢ yields
C..) C.)
0’h of of o of o of
= i +sintU
39 or smz?dx+cosﬁdy+cosﬁd? ox . )dy
= —'z?Qf+ z?Qf+ 1% did—x+ dfd}l
T MY TV, TCY x99 T oy ox 99
. 0%f Ox O%*f oy
+sind ot 3539
0x0y 09 9dy? 99
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Since

ox dy s

i _~ =rcos?,

35 rsingd and 35

it follows that
( )
Oh 0o DLrcoss L ranocoss 2L - 9
3oor - sin ox cos oy rsin ¥ cos o oy
o*f
+r(cos?§ — sjin 2 9)——.
( ¢ — sin Ox0y

Remark: For a composite function of the form
h(t) = f(xa(t), x2(t), . . ., xa(2))

where tis a real variable, x1, x», ..., x, are di erentiable at t,, and f is di erentiable
at X, = X(ty). We have

p
h'(to) =  fx;(X(to))x;(to). (2.87)
j=1
Theorem: Let f be continuous at Xi = (x1, X21,...,%n1) and X, =
(x12, X22, . . ., Xn2) and di erentiable on the line segment [ from X; to X..
‘Then
F(X2) — f(X1) = f(Xo)xz — xa) = (dx,f)(Xa — X4) (2.88)
=1

for some X, on L distinct from X; and X,.
Proof: An equation of L is

X=X(t)=tXo+(1-t)X, 0<t<l

Our hypotheses imply that the function

h(t) = f(X(t))

is continuous on [0, 1] and di erentiable on (0, 1).
Since
xi(t) = txia + (1 — t)xi,
We have
r
h'(t) =  fi(X(t)(x2 — xi1), O<t<l
1

i=
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From the mean value theorem for functions of one variable
h(1) — h(0) = h'(to)

for some t, € (0, 1). Since h(1) = f(X;) and h(0) = f(Xu), this implies (2.88) with
Xo = X(to), i.e.,

>
f(X3) — f(Xq) = i (Xo)(xiz — xi1) = (dx,f) (X2 — Xa).

i=1

Theorem: If f«, fx, ..., fx, are identically zero in an open region S of R?, then
f is constant in S.

Proof: We will show that if X, and X are in S, then f(X) = f(Xo).
Since S is an open region, S is polygonally connected.
Therefore, there are points

Xo,Xl,...,Xn =X

such that the line segment L; from X;-; to X;isin S, 1 </ < n. From mean value
theorem

bD
X)) = f(Xi1) = (dx X — Xima),

i=1
where X is on £; and therefore in S.
Therefore,
Jxi(Xi) = foo(Xi) =+ = fxn(Xi) =0,
which means that dg f = 0. Hence,
f(Xo) = f(X1) = -+ =f(X5);

that is, f(X) = f(Xo) for every X in S.
Motivation: Suppose that f is de ned in an n-ball B,(X,), with p > 0.

If X € B,(Xo), then
X(t) = Xo+t(X — Xo) € By(X), 0=<t<]1,

so the function

h(t) = f(X(t))

isdenedforo<t<1.

We know that
3

h'(t) = fu(X(t)(x; = Xio)-

i=1
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If f is di erentiable in B,(X,), and
)

(
Z 9 T of(X(t
ney = o YR GG - xo) (g )
j=1 21 i=1 !
o f(X(t)
= (Xi —X,'o)(Xj — on)
ij=1 de ox;
If fu, fo, -.., fx, are di erentiable in B,(Xo). Continuing in this way, we see
that
A (2) z o'f (X(t))
- i1,i2,..., ir=1 C)Xir C)Xir—1 o dXil (Xl B Xil’O)(Xiz - Xiz,O)
-+ (X, — xi,0)

if all partial derivatives of f of order < r — 1 are di erentiable in B,(Xo).

2.22 rth Di erential

Suppose that r > 1 and all partial derivatives of f of order < r — 1 are di erentiable
in a neighborhood of Xo.
Then the rth di erential of f at Xo, denoted by d‘;(’f, is de ned by

Cg(o o o dXirdX,',—,l L dx)-l XI1 Xlz v 'd)(/,,, . 9
i,lz,..., i=1
where dxi, dx,, ..., dx, are the di erentials, that is, dx; is the function whose value

at a point in R” is the ith coordinate of the point. For convenience, we de ne

(dQf) = f(Xo).
Notice that d"Vf = dx f.
Xo ¢}
Remark: Suppose that r > 1 and all partial derivatives of f of order < r — 1 are
di erentiable in a neighborhood of X,, the value of

0'f (Xo)
C)X,',dX,',,l o dXil

depends only on the number of times f is di erentiated with respect to each variable,
and not on the order in which the di erentiations are performed.
Remark: The di erential can be rewritten as

> r! 9'F(Xo)

I r r
rar b - - rnlx 10x %+ - - OXn'

de f= () i) f - (dx),  (2.90)

r
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)R .
where | indicates summation over all ordered n-tuples (ri, r5, ..., r.) of nonneg-
ative integers such that

ri+ro+-----+rn=r

and 0x" is omitted from the denominators of all terms in (2.90) for which r; = 0.
In particular, if n = 2,

)
o f = L r O'f (xo, o) (dxy (dy).

o J OxIoyrd

Example: Let 1

flxy) =

l+ax+b y’
where g and b are constants.

Then
o'f(x, y) , b
oy =(-1)r ,
0x/ oyr (1 + ax + by)r+1
SO
)
(" (-1)"r! D
dx f (1+ axo + byo) ™ i @b (dxy (dy)™~
j=0
(_1)rr! r
= (1+axo + byo)+ (adx + bdy)
if 1t pxo + byd= 0.
2 a;x;'
fX)=exp' = 777
j=1
where a1, a,, ..., a,are constants. Then
0'f(X) w
rorir rn
Ox*ox?- - - oxX" = (-1) apa;, + - a, exp’ — Flax;
Therefore,
(& )
|
@R (@) = (-1) ﬁa?a? - afp (dxa) (dx2)r2 - - - (den)”
r g2 ne
>
n
Xexp' - ;_, o
=
a;iXjo
= (—l)r(al dxi+a,dx, +  +ap an)rE‘XP b - j=1 i
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2.23 Taylor's Theorem for Functions of n Variables

Theorem: Suppose that f and its partial derivatives of order < k are di erentiable
at X, and X in R" and on the line segment L connecting them.
Then

>*
FX) = AR~ X) + G i@ - X b (2.91)
r=0
for some X on L distinct from X, and X.
Proof: De ne
h(t) = f(Xo + t(X — Xo)). (2.92)

With @ = X — X, our assumptions and the discussion preceding De nition of
di erentials imply that h, #', ..., h**?) exist on [0, 1].
From Taylor's theorem for functions of one variable,

PLI h(N(0) hk+1)(T)

h(1) = ot ke 1) (2.93)
r=0
for some t € (0, 1).
From (2.92),
h(0) = f(Xo) and h(1) = f(X). (2.94)
We have ® = X — X,
h0) = (@)X -Xo), 1=<r=<k (2.95)
«*)
Ak () = dF (X — Xo) (2.96)

where
X =Xo+1(X-Xp)
is on L and distinct from X, and X.

Substituting (2.94), (2.95), and (2.96) into (2.93) yields (2.91).
Let

X, y)=—
7% y) 1+ax+by
where g and b are constants.
Then o
OF(x y) b
. o= (-1) r! ,

0x/ dyrJ (1 +ax + by)r+1

SO
>
(-2)"r! r »

/b (dx) (dy)™~
(1+ axo + byo)™?! j=0 J (cxy (dy)

(_1)rr! r
(adx + bdy)

dg f

(1+ axo + by0)r+1
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if 1+ axo + byd= 0.

Example: The Taylor series with X, = (0, 0) and ® = (x, y) imply that if 1+ax+
by >0, then
k k+1

1 > (ax + by)

Trax+by = rzo(—l)r(aX+ by)” + (-1)<* (1 + atx + bry)k+2

for some t € (0,1). (Note that r depends on k as well as (x, y).)

Remark: By analogy with the situation for functions of one variable, we de ne the
kth Taylor polynomial of f about X, by

¥
Tk (X) = l (dRF)X — Xo).
r=0 "~

If the di erentials exist; then we have

(@ X - Xo).
(k+1) X

f(X) = Ti(X) +

Theorem: Suppose that f and its partial derivatives of order < k — 1 are di eren-
tiable in a neighborhood N of a point X, in R” and all kth-order partial derivatives
of f are continuous at X,. Then

Im ﬂ&)_—n@ =0.

xoxs [X Xl (2.97)

Proof: If € > 0, there is a § > 0 such that Bs(Xo) C N and all kth-order partial
derivatives of f satisfy the inequality

0“F(X) 90" (Xo) .
J— . E,
. dxikdxl'kfl C O dXl'kdxikfl v dxh- X BG(XO) (298)

Now suppose that X € Bs(Xo). From Taylor series expansion, with k replaced by
k-1,

1
F(X) = Teea(X) + ° (@¥AHX _X ), (2.99)
I X
where X is some point on the line segment from X, to X and is therefore in B5(Xo).
We can rewrite (2.99) as[ 1
1

X)=7 X)+— (dNX-X)-(dNX-X) . (2.100)

k k! X 0 Xo 0

But de nition of di erential and (2.98) imply that

(dUFIX - Xo) - (dF)X - Xo). < nkelX - X" (2.101)
Xo
X
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which implies that

X) - Tu(X)| n“e
|X _ X0|k < 7/ X € B5(X0)/
from (2.100). This implies (2.97).

2.23.1 Positive De nite

Let r be a positi;ze integer and Xo = (x10, X20, . . ., Xno). A function of the form
p(X) = Qriry...ra (X1 — X10) r(Xz — X20) L (xa — Xno) r, (2.102)

2

r

where the coe cients {a;,r,..r,} are constants and the summation is over all n-tuples
of nonnegative integers (ri, r,, ..., r») such that

ritro+---+rp=r,

is a homogeneous polynomial of degree r in X — X, provided that at least one of the
coe cients is nonzero. For example, if f satis es the conditions of rth di erential,
then the function

p(X) = (&f)(X — Xo)

is such a polynomial if at least one of the rth-order mixed partial derivatives of f
at X, is nonzero. Clearly, p(Xo) = 0 if p is a homogeneous polynomial of degree

r>=1in X — Xo.
If p(X) > 0 for all X, we say that p is positive semide nite; if p(X) > 0 except
when X = X, p is positive de nite. Similarly, p is negative semide nite if p(X) < 0

or negative de nite if p(X) < 0 for all X/= X,. In all these cases, p is semide nite.
With p as in (2.102),

p(=X + 2Xo) = (-1)"p(X),

so p cannot be semide nite if r is odd.
Example: The polynomial
px,y,z)=x>+y>+22 +xy + xz + yz
is homogeneous of degree 2 in X = (x, y, z). We can rewrite p as
Ploy, 2 =y (xryP +(y 427+ (27

so p is nonnegative, and p(x,y,z) = 0 if and only if

x|

+y=y+Z=7z+Xx=0,

which is equivalent to (x, y, z) = (0, 0, 0). Therefore, p is positive de nite and —p is
negative de nite.
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Example: The polynomial

pi(x,y,z) = x> +y*>+ 2>+ 2xy

pl(X/ ) Z Z)

(x+y) +2°,

S0 p; is nonnegative. Since pi(1, —1, 0) = 0, p: is positive semide nite and —p; is
negative semide nite.

The polynomial
pZ(X/ Y, Z) = X2 - y2 +ZZ

is not semide nite, since, for example,

p2(1,0,00=1 and p,(0,1,0) = 1.

Theorem: Suppose that f and its partial derivatives of order < k — 1 are di eren-
tiable in a neighborhood N of a point X, in R” and all kth-order partial derivatives

of f are continuous at X,. with k > 2, and

df=0 (1<r<k-1), d¥f/=o. (2.103)
Then

+ X, is not a local extreme point of f unless a“);)) f is semi-de nite as a polynomial
in X — Xo.

In particular, X, is not a local extreme point of f if k is odd.

+ Xois a local minimum point of f if d)gf]‘ is positive de nite, or a local maxi-
mum point if g(‘)k)f is negative de nite.

< If d()z])f is semide nite, then X, may be a local extreme point of f, but it need
not be.

Corollary: Suppose that f, f,, and f, are di erentiable in a neighborhood of a
critical point X, = (xo, yo) of f and f., f,,, and fi, are continuous at (xo, yo).
Let

D = fXX(XOI yO)ny(XOI yO) - ZX)(XOI yO)-
Then

+ (xo, ¥o) is a local extreme point of fif D >0; (xo, yo)is a local minimum
point if fi(xo, yo) > 0, or a local maximum point if fu(xo, yo) < O.

+ (xo, ¥o) is not a local extreme point of fif D < 0.
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Proof: Write (x — xo, ¥y — yo) = (u, v) and
p(u, v) = (42 f)(u, v) = Au® + 2Buv + CV?,
0

WheI'e A =fXX(XO; yO), B =fxy(X0; yO); and (o =fyy(X0; yO), SO

D = AC — B2
If D >0, then 4= 0, and we can write
(uz 2B sz)+( E) 2
pluv) = A +Auv+A2v C— AV
B )2 D
=A u+"v +
A A

This cannot vanish unless v = v = 0. Hence, d,(?of is positive de nite if A > 0 or

negative de nite if A <0, and Theorem implies the rst part of the corollary.
If D <0, there are three possibilities:
)

1. A'=0;thenp(L,0)=Aandp —-2,1 =5,
( )
2. =0;thenp(0,1)=Candp 1,-5 =2,

3. A=C=0; then /=0 and p(1,1) = 2B and p(1, —1) = —28B.
In each case the two given values of p di er in sign, so X, is not a local extreme
point of f, from Theorem part I.

Example: If
flx, y) = e+,
We have
ixx y) =2axf(x, y), fix y)=2byf(x,y),
SO

fx(O, O) =fy(0, O) = O,

and (0, 0) is a critical point of f.
To apply Corollary, we calculate

fxlx, y) = (2a+4a’x*)f(x, y),
fwlx,y) = (2b+4b*y)f(x, y),
folx,y) = 4abxyf(x y).

Therefore,

D = f(0, 0)f,y(0, 0) — 2 4, 0) = (2a)(2b) — (0)(0) = 4ab.

Corollary implies that (0, 0) is a local minimum point if ¢ and b are positive. A
local maximum if o and b are negative. Neither if one is positive and the other is
negative. Corollary does not apply if a or b is zero.
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Chapter 3

Integral Calculus

Attempting to formulate de nition of Riemann integral for a function de ned on an
in nite or semi-in nite interval would introduce questions concerning convergence
of the resulting Riemann sums, which would be in nite series.

3.1 Locally Integrable Functions
We say fis locally integrable on an interval / if fis integrable on every nite closed
subinterval ot /.

For example,

f(x) =sinx
is locally integrable on (—o, co).
1
x(x — 1)

is locally integrable on (—co, 0), (0, 1), and (1, o).
Thefunction J

h(x)= x

alx) =

is locally integrable on [0, o).
If fis locally integrable on [qg, b), we de ne
f b f c
fx)dx = lim  f(x)dx (3.1
a c—ob-
if the limit exists ( nite). To include the case where b = co, we adopt the convention
that co— = o0,

Remarks:

+ The limit in (3.1) always exists if [a, b) is nite and f is locally integrable and
bounded on [q, b).

+ In this case, the de nition fof Riemann integral and locally integrable function
assign the same value to' ’f (x) dx no matter how f (b) is de ned. However,
a

the limit may also exist in cases where b = o orb < o and f is unbounded
as x approaches b from the left.
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+ In these cases, the de nition of locally integrable assigns a value to an integral
that does not exist in the sense of Riemann integral, an({; f (x) dx is said to
be an improper integral that converges to the limit in (3.1).

Remarks:

[

+ We also say in this case that f is integrable on [q, b) and that , ° f(x) dx exists.
f the limit in (3.1) does not exist ( nite), we say that the improper integral
2 f(x) dx diverges, and f is nonintegrable on [a, b).

J
+ In particular, if limes- o f(X) dx = =00, we say that abf(x) dx diverges to
+ o0, and we write
[ b ] b

f(x)dx =00 or f(x)dx = —oc0,

whichever the case may be.

If fis locally integrable on (g, b], we de ne

[ [
f(x)dx = Iim+ f(x) dx

a c

provided that the limit exists ( nite).

To include the case where a = — oo, we adopt the convention that —oco+ = — 0.
If f is locally integrable on (g, b), we de ne

I I a b
fx)dx = f(x)dx+  f(x)dx

a a o

where a < a < b, provided that both improper integrals on the right exist ( nite).

f
Remarks: The existence and value of ; f(x) dx according to the above de nition
do not depend on the particular choice of « in (g, b).

When we wish to distinguish between improper integrals and integrals in the
sense of de nition of Riemann integral, we will call the latter proper integrals.

Example: The function . .

= 2xsin — — _
f(x) xsmx cosx

is locally integrable and the derivative of

1
F(x) = x*sin _
X

on [—2/m, 0).
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Hence,
I c 1€ .
x)dx = x?sin - =c'sin -+
L fo % o R
Fo G 14 a4
f(x)dx = lim c2sin” + — )
-2/n c-0- c 2

However, this is not an improper integral, even though f (0) is not de ned and
cannot be de ned so as to make f continuous at 0. If we de ne f (0) arbitrarily

(say f(0) = 10), then f is;bounded on the closed interval [—2/m, 0] and continuous
except at 0. Therefore, 0_2 /. fx) dx exists and equals 4/r* as a proper integral, in
the sense of de nition of improper integral.

Example: The function

fx)=(1—-x)"
is locally integrable on [0, 1).
pr’=1andj0<c<1,
‘ -» (L—x)*P" ¢ (1-o+ -1
o (1 x) dx= P~ 1 _
Hence, I p
c _ -1
Ilm (1_ X)_p dX= (1 p) 7 p < 1/
c>l- g 0o, p>1
Forp=1, /
. C -
CL'T_ (1- x)-* dx= _C'L”f_ log(1 — ¢) = .
0

Hence, /
1(1_ x)P dx = @=p" p<1,

0 0, le

Example: The function
f(x) =x"
is locally integrable on [1, o).
If =1and c > 1,

xPdx= =
1 —p+1y —p+1
Hence, / (
¢ a4y
lim X—p dx = (p 1) , P> 1/
cooo g 00, p<1
Forp=1, I
C
lim  x! dx= lim logc= &
c—ooo c— oo
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H
ence, f { ( ~ 1)_1 o1
b X—p dX = p 7 p 4
1 00 p =<1

7

Example: If 1 < ¢ < oo, then

f 1:1 1 fcl
2log " dx=— 2 logxdx = — =(logx)2 = —(logc)?
1 X X 1 X 1
Hence, I
lim =log ~ dx=—o0,
> 1 X X
SO
I e
. X_Iog_dx=—oo

The function f(x) = logx is locally integrable on (0, 1], but unbounded as
x — 0+. Since

[ 1 1
lim logxdx = lim (xlogx —x) =-—1— lim (clogc—c¢c)= -1,
c—0+ c -0+ . c C—0+
De nition ?? yields |
1
logxdx = _ 1.

0

The function f(x) = cos x is locally integrable on [0, ) and
I

lim cosxdx = lim sinc

¢ c—0oo

does not exist; thus, : 0°° cos xdx diverges, but not to + .

In connection with De nition ?7?, it is important to recognize that the improper
integrals [ f(x) dx and 0‘; f(x) dx must converge separately for ;’ f(x) dx to con-
verge. For example, the existence of the symmetric limit

I &
lim fx)dx,

R—o0 -R

J
which is called the principal value of ~ *° f(x) dx, does not imply that f(x) dx
converges; thus, |
R
lim xdx = lim 0=0,

R—> _pg R—c0

) )
but O°°xdx and ?OO xdx diverge and therefore so does _ ™ xax.

Theorem: Suppose that fi, f, ..., f, are loca}ly integrable on [g, b).
The integrals ” fi(x) dx, ?fa(x)dx, ..., * 2 fa(x) dx converge.

I
Let ¢y, ¢2, ..., cn be constants. Then 2(c1 Sf+cof1++cnfn)(x) dx converges.
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Furthermore,
[ b ['p
(it o+ - +afa)X)dx = a  filx)dx
a af b
+c2  fa(x)dx
a I
+--4c,  [folx)dx.

a

Proof: If a < c < b, then
. I,
(C1f1 + szz + -+ Crfn)(X) dx C1 fl(X) dx
a GI c
+C> fﬁ(X)CﬁK
a f c

+ - +Cp fn(x) dx.

a

Letting ¢ — b— yields the stated result.

/
Theorem: If f is nonnegative and locally integrable on [q, b), then ab f(x) dx con-

verges if the function /
F(x)=  f(t)dt

a
Jﬁ
is bounded on [g, b), and 2 f(x) dx = oo if it is not.
These are the only possibilities, and

[
f(t)dt= sup F(x)
a asx<b
in either case.
Proof: The function I &
F(x) = f(t) dt

a

is nondecreasing on [g, b).
Recall: Suppose that f is monotonic on (g, b) and de ne

a=inf f(x), 8 = sup f(x).

a<x<b a<x<b

If fis nondecreasing, then f(a+) = a and f(b—) = 6.

Remarks: We often write |
b

f(xX)dx < o

a
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to indicate that an improper integral Pf a nonnegative function converges.
Similarly, if f is nonpositive and ; f(x) dx converges, we write

I b
f(x)dx > —o0

a
because a divergent integral of this kind can only diverge to —oco.

- These conventions do not apply to improper integrals of functions that assume
both positive and negative values in (g, b), since they may diverge without

diverging to +oo.
3.1.1 The Comparison Test
Theorem: If f and g are locally integrable on [q, b) and
0<f(x)<glx), a=<x<b, (3.2)
then

1. abf(x)dx<oo if abg(x)dx<oo

b e I
2. , gx)dx=o00 if ,°f(x)dx=o0.

Proof: Since
0<f(x)<g(x), a=<x<b,

we have I I
= <
o f(t)dt o 9(t)dt, a x<b.
So [ . I ,
sup f(t)dt < sup g(t)dt.
asx<b ¢ asxsb 7

If ! 2 g(x) dx < oo, the right side of this inequality is nite by the previous Theorem,
so the left side is also.

This implies that : f I
Thegpreat is by contradiction. If Pg(x)dx < o, then (1) implies that

J
ab f(x) dx < oo, contradicting the assumption that |, b f(x)dx = oo.

Example: Determine the convergence of the improper integral

/= 12 +sinnx
a o (L—x)P
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Solution: We are going to show that the improper integral converges if p < 1.
Since

2 +sinmx 3
O0< (1— x)P S(l—x)P’ 0<x<l1.
We have 1 3gx
. (1—x)P<OO’ p <l

Example: Determine the convergence of the improper integral

12 +sinmx
/I = dx.
o (1—x)P

Solution: However, / diverges if p > 1, since

1 2 +sinmx
—_—w —/———, 0=<x<1,
(1= x)P (1—x)P
and I

1 dx

= > 1.
o (1—x)P <P

Remark: If f is any function (not necessarily nonnegative) locally integrable on
[a, b). If a; and c are in [g, b), then
I'e I e
f(x)dx = f(x)dx+ f(x) dx.

a a a1

J
Since ™ f(x)dx is a proper integral, on letting ¢ — b— we conclude that if
a

J J
either of the improper integrals = °f(x)dx and ~ ” f(x)dx converges then so does
a

ai

the other, and in this case
f b f a f b

1

f(x)dx = f(x)dx+ f(x) dx.

a a ai

Remark: This means, that any theorem implying convergence or divergence of
an improper integral } J (x) dx remains valid if its hypotheses are satis ed on a
subinterval [ay, b) of [a, b) rather than on all of [g, b).

For example, the comparison test remains valid if we have

0<f(x)<g(x), a1=<x<b,

where a; is any point in [q, b).
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From this, you can see that if f (x) > 0 on some subinterval [a;, b) of [a, b), but
not necessarily for all x in [g, b), we can sti}l use the convention introduced earlier
for positive functions; that is, we can write® f(x) dx < oo if the improper integral

a

/
converges or , ® £(x) dx = oo if it diverges.

Theorem: Suppose that f and g are locally integrable on [a, b), g(x) > 0 and
f(x) = 0 on some subinterval [a;, b) of [a, b), and

. f(x)
lim —— —

— a0 (3-3)

J J
. If0<M < oo, then = 2f(x)dx and =~ 2g(x) dx converge or diverge together.
J J
« If M =00 and abg(x)dx= oo, then , bf(x)dx= o0,

J /
« If M =0 and abg(x)dx< oo, then bf(x)dx< 00,
Proof: From (3.3), there is a point a, in [ay, b) such that

0 M f(x) 3M
<_ < < __ <
> 90) 5 a, < x<b,

and therefore M 3V
TQ(X) <flx) < Tg(x), a, < x<b. (3-4)
The rst inequality in (3.4) imply that

I [y
g(x)dx < « if f(x)dx < 0.

az az

The second inequality in (3.4) imply that

' b
f(x)dx < 0o if g(x)dx < co.

az az

J J
Therefore, . zb f(x) dx and :2 g(x) dx converge or diverge together, and in the latter

case they must diverge to oo, since their integrands are nonnegative. If M = oo,
there is a point a;, in [ay, b) such that

f(x) =g(x), a<x<b,
J
We have , bf(x) dx = oo, If M =0, there is a point a; in [a3, b) such that
fx) =glx), a2=x<b,

J
so we have , bf(x) dx < o0,

Join VU WhatsApp Group:
https://chat.whatsapp.com/JURZW{fAElue6qixpzkfduE



https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE

3.2. Absolute integrability 137

3.2 Absolute integrability

e say that f is absolutely integrable on [a, b) if f 1s locally integrable on [q, b) and

a [f(x)l dx < oo. In this case we also say that f(x) dx converges absolutely or is
absolutely convergent.

Remark: If fis nonnegative and integrable on [q, b), then fis absolutely integrable
on [a, b), since |f| =

Example: Since

and 1°°x-pdx< oo if p > 1.
The comparison theoren} 1mp11es that

SNXl <o, p>1.

The function

is absolutely integrable on [1, ) if p > 1.

Example: It is not absolutely integrable on [1, «) if p < 1.
To see this, we rst consider the case where p = 1.
Let k be an integer greater than 3. Then

fl kmt | sin x| dx > ) km | sin x| dx
X Zﬂ fX
_ k-1 (j+1)m |5|nx|
- =1 jr dx (3.5)
> }‘Ely_&gﬁ jﬁﬂ)" | sin x| dx.
But
" I (+1)r [
| sinx| dx = sinxdx = 2,
Jjrt 0
so (3.5) implies that
k>3
W sinx| dx> 2 T —1 (3.6)
1 X JT j +1
j=1
However, B 2 g
. = 7 .I = 1/ 2/ 7
Jj+1 j+1 X

so (3.6) implies that

>
! b% Ty 1 X
2 gy 2 k+1
= = - = T log
oy X T 2
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Since limisw log[(k + 1)/2] = oo, implies that

@ |sinx
. x  dx =00,
Now implies that
@ |sinx
. XP dx=0c0, p=<I1 (3.7

I I
Theorem: If £ is locally integrable on [a, b) and gLf(x)\ dx < oo, then ff(x) dx
converges; that is, an absolutely convergent integral is convergent.

Proof: If
g(x) = [F )| - f(x).
Then
0 < g(x) < 2|f(x)|
and [ g(x) dx < o, because of comparison theorem and the absolute integrability
of f. Since
f=Ifl- 2

Due to comparison test, we can conclude that . b f(x) dx converges.

3.3 Nonoscillatory and Oscillatory Functions

A function f is nonoscillatory at b— (= co if b = o0) if f is de ned on [g, b) and
does not change sign on some subinterval [ay, b) of [a, b).

If f changes sign on every such subinterval, f is oscillatory at b—.

Remark: For a function that is locally integrable on [, b) and nonoscillatory at b—,
convergence and absolute convergence of ab f(x) dx amount to the same thing, so
absolute convergence is not an interesting concept in connection with such functions.

However, an oscillatory function may be integrable, but not absolutely inte-
grable, on [a, b), as the next example shows. We then say that f is conditionally
integrable on [a, b), and that ‘; f(x) dx converges conditionally.

3.4 Conditional convergence

An oscillatory function may be integrable, but not absolutely integrable, on [a, b),
as the next example shows. We then say that f is conditionally integrable on [a, b),
and that ‘;f(x) dx converges conditionally.

Example: The integral I
_ * sinx d
I(p) = o
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is not absolutely convergent if 0 < p < 1.
We will show that it converges conditionally for these values of p.
Integration by parts yields

¢ .
Sinx cos C COS X
dx=—"__+cosl_p 4, dx. (3.8)
. XxXP cP . XxP
Since
cosx< 1
: Xp+1 : Xp+1

and ;” x"-'dx < o if p > 0, the comparison theorem implies that x-"-* cos x is
absolutely integrable [1, o) if p > 0.

Therefore, we have an absolutely convergent integral, this implies that
x-P-! cos x is integrable [1, o) if p > 0.

Letting ¢ — o in (3.8), we nd thfat I(p) converges, and

® cos x

I(p)=cosl—p dx if p>o0.

xp+1

N P . o
This and 1 dx = o, p <1, imply that /(p) converges conditionally if
O<p<=<1.

3.5 Dirichlet's Test

J
Theorem: Suppose that f is continuous and its antiderivative F(x) = ax f(t)dt is
bounded on [q, b).
Let g’ be absolutely integrable on [, b), and suppose that
lim g(x) =0. (3.9)

x—b-
J
Then b f(x)g(x) dx converges.

Proof: The continuous function fg is locally integrable on [q, b). Integration by
parts yields
I'e I e
fx)g(x)dx = F(c)g(c) -  F(x)g'(x)dx,a <c<b. (3.10)

a a
The comparis?n test implies that the integral on the right converges absolutely
as ¢ — b—, since 2 |g'(x)| dx < oo by assumption, and

IF)g' ()] = MIg(x)],

where M is an upper bound for |F| on [g, b). Moreover, (3.9) and the boundedness
of F imply that limc.s- F(c)g(c) = 0.

Letting ¢ — b— in (3.10) yields
[ [
fx)g(x)dx = - F(x)g'(x)dx,

a a

Join VU WhatsApp Group:
https://chat.whatsapp.com/JURZW{fAElue6qixpzkfduE



https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE

3.6. Rectangles in R” 140

where the integral on the right converges absolutely.

Remark: Dirichlet's test is useful only if f is oscillatory at b—, singe it can be shown
that if £ is nonoscillatory at b— and F is bounded on [a, b), then , [f(x)g(x)| dx <
oo if only g is locally integrable and bounded on [g, b).

Remark: Dirichlet's test can also be used to show that certain integrals diverge.

Example: For example,

[ o
x7 sin xdx
1

diverges if g > 0, but none of the other tests that we have studied so far implies

this. It is not enough to argue that the integrand does not approach zero as x — o
(a common mistake), since this does not imply divergence. To see that the integral
diverges, we observe that if it converged for some g > 0, then F(x) = x? sinxdx

would be bounded on [1, o).
We could let
f(x) =x7sinx and g(x) = x“

in Dirichlet's test and conclude that
| «
sin xdx
1

also converges. This is false.

3.6 Rectangles in R”

The
S1 XS X+ XS,

of subsets Si, S5, ..., S, of R is the set of points (xi, x, . . ., xs) in R” such that

X1 € S, X2 € S, ..., xa € Sp. For example, the Cartesian product of the two closed
intervals

[CI1, b1] X [02, bz] = {(X, y) a1 < x<b, a0 < y < bz}

is a rectangle in R? with sides parallel to the x- and y-axes.
The Cartesian product of three closed intervals

[0y, b1] X [a2, b2] X [as, bs] = {(x,y,2) 101 < x < by,

GzSysz,CI3SZSb3}

is a rectangular parallelepiped in R3 with faces parallel to the coordinate axes. A
coordinate rectangle R in R”is the Cartesian product of n closed intervals; that is,

R = [ay, b1] X [az, b2] X « -+ X [an, byl.
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b=

Figure 3.1: Rectangle in R?

z

X

Figure 3.2: Rectangular parallelepiped in R3

The content of R is
V(R) = (b1 — a1)(b2 — a2) - - - (bn — an).

The numbers by — a1, b, — a5, ..., b, — a, are the edge lengths of R. If they are
equal, then R is a coordinate cube. If a, = b, for some r, then V (R) = 0 and we say
that R is degenerate; otherwise, R is nondegenerate.

If n = 1,2, or 3, then V (R) is, respectively, the length of an interval, the area of
a rectangle, or the volume of a rectangular parallelepiped. Henceforth, rectangle
or cube will always mean coordinate rectangle or coordinate cube unless it is
stated otherwise. If

R = [ay, b1] X [az, ba] X = + = X [an, bnl

and
Pr:ar=ar<an<:-::<am =br

is a partition of [a, b/], 1 < r < n, then the set of all rectangles in R” that can be
written as

[01,/1-1, G1/1] X [G2,,-1, G255] X+ X [An,jn-1, Anjn), 1

<jr<m, 1<r=<n,

is a partition of R. We denote this partition by

P=pP  XP, X+ XPy (3.11)

Join VU WhatsApp Group:
https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE



https://chat.whatsapp.com/JURZWfAElue6qixpzkfduE

3.7. Riemann Sum in R” 142

We de ne its norm to be the maximum of the norms of Py, P, ..., P, thus,

IP[l = max{[[Pll, lIP2l, ..., [[Pall}.

Put another way, ||P|| is the largest of the edge lengths of all the subrectangles
in P. Geometrically, a rectangle in R? is partitioned by drawing horizontal and ver-
tical lines through it; in R3, by drawing planes through it parallel to the coordinate
axes. Partitioning divides a rectangle R into nitely many subrectangles that we
can number in arbitrary order as Ri, Ry, . . ., R«. Sometimes it is convenient to
write

P={R1,R2,...,Rk}
rather than (3.11).

e
[ ol

Figure 3.3: Partitioning of a rectangle in R?

« IfP =Py XPyX XP,and P' = P, X P, X X P,, are partitions of the same
rectangle, then P’ is a re nement of P if P; is a re nement of P, 1 < j < n.

3.7 Riemann Sum in R”

Suppose that f is a real-valued function dened on a rectangle R in R", P =
{R1, R, ..., R«} is a partition of R.

Let X is an arbitrary point in R;, 1 < j < k.
Then

x
o= fI(X)V(R)
j=1
is a Riemann sum of f over P.
Since X, can be chosen arbitrarily in R;, there are in nitely many Riemann
sums for a given function f over any partition P of R.
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3.8 Riemann Integral in R”

: Let f be a real-valued function de ned on a rectangle R in R".

We say that f is Riemann integrable on R if there is a number L with the
following property:

For every € > 0, there is a § > 0 such that

lo-L| <e.

If o is any Riemann sum of f over a partition P of R such that [P <é.
In this case, we say that L is the Riemann integral of f over R, and write
[

f(X)dX = L.
R

f
Remarks: The integral . f(X)dX is also written as

fx,y)dix,y) (n=2), fixy,2)dx,y,z) (n=3),
R R
or [
flxy, x2, ..., xn) d(x1, X2, . .., xn)  (n arbitrary).
R
Here dX does not stand for the di erential of X.
It merely identi es xi, x,, ..., X, the components of X, as the variables of

integration. | To avoid this minor inconsistency, some authors write simply ,f

rather than ,f(X) dX.
As in the case where n = 1, we will say simply integrable or integral when

we mean Riemann integrable or Riemann integral. If n > 2, we call the integral
of above de nition a multiple integral ; for n = 2 and n = 3 we also call them double
and triple integrals, respectively. When we wish to distinguish between multiple
integrals and the integral we studied in Chapter (n = 1), we will call the latter an
ordinary integral.

[
Example: Find . f(x, y) d(x, y), where

R =g, b] X [c, d]

and
flx, y)=x+y.

Solution: Let P, and P, be partitions of [g, b] and [c, d]; thus,

Pr:a=xo<x1<---<x-=b
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and
P:c=yo<yi<:'::<ys=d.

A typical Riemann sum of f over P = P; X P is given by

>
o= (&7 + nip)(xi = xi-1)(y; = Y1), (3.12)
i=1 j=1
where x;1 < §ij < xi and Vi-1 = Nij = Y. (3.13)

The midpoints of [x;-1, x;] and [y;-1, y;] are

R P+ i
o= KXl g = Vit Yi-L (3.14)
2 2
and (3.13) implies that
&7 — x| < X"_%)/("‘l < ||||P12|:| < E (3.15)
=% P
n -yl = Yi— Vi 1720 . (3.16)
vooJ 2 2 2

Now we rewrite (3.12) as

)y

> .
o e =1 (i + Vi) (X = Xica )y — Y1)

> s Xs ] _ -] .
ToiEl s (& - xa) + (i - y)) (517
(xi = xi-1 )y = Yj-1)-

[
To nd ;f(x y)d(x, y) from (3.17), we recall that

X >
(xi — xi-1) =b —aq, (yi-yi-1)=d-c (3.18)
i=1 j=1
and
> >
(X% — x3-1) = b* — @, (V= yj1)=d* — (3.19)
i=1 j=1

Because of (3.15) and (3.16) the absolute value of the second sum in (3.17) does not
exceed

> ‘x !
1Pl (xi = xi-)(y; - yi-1) = |P] (Xi — Xi-1)

j=1j=1 .=t .

>
()

j=1

= [[Pll(b—a)(d — ¢)
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(see (3.18)), so (3.17) implies that

>r s
o~ (7 + y5)(xi = xi-a)(y; — yi-1). < [PIl(b - a)(d - c). (3.20)
=1 j=1 .

It now follows that
X, s _

=1 jeq XilXi- )fi_i)(yj = Yi-1) ]
[ :(=1 xi(xi — Xi-1)] 7:1 (ys = yj-1)

d—y) i1 xi(xi — xi-1)  (from (3.18))
53

r

,'=1(X2i - Xzi—l) (fI‘OIl’l (314))
d__
= X -ad) (from (3.19)).
Similarly, ros
DS _b-a
yi(xi —Xi-1)y; — Vi1 )= ) (@ _ ).
i=1 j=1

Therefore, (3.20) can be written as

o= 555 - o) - PSR - A £ 1P - ald - o

Since the right side can be made as small as we wish by choosing ||P|| su ciently
small,

J

(x+y)d(x y) = % [(d —c)(b*> = a®) + (b —a)(d* - cz)] .
R

Theorem: If fis unbounded on the nondegenerate rectangle R in R”, then f is
not integrable on R.

Proof: We will show that if f is unbounded on R, P = {Ry, R, . . ., Ri} is any
partition of R, and M > 0, then there are Riemann sums ¢ and ¢ of f over P such
that

lo —od| = M. (3.21)
This implies that f cannot satisfy de nition of Riemann integral. (Why?)
Let
x
o= fI(X)V(R)
j=1

be a Riemann sum of f over P. Let

*
o= [fIX)VI(R)

J=1

be a Riemann sum of f over P.
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There must be an integer i in {1, 2,..., k} such that

M
F(X) - F(X5)| = VIR)
for some X in R;, because if this were not so, we would have
M
Lf(X)—f(Xj)\<V(TI_), X € R, 1<j<k

If this is so, then

rx) = X +f(X)A;,f(Xj)\ < FXN + [F(X) - £(X)]

However, this implies that
M

F(X)| < max [f(X;)] + V(R)

1<j<k XER

which contradicts the assumption that f is unbounded on R.
Now suppose that X satis es (3.22).
Consider the Riemann sum
r E r
o= [fI(X})VI(R)
j=1

over the same partition P, where

{ .
X,- — Xj/ ./. {/
/ X, j=Ii

Since
lo - o'l = [f(X) - F(X)IV(R)),
(3.22) implies (3.21).

3.9 Upper and Lower Integrals

(3.22)

If fis bounded on a rectangle R in R” and P = {Ry, R,, ..., R} is a partition of

R.
Let
M; = sup f(X), m;=inf f(X).
XER; X€eR;

The upper sum of f over P is

x
S(P) = MjV (Rj).
Jj=1
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The upper integral of f over R, denoted by

I
f(X) dX,
R

is the in mum of all upper sums.

Upper and Lower Integrals: The lower sum of f over P is

*
S(P) = mjV (Rj).
Jj=1

The lower integral of f over R, denoted by
[
f(X)dX,
R

is the supremum of all lower sums.
Theorem: Let f be bounded on a rectangle R and let P be a partition of R.

Then

1. The upper sum S(P) of f over P is the supremum of the set of all Riemann
sums of f over P.

2. The lower sum s(P) of f over P is the in mum of the set of all Riemann sums
of f over P.

Remarks: If
m=f(X)<M forXinR,

then
mV (R) < s(P) < S(P) < MV (R);

[ [
therefore, . f(X)dX and ,f(X)dX exist, are unique, and satisfy the inequalities
f(X)dX < MV (R)

and mV(R) < R

I' fX)dX < MV (R).
mV (R) <

Remarks: The upper and lower integrals are also written as
- [
flxy)d(x,y) and  f(xy)d(xy) (n=2)

R R
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+— [
flxy,2)dx,y,2z) and  f(xy, 2)dxy 2) (n=3),
R R
or L
fx1, x2,...,Xn)d(X1, X2, ..., Xn)
and I R
. fx1, x2, ..., xn) d(x1, X2, . . ., Xn) (n arbitrary).

Example: FindL? f(x, y)d(x, y) and 7r:f(x, y) d(x, y), with R = [a, b] X [c, d] and

fx, y)=x+y.

Solution: Let P, and P, be partitions of [g, b] and [c, d]; thus,
Pi:a=XxXo<x1<':+<Xx=b

P:c=yo<yi<: ::<ys=d.

The maximum and minimum values of f on the rectangle [x;-1, xi] X [y;-1, y;] are
xi +y; and x;-1 + y;-1, respectively.

Therefore,
=
sS(P) = (xi + y;)(xi = xi-1) () — Yj-1) (3.23)
i=1 j=1
=
s(P) = (Xi-1 + yj-1)(Xi = Xi-a) (s — Yj-1). (3.24)
i=1 j=1

By substituting

[EEN

Xi+y; = 2[(x,- + Xi-1) + (Y7 + y-1) + (X — Xi-1) + (7 — yi-1)]

into (3.23). We nd that

1
S(P) = (Z1+ 3>+ 33+ 34), (3.25)
where
>, ¥,

2, = - i (G = %) l-wa) = (P -a?)d-o)

22 = b /r'=1(Xi — Xi-1) S/'=1(y§' - yz/'-l ) = (b— a)(dz - CZ)’

33 = - ,r'=1(Xf — Xi-1)? Si=1 (vi —yi-1) < [Pl(b-a)(d-c),

%2 = i xa) DS -y)? < [Plb-a)d- o).
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Substituting these four results into (3.25) shows that

I <S(P)<I+|Pl|(b—a)d-—c),

where
,_ d—ab’— a)+(b—ald - &)
> .
From this, we see that
1
(x+y)dx y) =1
R

After substituting

1
Xi1 + Y1 =, [(xi + xi-2) + (y; + yi-1) — (Xi = xi-1) = (y; — yi-1)]

into (3.24), a similar argument shows that
I = ||P|l(b—a)d—c) <s(P) <1
So
(x+y)d(x, y) =1
R
Theorem: Suppose that |f(X)| < M if X is in the rectangle
R = [ay, b1l X [az, b2] X « = + X [an, bn).

Let P=P; X P; X X P,and P' = P; X P, X -+ X P, be partitions of R, where
Pj' is obtained by adding r; partition points to P, 1 < j < n. Then

z
S(P) = S(P) = S(P) — 2MV(R) ° —l_b,- — e (3.26)
=1
and .
.
s(P) < s(P) < s(P) +2MV (R) * b; —a/" |P]. (3.27)
=1

Theorem: If f is bounded on a rectangle R, then
/ 1
FX)dX < F(X)dX.
R R
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Theorem: If f is integrable on a rectangle R, then

[ + [
(X)dX = f(IX)dX = f(X)dX
R R R

Theorem: If f is bounded on a rectangle R and € >0, there is a 6 >0 such that

+ .
fX)dX < S(P) < Ff(X)dX +¢
R R

and J [
Rf(X) dX > s(P)>  f(X)dX —«¢
_R

if ||P]| <é.

Theorem: A bounded function f is integrable on a rectangle R if and only if

] +
fX)dX = f(X)dX.
R R

Theorem: If f is bounded on a rectangle R, then f is integrable on R if and only
if for every € > 0 there is a partition P of R such that

S(P) — s(P) <e.

Theorem: If f is bounded on a rectangle R and

[ +—
fX)dX = f(X)dX =1L,
R R

then f is integrable on R, and

f(X)dX = L.

Theorem: If f is continuous on a rectangle R in R”, then f is integrable on R.
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3.10 Sets with Zero Content

A subset E of R" has zero content if for each € > 0 there is a nite set of rectangles
Ti, T2, ..., Tm such that

o
EC T; (3.28)
j=1
and
V(T) <e (3.29)

J=1

Example: Since the empty set is contained in every rectangle, the empty set has
zero content.

If E consists of nitely many points Xi, Xo, ..., X, then X, can be enclosed
in a rectangle 7; such that

€
V(T,—)<E, 1<j<m

u >
Then £ C /23 Tjand ~ 25 V(T;) <& hold, so E has zero content.

Example: Any bounded set £ with only nitely many limit points has zero content.
To see this, we rst observe that if £ has no limit points, then it must be nite,
by the Bolzano Weierstrass theorem, and therefore must have zero content.
Now suppose that the limit points of £ are Xi, X, ..., Xn. Let Ry, Ry, ...,
Rm be rectangles such that X; € R} and

&
V(R) < 57 1<i<m. (3.30)

The set of points of £ that are not in U/Z1R; has no limit points (why?) and, being
bounded, must be nite (again by the Bolzano Weierstrass theorem).

If this set contains p points, then it can be covered by rectangles R;, R, ...,
R, with

VIR) <™, 1<j=p. (3.31)

Now, .
(m ) u, e
E C Ri le
i=1 J=1

From (3.30) and (3.31),

m p

> >

i=1 j=1
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Example: If f is continuous on [q, b], then the curve
y=f(x), a=<x<b (3-32)
(that is, the set {(x, y) : y = f(x), a < x < b}), has zero content in R?.

Lemma: The union of nitely many sets with zero content has zero content.
Theorem: Suppose that f is bounded on a rectangle

R = [ay, b1] X [az, ba] X + -+ X [an, bn) (333)
and continuous except on a subset £ of R with zero content. Then f is integrable
on R.

Example: The function
{ x+y, 0<x<y<1,
flxy) =
5, 0<y=x=<1,
is continuous on R = [0, 1] X [0, 1] except on the line segment
y=x, 0=<x=<1

Since the line segment has zero content, f is integrable on R.

3.11 Integral Over Bounded Set

Suppose that f is bounded on a bounded subset of S of R”. Let

{ fX), Xes,
fs(X) = (3-34)
0, X/€ S.

Let R be a rectangle contaijning S. Thenf the integral of f over S is de ned to be

fX)dX = f(X)dX
S R

[
if 5 fs(X)dX exists.

Area and volume as integrals: If S is a bounded subset of R” and the integral
¢ dX (with integrand f = 1) exists.

We callfs dX the content (also, area if n = 2 or volume if n = 3) of S, and
denote it by V (S).

Thus, |

Vis)= dX
S

Theorem: Suppose that f is bounded on a bounded set S and continuous except
on a subset £ of S with zero content.

Suppose also that dS has zero content. Then f is integrable on S.
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3.12 Di erentiable Surfaces

A di erentiable surface S in R" (n > 1) is the image of a compact subset D of R,

where m < n, under a continuously di erentiable transformation G : R” — R". If
m =1, S is also called a di erentiable curve.

Example: The circle
{xy) : x*+y* =9}
is a di erentiable curve in R2.
Since it is the image of D = [0, 2] under the continuously di erentiable trans-
formation G : R — R?de ned by
[ 3cos v ]

3sind

X =G =

Example: The sphere
{(xy,2) : X" +y* +2* = 4}

is a di erentiable surface in R3.
Since it is the image of

D={9¢):0<9 <2m,—n/2 <¢ < n/2}

under the continuously di erentiable transformation G : R*? — R3de ned by

2cosﬁcos¢l
X=G(8,¢)= " 2sinfcos¢p ' .
2sin¢

Theorem: A di erentiable surface in R"has zero content.

Let S, D, and G be as in De nition ??. From Lemma ??, there is a constant
M such that
IG(X) - G(Y)| < M|IX-Y| if XYe€D (3.35)

Since D is bounded, D is contained in a cube

C=[ay, b1] X [az, ba] X + + + X [am bm],

where
bi-a;i=1L, 1<i<m.
Suppose that we partition C into N™ smaller cubes by partitioning each of the

intervals [a;, b;] into N equal subintervals. Let R1, R», ..., R« be the smaller cubes
so produced that contain points of D, and select points Xi, X, ..., Xk such that

X,eDNR,1<i<k IfY € DN R, then (3.35) implies that

G(X)) - G(Y) = MIX;-Y]| (3.36)
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Since X; and Y are both in the cube R; with jdge length L/N,
L m

‘X,‘—Y‘S N

This and (3.36) imply that J
ML m
IG(X)) - G(Y)| <

N 7
which in turn implies that G(Y) lies in a cube R;in R" centered at G(X), with

sides of length 2ML " m/N. Now

ComaeY ) 7 (GRS

~ 2ML m
VIR) =k — m <ME M
. (R7) N =N N
j=

=(2ML m)"N"" .
Since n > m, we can make the sum on the left arbitrarily small by taking N
su ciently large. Therefore, S has zero content.

Theorem: Suppose that S is a bounded set in R”, with boundary consisting of a
nite number of di erentiable surfaces.

Let f be bounded on S and continuous except on a set of zero content. Then f
is integrable on S.

Example: Let
S={x,y):x*+y*=1, x = 0O}
The set S is bounded by a semicircle and a line segment, both di erentiable curves
in R2,
Let

Fooy) = 1-X =y, (xy) €S y=0,
—(1-X-y)? (xy)€S y<O.

Then f is continuous on S except on the line segment
y=0 0=<x<1,
which has zero content.

Hence, from the theorem we just stated implies that f is integrable on S.

Theorem: If f and g are integrable on S, then so is f + g, and
) / /

F+a)X)dX = f(IX)dX+ g(X)dX.
s s s

;Il'rI‘II gorem: If f is integrable on S and c is a constant, then cf is integrable on S,

/ J
()X)dX=c [f(X)dX
) S
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Theorem: If fand g are integrable on S and f(X) < g(X) for X in S, then
J J
fX)dX < g(X)dX.
s s

Theorem: If f is integrable on S, then so is |f], and
fX)dXx < |[f(X)dX.
[

©s
Theorem: If f and g are integrable on S, then so is the product fg.

Theorem: Suppose that u is continuous and v is integrable and nonnegative on a

rec le R.
gl f f

uXIvX)dX = u(Xo)  yX)dX
R

R
for some X, in R.

Theorem: Suppose that S is contained in a bounded set T and f is integrable on
S.
Then fs is integrable on 7, and
[ [

(X)dX = f(X)dX.
T S

Theorem: If f is integrable on disjoint sets S; and S, then f is integrable on
S1US,, and ) / [
f(X)dX = < fX)dX+  f(X)dX. (3.37)

S1US> Sz

Theorem: Suppose that fis integrable on sets S; and S, such that S; N S, has
zero content. Thenf fis integrable on S; U S,, and

/ /
fX)dX = fX)dX+ f(X)dX.

51US
1US2 S1 S5

Example: Let

S1
Sz

{x,y):0<=x<1, 0<y=<1+x}
{x,y):=1<x<0,0<y<1-x}
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Figure 3.4: S: and S

Then
51052={(0,y):OSys 1}

has zero content.
Hence, by using corollary implies that if f is integrable on S; and S,, then f is
also integrable over

S=51US ={(x,y):—1<x=<1 0=<y<1+]|x|}

and | / [

fIX)dX = fIX)dX + f(X) dX.
51US> S1 Sz

3.13 Iterated Integrals

Let us rst assume that f is continuous on R = [q, b] X [c, d].
Then, for each y in [, d], f(x y) is continuous with respect to x on [g, b], so the
integral |
b
Fly)=  flxy)dx

a
exists.
Moreover, the uniform continuity of f on R implies that F is continuous and

therefore integrable on [c, d].
We say that
g g (L )

/1 = F(y)dy = flx, y)dx dy

[ c a

is an iterated integral of f over R.

Iterated integrals: We will usually write it as

[ [
1. = dy f(x y)dx.

Cc a
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Another iterated integral can be de ned by writing
I
G(x) =  flxyldy, a=<x<b,
De ning
I Fo (g )
/> = G(x)dx = f(x, y)dy dax,
which we usually write as
e T4
> = dx  f(x, y)dy.
Example: Let
fxy)=x+y
and R =[0,1] X [1,2]. Then
[ I 1
Fly) = fx y)dx= (x+y}dx=_+y
IO 0 X
I =  *F(y)dy= I 2(1 +y dy= +y@) 2 =2
1 1 2 2 2 . 1
Also, | ( |
G(x) = Clx+yldy= Wry P =xad
1 2z 2
f 1 f 1 ( 3) Xz y . 1
Iz = G(x)dx = x+= gx= —%t =2.
0 0 2 2 2 0
Theorem: Suppose that f is integrable on R = [qg, b] X [c, d] and
Iy
Fly)= f(x y)dx
exists for each y in [c, d].
Then F is integrable on [c, d], and
[ 4 [
F(y)dy =  f(x y)dx y); (3-38)
c R
that is, f,o0, |
dy flxy)dx= flxy)dxy). (3-39)
c a R
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Theorem: If f is integrable on [g, b] X [c, d], then
[y |4 [4 [
dx f(x,y)dy = dy f(x,y)dx,

a c c a

J J
provided that . 9f(x y) dy exists fora < x < b and ab f(x, y)dx existsforc < y < d.
In particular, these hypotheses hold if fis continuous on [g, b] X [c, d].

Example: The function
fy)=x+y
is continuous everywhere.
For example, let R = [0, 1] X [1, 2].
Then we have
[ [ T2
Xty d(xy)

1]
<
o
<
+
=
S

2 ) 2
= S +y dy= Yy, Y o o=2
L2 2 2
Since f also satis es the hypotheses of Fubini's Theorem with x and y interchanged,
we can calculate the double integral from the iterated integral in which the integra-
tions are performed in the opposite order.

Thus,
] Fa I
{XFy)dlxy) = ogx , (x+y)dy
_ [ (Xy+£) 2 gy
0 2 =1
[ T
1 = dx=( 3x =2
= 0 X+§

J J
Remark: If Cddy ab f(x, y) dx exists then so does
need not to be true.

= flxy)d(x y). However, this
Example: If f is de ned on R = [0, 1] X [0, 1] by

2xy if yisrational,
if y is irrational,

flx,y) =
then I

fixy)dx=y, 0=<y<]
0
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and ) ) |
1 1 1
dy flxy)dx= yady=
0 0 0
However, f is not integrable on R.

N =

Theorem: Let Iy, I, ..., I, be closed intervals and suppose that fis integrable

onR=/1XILX" X[,
Suppose that there is an in}eger pin {1, 2, ...,n— 1} such that

FP(XP"'l/ Xp+2, - - -, X") = f(Xl, X2,..., Xn) d(Xl, X2,..., Xp)

I1x[2%---x[,
exists for each (xp+1, Xp+2, ..., Xn) 1N lpsz X lpea X = = = X I,

Then f

" Fp(Xp+1, Xp+2, .oy Xn) d(Xp+1, Xp+2, « ..y Xn)

Ip+1><lp+2><"'></

J"
exists and equals , £(X) dX.

Theorem: Let /; = [a;,b;], 1 < j < n, and suppose that f is integrable on

R=11 XL X+ X,
Suppose also that the integrals
[
Fo(Xp+1, - - -, Xn) = fX)d(x, x2, ..., %), 1<p<n-1,

[1%12---x1p
exist for all
(Xp+1, . .,Xn) il’l lp+1 X = X /n.
Then the iterated integral

f b" f bnfl f b2 f b1
dxn dxp-g + -+ dxz F(X) dxa

an an—1 a:z ai

[
exists and equals , f(X) dX.
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